Optimum parameters for each subject in bone remodeling models: A new methodology using surrogate and clinical data

Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling model...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of mechanics, A, Solids Vol. 91; p. 104409
Main Authors Dicati, Gabriela Wessling Oening, Gubaua, José Eduardo, Pereira, Jucélio Tomás
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling models do not consider distinct parameters for each subject. We aim to present a new methodology that accounts for specific parameters for each subject while reviewing bone remodeling, biological aspects, and coupling with the finite element method. We divide the new methodology into three steps: (a) obtaining the density distribution from the femur tomography and a finite element model; (b) implementing an algorithm for bone remodeling via Abaqus; and (c) implementing a Matlab code that combines the design of experiments, surrogate, bone remodeling model, and the finite element method to minimize the difference between the clinical and numerical density distributions. Furthermore, we considered subjects’ characteristics as the physical activity amount and body mass in the numerical simulations. The new methodology is valid whenever the remodeling model presents a tendency towards solution uniqueness. We applied the new methodology in 18 subjects and obtained a different set of parameters for each one. These parameters allowed characterizing a more accurate and realistic femoral density distribution for each subject. Furthermore, the new methodology decreased the density relative difference by 50%, compared with the traditional ones. •Optimum parameters for simulating bone remodeling of a specific subject.•Optimization process accounts for surrogate and clinical data.•Numerical and clinical bone density distributions became closer.•Detailed analysis of the bone remodeling needs specific parameters for each subject.
AbstractList Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling models do not consider distinct parameters for each subject. We aim to present a new methodology that accounts for specific parameters for each subject while reviewing bone remodeling, biological aspects, and coupling with the finite element method. We divide the new methodology into three steps: (a) obtaining the density distribution from the femur tomography and a finite element model; (b) implementing an algorithm for bone remodeling via Abaqus; and (c) implementing a Matlab code that combines the design of experiments, surrogate, bone remodeling model, and the finite element method to minimize the difference between the clinical and numerical density distributions. Furthermore, we considered subjects’ characteristics as the physical activity amount and body mass in the numerical simulations. The new methodology is valid whenever the remodeling model presents a tendency towards solution uniqueness. We applied the new methodology in 18 subjects and obtained a different set of parameters for each one. These parameters allowed characterizing a more accurate and realistic femoral density distribution for each subject. Furthermore, the new methodology decreased the density relative difference by 50%, compared with the traditional ones. •Optimum parameters for simulating bone remodeling of a specific subject.•Optimization process accounts for surrogate and clinical data.•Numerical and clinical bone density distributions became closer.•Detailed analysis of the bone remodeling needs specific parameters for each subject.
ArticleNumber 104409
Author Dicati, Gabriela Wessling Oening
Gubaua, José Eduardo
Pereira, Jucélio Tomás
Author_xml – sequence: 1
  givenname: Gabriela Wessling Oening
  orcidid: 0000-0002-5474-3040
  surname: Dicati
  fullname: Dicati, Gabriela Wessling Oening
  email: gabioening@gmail.com
  organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil
– sequence: 2
  givenname: José Eduardo
  orcidid: 0000-0003-0993-6246
  surname: Gubaua
  fullname: Gubaua, José Eduardo
  email: gubaua@ufpr.br
  organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil
– sequence: 3
  givenname: Jucélio Tomás
  orcidid: 0000-0002-2483-4339
  surname: Pereira
  fullname: Pereira, Jucélio Tomás
  email: jucelio.tomas@ufpr.br
  organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil
BookMark eNqNkM9OwzAMhyMEEtvgHcIDdKRNuzZc0DTxT5q0C5wjN3G3TG0yJSlob0_LOCBOO9my_f0sfVNyaZ1FQu5SNk9Zurjfz7H3rkO1C66dZyxLh3meM3FBJmlV8qTMquKSTJgQZVIWvLom0xD2jLHxdkL85hBN13f0AB46jOgDbZynCGpHQ1_vUUVqLK2Ht9Rj5zS2xm7pTxMe6JJa_KIDuHPatW57pH0Y96H33m0hIgWrqRoYo6ClGiLckKsG2oC3v3VGPp6f3levyXrz8rZarhOV8UVMoKpznZWirpVADZWoleYo-EKXIADzCpsmT7EqG5GKmvGiULpBnmcAnKNmfEbEKVd5F4LHRh686cAfZcrkKE_u5R95chQiT_IG9vEfq0yEaJyNHkx7VsLqlDBowk-DXgZl0CrUxg9OpXbmjJRvX_SZvQ
CitedBy_id crossref_primary_10_1115_1_4066369
crossref_primary_10_1016_j_medengphy_2021_103739
crossref_primary_10_1016_j_jcp_2023_112576
Cites_doi 10.1002/jor.1100080506
10.1016/j.jneumeth.2018.08.023
10.1016/S0021-9290(00)00221-9
10.1139/apnm-2012-0235
10.1080/10255842.2011.650635
10.1016/j.biomaterials.2010.05.077
10.1359/jbmr.081229
10.1002/jcb.25265
10.1016/8756-3282(94)90314-X
10.1016/j.orthres.2005.02.002
10.1007/s10237-005-0067-x
10.1177/0954411919857599
10.1016/j.medengphy.2005.06.003
10.1016/0021-9290(88)90015-2
10.1016/j.bone.2007.09.047
10.1177/0954411913487841
10.1016/j.jbiomech.2007.09.013
10.1016/j.bone.2008.03.025
10.1016/j.jbiomech.2009.09.045
10.1016/j.jtbi.2004.03.023
10.1002/ar.a.20344
10.1016/S0021-9290(01)00069-0
10.1016/S0021-9290(01)00178-6
10.1371/journal.pone.0148603
10.1016/j.medengphy.2020.08.004
10.1196/annals.1402.018
10.1016/j.jmbbm.2020.103657
10.1016/j.jbiomech.2012.10.025
10.1016/S8756-3282(03)00157-1
10.1016/j.clinbiomech.2014.08.001
10.1016/j.jbiomech.2009.04.002
10.1302/0301-620X.54B1.157
10.1016/j.jbiomech.2005.07.018
10.3389/fbioe.2014.00006
10.1016/S1350-4533(00)00056-4
10.1016/j.jbiomech.2003.12.030
10.1016/j.wneu.2020.04.184
10.1007/BF02406129
10.1007/s11914-018-0485-1
10.1007/s12356-012-0030-3
10.1097/00003086-199201000-00014
10.1002/ar.1092190104
10.1016/j.medengphy.2020.10.007
10.1007/s10237-019-01166-w
10.1016/0021-9290(92)90056-7
10.1016/j.oooo.2017.01.012
10.1146/annurev-bioeng-070909-105302
10.1196/annals.1365.035
10.1007/s10237-019-01158-w
10.1089/3dp.2013.0009
10.1007/s10237-019-01193-7
10.1016/j.abb.2008.03.018
10.1038/nrrheum.2009.239
10.1007/s00285-013-0736-9
10.1016/j.engfracmech.2003.08.003
10.1007/s10237-008-0122-5
10.1016/j.medengphy.2013.10.013
10.1007/978-4-431-89757-6_10
10.1080/10255840903045029
10.1080/10255842.2012.654783
10.1016/S8756-3282(96)00231-1
10.1002/jcp.1041430113
10.1016/j.jbiomech.2007.03.013
10.1007/s10237-015-0704-y
10.1016/j.brs.2018.12.894
10.1006/bulm.1999.0146
10.1038/s41598-021-82502-y
10.1016/j.medengphy.2016.04.018
10.1016/j.bone.2017.11.009
10.1016/S0021-9290(96)00189-3
10.1016/j.jbiomech.2007.02.010
10.1007/s10237-020-01353-0
10.1138/20060233
10.1016/0021-9290(94)00087-K
10.1016/j.jbiomech.2006.05.007
10.1016/j.jtbi.2011.01.003
10.1016/j.cma.2012.10.015
10.1016/j.jtbi.2019.04.020
10.1007/s11914-012-0105-4
ContentType Journal Article
Copyright 2021 Elsevier Masson SAS
Copyright_xml – notice: 2021 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.euromechsol.2021.104409
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2021_104409
S0997753821001650
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
  grantid: 001
  funderid: http://dx.doi.org/10.13039/501100002322
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c236t-a8b4d279bbc9eda89bcd3e936d7a9ae48eff41e87f919b0355cdfe342aa33ed03
IEDL.DBID .~1
ISSN 0997-7538
IngestDate Tue Jul 01 01:55:23 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Fri Feb 23 02:43:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Numerical uniqueness of solution
Kriging
Computerized tomography
Individualization of bone remodeling model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-a8b4d279bbc9eda89bcd3e936d7a9ae48eff41e87f919b0355cdfe342aa33ed03
ORCID 0000-0002-5474-3040
0000-0003-0993-6246
0000-0002-2483-4339
ParticipantIDs crossref_primary_10_1016_j_euromechsol_2021_104409
crossref_citationtrail_10_1016_j_euromechsol_2021_104409
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104409
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January-February 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January-February 2022
PublicationDecade 2020
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2022
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Bonewald (b13) 2007; 1116
Burr, Allen (b17) 2014
Komarova, Smith, Dixon, Sims, Wahl (b48) 2003; 33
Trichilo, Scheiner, Forwood, Cooper, Pivonka (b88) 2019; 473
Bahia, Hecke, Mercuri, Pinheiro (b8) 2020; 104
Della Corte, Giorgio, Scerrato (b25) 2020; 234
Cooper, Thomas, Clement, Hallgrí msson (b22) 2006; 288
Kowalczyk (b49) 2010; 43
Opolski, Erbano, Schio, De Salles Graça, Guarinello, De Oliveira, Leal, Foggiatto, Kubrusly (b60) 2014; 1
Martin, Sansalone, Cooper, Forwood, Pivonka (b54) 2019; 18
Roustant, Ginsbourger, Deville (b72) 2013; 51
Klarbring, Torstenfelt (b46) 2012; 4
Rieger, Hambli, Jennane (b71) 2011; 274
Martínez-Reina, Garcia-Aznar, Domínguez, Doblaré (b55) 2009; 8
Mercuri, Daniel, Hecke, Carvalho (b58) 2016; 38
Scheiner, Pivonka, Hellmich (b79) 2016; 15
Calvo-Gallego, P., M., J. (b18) 2021; 37
Hazelwood, Martin, Rashid, Rodrigo (b39) 2001; 34
Sharma, Debski, McMahon, Robertson (b81) 2009; 42
Souza, Matsuda, Peres, Amorim, Moraes, Silva, Baffa (b83) 2018; 309
Pastrama, Scheiner, Pivonka, Hellmich (b63) 2018; 107
Gubaua, Dicati, Mercuri, Pereira (b35) 2020; 84
Schaffler, Kennedy (b77) 2012; 10
Peng, Bai, Zeng, Zhou (b64) 2006; 28
Arun, Sathishkumar, Nithesh Kumar, Ajai, Aswin (b3) 2020
Saeidi, Gubaua, Kelly, Kazemi, Besier, Dicati, Pereira, Neitzert, Ramezani (b76) 2019; 19
Neuert, Dunning (b59) 2013; 227
Pérez, Seral-García (b67) 2013; 16
Damon, Clifton, Valero-Moreno, Quinones-Hinojosa (b24) 2020; 140
Reich, Gay, Frangos (b70) 1990; 143
Schileo, Taddei, Malandrino, Cristofolini (b80) 2007; 40
Adams, Mughal, Damilakis, Offiah (b2) 2012
Beaupré, Orr, Carter (b9) 1990; 8
Greenwald, Haynes (b34) 1972; 54
Avval, Klika, Bougherara (b6) 2014; 136
Rungsiyakull, Li, Sun, Li, Swain (b74) 2010; 31
Jacobs, Levenston, Beaupré, Simo, Carter (b43) 1995; 28
Hambli (b38) 2014; 2
Martínez-Reina, Ojeda, Mayo (b56) 2016; 11
Ashrafi, Galichi, Mirzakouchaki, Doblaré (b4) 2021; 11
Boyce, Xing (b15) 2008; 473
Oumghar, Barkaoui, Chabrand (b61) 2020; 8
Kroll (b50) 2000; 62
Jacobs, Temiyasathit, Castillo (b45) 2010; 12
You, Temiyasathit, Lee, Kim, Tummala, Yao, Kingery, Malone, Kwon, Jacobs (b96) 2008; 42
Cerrolaza, Vannessa, Garzón-Alvarado (b21) 2019; 18
(b23) 2001
Huiskes, Weinans, Rietbergen, van (b42) 1992; 274
Forrester, Sóbester, Keane (b31) 2008
Tyrovola, Odont (b91) 2015; 116
McNamara, Prendergast (b57) 2007; 40
Cardoso, Fritton, Gailani, Benalla, Cowin (b19) 2013; 46
Weinans, Huiskes, Grootenboer (b94) 1992; 25
Gomes, Costa, Chone, de Almeida Milani Altemani, ao Maurí cio Carrasco Altemani, Lima (b33) 2017; 123
Pérez, Moreo, García-Aznar, Doblaré (b66) 2008; 41
Frost (b32) 1987; 219
Pérez, Vendittoli, Lavigne, Nuño (b68) 2014; 36
Hinton, Rackard, Kennedy (b41) 2018; 16
Martelli, Pivonka, Ebeling (b53) 2014; 29
Pivonka, Zimak, Smith, Gardiner, Dunstan, Sims, Martin, Mundy (b69) 2008; 43
Adachi, Kameo (b1) 2006
Simões, Vaz, Blatcher, Taylor (b82) 2000; 22
Taddei, Cristofolini, Martelli, Gill, Viceconti (b85) 2006; 39
Upex, Jouffroy, Riouallon (b92) 2017; 103
Bendsøe, Sigmund (b11) 2003
Burgade, Uhl, Prat, Ruiz, Lorea, Delmas, Rosset, Le-Nail (b16) 2020
Doblaré, García (b28) 2002; 35
Klika, Pérez, García-Aznar, Maršík, Doblaré (b47) 2014; 69
Bonewald (b12) 2006; 3
Hadjifakis, Androulakis (b36) 2006; 1092
Souza, Matsuda, Peres, Amorim, Moraes, Silva, Baffa (b84) 2019; 12
Whalen, Carter, Steele (b95) 1988; 21
Ryser, Nigam, Komarova (b75) 2009; 24
Dicati, Gubaua, Pereira (b26) 2020; 85
Scheiner, Pivonka, Hellmich (b78) 2013; 254
Bagge (b7) 1999
Forrester, Sóbester, Keane (b30) 2007; 463
Lemaire, Tobin, Greller, Cho, Suva (b52) 2004; 229
Bonewald (b14) 2011; 3
Doblaré, García (b27) 2001; 34
Turner, Gillies, Sekel, Morris, Bruce, Walsh (b90) 2005; 23
Belinha, Jorge, Dinis (b10) 2013; 16
Jacobs, Simo, Beaupré, Carter (b44) 1997; 30
Thomsen, Mosekilde, Boyce, Mosekilde (b86) 1994; 15
Viceconti, Davinelli, Taddei, Cappello (b93) 2004; 37
Ashrafi, Gubaua, Pereira, Gahlichi, Doblaré (b5) 2020; 19
Laz, Stowe, Baldwin, Petrella, Rullkoetter (b51) 2007; 40
Rüberg, García-Aznar, Doblare (b73) 2005; 4
Ozcivici, Luu, Adler, Qin, Rubin, Judex, Rubin (b62) 2010; 6
Hernandez, Beaupré, Carter (b40) 2000; 37
Carter (b20) 1984; 36
Thomsen, Mosekilde, Mosekilde (b87) 2020; 19
Pérez, Fornells, Doblaré, García-Aznar (b65) 2010; 13
Tudor-Locke, Craig, Thyfault, Spence (b89) 2013; 38
Doblaré, García, Gómez (b29) 2004; 71
Hall (b37) 2007
Pastrama (10.1016/j.euromechsol.2021.104409_b63) 2018; 107
Bonewald (10.1016/j.euromechsol.2021.104409_b14) 2011; 3
Martin (10.1016/j.euromechsol.2021.104409_b54) 2019; 18
Mercuri (10.1016/j.euromechsol.2021.104409_b58) 2016; 38
Pérez (10.1016/j.euromechsol.2021.104409_b68) 2014; 36
Avval (10.1016/j.euromechsol.2021.104409_b6) 2014; 136
Weinans (10.1016/j.euromechsol.2021.104409_b94) 1992; 25
Cerrolaza (10.1016/j.euromechsol.2021.104409_b21) 2019; 18
Jacobs (10.1016/j.euromechsol.2021.104409_b43) 1995; 28
Bonewald (10.1016/j.euromechsol.2021.104409_b13) 2007; 1116
Hinton (10.1016/j.euromechsol.2021.104409_b41) 2018; 16
Souza (10.1016/j.euromechsol.2021.104409_b84) 2019; 12
Laz (10.1016/j.euromechsol.2021.104409_b51) 2007; 40
Trichilo (10.1016/j.euromechsol.2021.104409_b88) 2019; 473
Damon (10.1016/j.euromechsol.2021.104409_b24) 2020; 140
Doblaré (10.1016/j.euromechsol.2021.104409_b28) 2002; 35
McNamara (10.1016/j.euromechsol.2021.104409_b57) 2007; 40
Pérez (10.1016/j.euromechsol.2021.104409_b67) 2013; 16
Ashrafi (10.1016/j.euromechsol.2021.104409_b4) 2021; 11
Roustant (10.1016/j.euromechsol.2021.104409_b72) 2013; 51
Whalen (10.1016/j.euromechsol.2021.104409_b95) 1988; 21
Souza (10.1016/j.euromechsol.2021.104409_b83) 2018; 309
Della Corte (10.1016/j.euromechsol.2021.104409_b25) 2020; 234
You (10.1016/j.euromechsol.2021.104409_b96) 2008; 42
Gubaua (10.1016/j.euromechsol.2021.104409_b35) 2020; 84
Forrester (10.1016/j.euromechsol.2021.104409_b31) 2008
Hall (10.1016/j.euromechsol.2021.104409_b37) 2007
Klarbring (10.1016/j.euromechsol.2021.104409_b46) 2012; 4
Carter (10.1016/j.euromechsol.2021.104409_b20) 1984; 36
Martínez-Reina (10.1016/j.euromechsol.2021.104409_b56) 2016; 11
Komarova (10.1016/j.euromechsol.2021.104409_b48) 2003; 33
Burr (10.1016/j.euromechsol.2021.104409_b17) 2014
Greenwald (10.1016/j.euromechsol.2021.104409_b34) 1972; 54
Tyrovola (10.1016/j.euromechsol.2021.104409_b91) 2015; 116
Hadjifakis (10.1016/j.euromechsol.2021.104409_b36) 2006; 1092
Taddei (10.1016/j.euromechsol.2021.104409_b85) 2006; 39
Bahia (10.1016/j.euromechsol.2021.104409_b8) 2020; 104
Arun (10.1016/j.euromechsol.2021.104409_b3) 2020
Bendsøe (10.1016/j.euromechsol.2021.104409_b11) 2003
Adachi (10.1016/j.euromechsol.2021.104409_b1) 2006
Ashrafi (10.1016/j.euromechsol.2021.104409_b5) 2020; 19
Forrester (10.1016/j.euromechsol.2021.104409_b30) 2007; 463
Jacobs (10.1016/j.euromechsol.2021.104409_b44) 1997; 30
Thomsen (10.1016/j.euromechsol.2021.104409_b86) 1994; 15
Bagge (10.1016/j.euromechsol.2021.104409_b7) 1999
Cooper (10.1016/j.euromechsol.2021.104409_b22) 2006; 288
Huiskes (10.1016/j.euromechsol.2021.104409_b42) 1992; 274
Kroll (10.1016/j.euromechsol.2021.104409_b50) 2000; 62
Martínez-Reina (10.1016/j.euromechsol.2021.104409_b55) 2009; 8
Thomsen (10.1016/j.euromechsol.2021.104409_b87) 2020; 19
Martelli (10.1016/j.euromechsol.2021.104409_b53) 2014; 29
Scheiner (10.1016/j.euromechsol.2021.104409_b79) 2016; 15
Calvo-Gallego (10.1016/j.euromechsol.2021.104409_b18) 2021; 37
Rüberg (10.1016/j.euromechsol.2021.104409_b73) 2005; 4
Ozcivici (10.1016/j.euromechsol.2021.104409_b62) 2010; 6
Frost (10.1016/j.euromechsol.2021.104409_b32) 1987; 219
Pivonka (10.1016/j.euromechsol.2021.104409_b69) 2008; 43
Burgade (10.1016/j.euromechsol.2021.104409_b16) 2020
Klika (10.1016/j.euromechsol.2021.104409_b47) 2014; 69
Hambli (10.1016/j.euromechsol.2021.104409_b38) 2014; 2
Belinha (10.1016/j.euromechsol.2021.104409_b10) 2013; 16
Bonewald (10.1016/j.euromechsol.2021.104409_b12) 2006; 3
Upex (10.1016/j.euromechsol.2021.104409_b92) 2017; 103
Opolski (10.1016/j.euromechsol.2021.104409_b60) 2014; 1
Pérez (10.1016/j.euromechsol.2021.104409_b65) 2010; 13
Rungsiyakull (10.1016/j.euromechsol.2021.104409_b74) 2010; 31
Doblaré (10.1016/j.euromechsol.2021.104409_b29) 2004; 71
Peng (10.1016/j.euromechsol.2021.104409_b64) 2006; 28
Ryser (10.1016/j.euromechsol.2021.104409_b75) 2009; 24
Hazelwood (10.1016/j.euromechsol.2021.104409_b39) 2001; 34
Neuert (10.1016/j.euromechsol.2021.104409_b59) 2013; 227
Schaffler (10.1016/j.euromechsol.2021.104409_b77) 2012; 10
Simões (10.1016/j.euromechsol.2021.104409_b82) 2000; 22
Adams (10.1016/j.euromechsol.2021.104409_b2) 2012
Rieger (10.1016/j.euromechsol.2021.104409_b71) 2011; 274
Boyce (10.1016/j.euromechsol.2021.104409_b15) 2008; 473
Doblaré (10.1016/j.euromechsol.2021.104409_b27) 2001; 34
Schileo (10.1016/j.euromechsol.2021.104409_b80) 2007; 40
Saeidi (10.1016/j.euromechsol.2021.104409_b76) 2019; 19
Kowalczyk (10.1016/j.euromechsol.2021.104409_b49) 2010; 43
Viceconti (10.1016/j.euromechsol.2021.104409_b93) 2004; 37
Beaupré (10.1016/j.euromechsol.2021.104409_b9) 1990; 8
Sharma (10.1016/j.euromechsol.2021.104409_b81) 2009; 42
Scheiner (10.1016/j.euromechsol.2021.104409_b78) 2013; 254
Tudor-Locke (10.1016/j.euromechsol.2021.104409_b89) 2013; 38
Cardoso (10.1016/j.euromechsol.2021.104409_b19) 2013; 46
(10.1016/j.euromechsol.2021.104409_b23) 2001
Gomes (10.1016/j.euromechsol.2021.104409_b33) 2017; 123
Hernandez (10.1016/j.euromechsol.2021.104409_b40) 2000; 37
Oumghar (10.1016/j.euromechsol.2021.104409_b61) 2020; 8
Reich (10.1016/j.euromechsol.2021.104409_b70) 1990; 143
Pérez (10.1016/j.euromechsol.2021.104409_b66) 2008; 41
Dicati (10.1016/j.euromechsol.2021.104409_b26) 2020; 85
Lemaire (10.1016/j.euromechsol.2021.104409_b52) 2004; 229
Turner (10.1016/j.euromechsol.2021.104409_b90) 2005; 23
Jacobs (10.1016/j.euromechsol.2021.104409_b45) 2010; 12
References_xml – volume: 34
  start-page: 1157
  year: 2001
  end-page: 1170
  ident: b27
  article-title: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement
  publication-title: J. Biomech.
– volume: 103
  start-page: 331
  year: 2017
  end-page: 334
  ident: b92
  article-title: Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis
  publication-title: Orthop. Traumatol.: Surg. Res.
– volume: 11
  start-page: 2045
  year: 2021
  end-page: 2322
  ident: b4
  article-title: On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model
  publication-title: Sci. Rep.
– volume: 36
  start-page: S19
  year: 1984
  end-page: S24
  ident: b20
  article-title: Mechanical loading histories and cortical bone remodeling
  publication-title: Calcified Tissue Int.
– volume: 123
  start-page: e170
  year: 2017
  end-page: e175
  ident: b33
  article-title: Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: a case report
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
– start-page: 231
  year: 2006
  end-page: 257
  ident: b1
  article-title: Bone modeling and remodeling
  publication-title: Multiscale Mechanobiology of Bone Remodeling and Adaptation
– volume: 18
  start-page: 1639
  year: 2019
  end-page: 1663
  ident: b21
  article-title: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon
  publication-title: Biomech. Model. Mechanobiol.
– volume: 274
  start-page: 124
  year: 1992
  end-page: 134
  ident: b42
  article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
  publication-title: Clin. Orthopaed. Relat. Res.
– volume: 19
  start-page: 2499
  year: 2020
  end-page: 2523
  ident: b5
  article-title: A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach
  publication-title: Biomech. Model. Mechanobiol.
– volume: 1
  start-page: 88
  year: 2014
  end-page: 94
  ident: b60
  article-title: Experimental three-dimensional biomodel of complex aortic aneurysms by rapid prototyping technology
  publication-title: 3D Print. Addit. Manuf.
– volume: 37
  start-page: 1597
  year: 2004
  end-page: 1605
  ident: b93
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J. Biomech.
– volume: 227
  start-page: 994
  year: 2013
  end-page: 1001
  ident: b59
  article-title: Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 12
  start-page: 369
  year: 2010
  end-page: 400
  ident: b45
  article-title: Osteocyte mechanobiology and pericellular mechanics
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 38
  start-page: 904
  year: 2016
  end-page: 910
  ident: b58
  article-title: Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling
  publication-title: Med. Eng. Phys.
– volume: 13
  start-page: 71
  year: 2010
  end-page: 80
  ident: b65
  article-title: Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 15
  start-page: 655
  year: 1994
  end-page: 666
  ident: b86
  article-title: Stochastic simulation of vertebral trabecular bone remodeling
  publication-title: Bone
– volume: 288
  start-page: 806
  year: 2006
  end-page: 816
  ident: b22
  article-title: Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone
  publication-title: Anatom. Rec. A: Discov. Mole. Cell. Evolut. Biol.
– volume: 16
  start-page: 1022
  year: 2013
  end-page: 1031
  ident: b67
  article-title: A finite element analysis of the vibration behaviour of a cementless hip system
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 107
  start-page: 208
  year: 2018
  end-page: 211
  ident: b63
  article-title: A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation
  publication-title: Bone
– volume: 6
  start-page: 50
  year: 2010
  end-page: 59
  ident: b62
  article-title: Mechanical signals as anabolic agents in bone
  publication-title: Nat. Rev. Rheumatol.
– volume: 4
  start-page: 147
  year: 2005
  end-page: 167
  ident: b73
  article-title: A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity
  publication-title: Biomech. Model. Mechanobiol.
– volume: 22
  start-page: 453
  year: 2000
  end-page: 459
  ident: b82
  article-title: Influence of head constraint and muscle forces on the strain distribution within the intact femur
  publication-title: Med. Eng. Phys.
– volume: 8
  start-page: 111
  year: 2009
  end-page: 127
  ident: b55
  article-title: A bone remodelling model including the directional activity of BMUs
  publication-title: Biomech. Model. Mechanobiol.
– volume: 309
  start-page: 109
  year: 2018
  end-page: 120
  ident: b83
  article-title: Development and characterization of the InVesalius navigator software for navigated transcranial magnetic stimulation
  publication-title: J. Neurosci. Methods
– volume: 46
  start-page: 253
  year: 2013
  end-page: 265
  ident: b19
  article-title: Advances in assessment of bone porosity, permeability and interstitial fluid flow
  publication-title: J. Biomech.
– volume: 3
  start-page: 141
  year: 2011
  end-page: 155
  ident: b14
  article-title: Osteocyte mechanosensation and transduction
  publication-title: Mechanosens. Biol.
– volume: 40
  start-page: 2831
  year: 2007
  end-page: 2836
  ident: b51
  article-title: Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics
  publication-title: J. Biomech.
– volume: 36
  start-page: 185
  year: 2014
  end-page: 195
  ident: b68
  article-title: Bone remodeling in the resurfaced femoral head: Effect of cement mantle thickness and interface characteristics
  publication-title: Med. Eng. Phys.
– volume: 28
  start-page: 449
  year: 1995
  end-page: 459
  ident: b43
  article-title: Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach
  publication-title: J. Biomech.
– volume: 42
  start-page: 172
  year: 2008
  end-page: 179
  ident: b96
  article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading
  publication-title: Bone
– volume: 15
  start-page: 9
  year: 2016
  end-page: 28
  ident: b79
  article-title: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure
  publication-title: Biomech. Model. Mechanobiol.
– volume: 69
  start-page: 1383
  year: 2014
  end-page: 1429
  ident: b47
  article-title: A coupled mechano-biochemical model for bone adaptation
  publication-title: J. Math. Biol.
– start-page: 277
  year: 2012
  end-page: 307
  ident: b2
  article-title: Chapter 12: Radiology
  publication-title: Pediatric Bone
– start-page: 124
  year: 1999
  ident: b7
  article-title: Remodeling of bone structures
– volume: 35
  start-page: 1
  year: 2002
  end-page: 17
  ident: b28
  article-title: Anisotropic bone remodelling model based on a continuum damage-repair theory
  publication-title: J. Biomech.
– volume: 62
  start-page: 163
  year: 2000
  end-page: 188
  ident: b50
  article-title: Parathyroid hormone temporal effects on bone formation and resorption
  publication-title: Bull. Math. Biol.
– volume: 40
  start-page: 1381
  year: 2007
  end-page: 1391
  ident: b57
  article-title: Bone remodelling algorithms incorporating both strain and microdamage stimuli
  publication-title: J. Biomech.
– volume: 28
  start-page: 227
  year: 2006
  end-page: 233
  ident: b64
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med. Eng. Phys.
– volume: 39
  start-page: 2457
  year: 2006
  end-page: 2467
  ident: b85
  article-title: Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy
  publication-title: J. Biomech.
– volume: 84
  start-page: 126
  year: 2020
  end-page: 135
  ident: b35
  article-title: Simulation of bone remodeling around a femoral prosthesis using a model that accounts for biological and mechanical interactions
  publication-title: Med. Eng. Phys.
– year: 2020
  ident: b3
  article-title: Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study
  publication-title: Mater. Today: Proc.
– volume: 4
  start-page: 25
  year: 2012
  end-page: 32
  ident: b46
  article-title: Lazy zone bone remodeling theory and its relation to topology optimization
  publication-title: Ann. Solid Struct. Mech.
– volume: 229
  start-page: 293
  year: 2004
  end-page: 309
  ident: b52
  article-title: Modeling the interactions between osteoblast and osteoclast activities in bone remodeling
  publication-title: J. Theoret. Biol.
– volume: 12
  start-page: 571
  year: 2019
  ident: b84
  article-title: Invesalius navigator, a free and open-source software for navigated transcranial magnetic stimulation
  publication-title: Brain Stimul.
– volume: 51
  start-page: 1
  year: 2013
  end-page: 55
  ident: b72
  article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization
  publication-title: J. Stat. Softw.
– volume: 25
  start-page: 1425
  year: 1992
  end-page: 1441
  ident: b94
  article-title: The behavior of adaptive bone-remodeling simulation models
  publication-title: J. Biomech.
– volume: 8
  start-page: 651
  year: 1990
  end-page: 661
  ident: b9
  article-title: An approach for time dependent bone modeling and remodeling - theoretical development
  publication-title: J. Orthop. Res.
– volume: 34
  start-page: 299
  year: 2001
  end-page: 308
  ident: b39
  article-title: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload
  publication-title: J. Biomech.
– volume: 37
  year: 2021
  ident: b18
  article-title: A novel algorithm to resolve lack of convergence and checkerboard instability in bone adaptation simulations using non-local averaging
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2003
  ident: b11
  article-title: Topology Optimization - Theory, Methods, and Applications
– volume: 3
  start-page: 7
  year: 2006
  end-page: 15
  ident: b12
  article-title: Mechanosensation and transduction in osteocytes
  publication-title: BoneKEy Osteovis.
– volume: 19
  start-page: 505
  year: 2020
  end-page: 511
  ident: b87
  article-title: Quantification of remodeling parameter sensitivity - assessed by a computer simulation model
  publication-title: Bone
– volume: 143
  start-page: 100
  year: 1990
  end-page: 104
  ident: b70
  article-title: Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production
  publication-title: J. Cell. Physiol.
– volume: 43
  start-page: 563
  year: 2010
  end-page: 569
  ident: b49
  article-title: Simulation of orthotropic microstructure remodelling of cancellous bone
  publication-title: J. Biomech.
– volume: 140
  start-page: 173
  year: 2020
  end-page: 179
  ident: b24
  article-title: Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: Technical note
  publication-title: World Neurosurg.
– volume: 71
  start-page: 1809
  year: 2004
  end-page: 1840
  ident: b29
  article-title: Modelling bone tissue fracture and healing: A review
  publication-title: Eng. Fract. Mech.
– volume: 274
  start-page: 36
  year: 2011
  end-page: 42
  ident: b71
  article-title: Modeling of biological doses and mechanical effects on bone transduction
  publication-title: J. Theoret. Biol.
– volume: 473
  start-page: 139
  year: 2008
  end-page: 146
  ident: b15
  article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling
  publication-title: Arch. Biochem. Biophys.
– volume: 1092
  start-page: 385
  year: 2006
  end-page: 396
  ident: b36
  article-title: Bone remodeling
  publication-title: Ann. New York Acad. Sci.
– volume: 37
  start-page: 235
  year: 2000
  end-page: 244
  ident: b40
  article-title: A model of mechanobiologic and metabolic influences on bone adaptation
  publication-title: J. Rehab. Res. Develop.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 17
  ident: b56
  article-title: On the use of bone remodelling models to estimate the density distribution of bones. Uniqueness of the solution
  publication-title: PLoS One
– volume: 38
  start-page: 100
  year: 2013
  end-page: 114
  ident: b89
  article-title: A step-defined sedentary lifestyle index:
  publication-title: Appl. Physiol. Nutr. Metabol.
– volume: 136
  year: 2014
  ident: b6
  article-title: Predicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical model
  publication-title: J. Biomech. Eng.
– volume: 42
  start-page: 1460
  year: 2009
  end-page: 1468
  ident: b81
  article-title: Adaptive glenoid bone remodeling simulation
  publication-title: J. Biomech.
– year: 2001
  ident: b23
  article-title: Bone Mechanics Handbook
– volume: 40
  start-page: 2982
  year: 2007
  end-page: 2989
  ident: b80
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J. Biomech.
– volume: 19
  start-page: 37
  year: 2019
  end-page: 46
  ident: b76
  article-title: The influence of an extra-articular implant on bone remodelling of the knee joint
  publication-title: Biomech. Model. Mechanobiol.
– volume: 234
  start-page: 273
  year: 2020
  end-page: 281
  ident: b25
  article-title: A review of recent developments in mathemathical modeling of bone remodeling
  publication-title: Proc. Inst. Mech. Eng. H
– volume: 16
  start-page: 746
  year: 2018
  end-page: 753
  ident: b41
  article-title: In vivo osteocyte mechanotransduction: recent developments and future directions
  publication-title: Curr. Osteopor. Rep.
– start-page: 373
  year: 2014
  ident: b17
  article-title: Basic and Applied Bone Biology
– volume: 24
  start-page: 860
  year: 2009
  end-page: 870
  ident: b75
  article-title: Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit
  publication-title: J. Bone Miner. Res.
– year: 2020
  ident: b16
  article-title: 3D-modeling of sternal chondrosarcomas from angio-CT-scan: Clinical application and surgical perspectives
  publication-title: Ann. 3D Print. Med.
– volume: 16
  start-page: 1170
  year: 2013
  end-page: 1184
  ident: b10
  article-title: A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 54
  start-page: 157
  year: 1972
  end-page: 163
  ident: b34
  article-title: Weight-bearing areas in the human hip joint
  publication-title: J. Bone Joint Surg.
– year: 2007
  ident: b37
  article-title: Basic Biomechanics
– volume: 8
  year: 2020
  ident: b61
  article-title: Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review
  publication-title: Front. Bioeng. Biotechnol.
– volume: 473
  start-page: 67
  year: 2019
  end-page: 79
  ident: b88
  article-title: Computational model of the dual action of PTH - application to a rat model of osteoporosis
  publication-title: J. Theoret. Biol.
– volume: 29
  start-page: 869
  year: 2014
  end-page: 876
  ident: b53
  article-title: Femoral shaft strains during daily activities: Implications for atypical femoral fractures
  publication-title: Clin. Biomech.
– volume: 23
  start-page: 705
  year: 2005
  end-page: 712
  ident: b90
  article-title: Computational bone remodelling simulations and comparisons with DEXA results
  publication-title: J. Orthop. Res.
– volume: 43
  start-page: 249
  year: 2008
  end-page: 263
  ident: b69
  article-title: Model structure and control of bone remodeling: A theoretical study
  publication-title: Bone
– volume: 1116
  start-page: 281
  year: 2007
  end-page: 290
  ident: b13
  article-title: Osteocytes as dynamic multifunctional cells
  publication-title: Ann. New York Acad. Sci.
– volume: 463
  start-page: 3251
  year: 2007
  end-page: 3269
  ident: b30
  article-title: Multi-fidelity optimization via surrogate modelling
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 85
  start-page: 113
  year: 2020
  end-page: 122
  ident: b26
  article-title: Analysis of the uniqueness and stability of solutions to problems regarding the bone-remodeling process
  publication-title: Med. Eng. Phys.
– volume: 30
  start-page: 603
  year: 1997
  end-page: 613
  ident: b44
  article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations
  publication-title: J. Biomech.
– volume: 104
  year: 2020
  ident: b8
  article-title: A bone remodeling model governed by cellular micromechanics and physiologically based pharmacokinetics
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 31
  start-page: 7196
  year: 2010
  end-page: 7204
  ident: b74
  article-title: Surface morphology optimization for osseointegration of coated implants
  publication-title: Biomaterials
– volume: 21
  start-page: 825
  year: 1988
  end-page: 837
  ident: b95
  article-title: Influence of physical activity on the regulation of bone density
  publication-title: J. Biomech.
– volume: 18
  start-page: 1475
  year: 2019
  end-page: 1496
  ident: b54
  article-title: Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model
  publication-title: Biomech. Model. Mechanobiol.
– volume: 41
  start-page: 316
  year: 2008
  end-page: 325
  ident: b66
  article-title: Computational simulation of dental implant osseointegration through resonance frequency analysis
  publication-title: J. Biomech.
– volume: 219
  start-page: 1
  year: 1987
  end-page: 9
  ident: b32
  article-title: Bone “mass” and the “mechanostat”: a proposal
  publication-title: Anatom. Rec.
– year: 2008
  ident: b31
  article-title: Engineering Design Via Surrogate Modelling: A Practical Guide
– volume: 2
  start-page: 6
  year: 2014
  ident: b38
  article-title: Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling
  publication-title: Front. Bioeng. Biotechnol.
– volume: 33
  start-page: 206
  year: 2003
  end-page: 215
  ident: b48
  article-title: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling
  publication-title: Bone
– volume: 254
  start-page: 181
  year: 2013
  end-page: 196
  ident: b78
  article-title: Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 116
  start-page: 2724
  year: 2015
  end-page: 2729
  ident: b91
  article-title: The “mechanostat theory” of frost and the OPG/RANKL/RANK system
  publication-title: J. Cell. Biochem.
– volume: 10
  start-page: 118
  year: 2012
  end-page: 125
  ident: b77
  article-title: Osteocyte signaling in bone
  publication-title: Curr. Osteoporos. Rep.
– volume: 8
  start-page: 651
  year: 1990
  ident: 10.1016/j.euromechsol.2021.104409_b9
  article-title: An approach for time dependent bone modeling and remodeling - theoretical development
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080506
– volume: 37
  start-page: 235
  issue: 2
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104409_b40
  article-title: A model of mechanobiologic and metabolic influences on bone adaptation
  publication-title: J. Rehab. Res. Develop.
– volume: 37
  issue: 2
  year: 2021
  ident: 10.1016/j.euromechsol.2021.104409_b18
  article-title: A novel algorithm to resolve lack of convergence and checkerboard instability in bone adaptation simulations using non-local averaging
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 309
  start-page: 109
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104409_b83
  article-title: Development and characterization of the InVesalius navigator software for navigated transcranial magnetic stimulation
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.08.023
– volume: 34
  start-page: 299
  issue: 3
  year: 2001
  ident: 10.1016/j.euromechsol.2021.104409_b39
  article-title: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00221-9
– volume: 38
  start-page: 100
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b89
  article-title: A step-defined sedentary lifestyle index: < 5000 steps/day
  publication-title: Appl. Physiol. Nutr. Metabol.
  doi: 10.1139/apnm-2012-0235
– volume: 16
  start-page: 1022
  issue: 9
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b67
  article-title: A finite element analysis of the vibration behaviour of a cementless hip system
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2011.650635
– volume: 31
  start-page: 7196
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104409_b74
  article-title: Surface morphology optimization for osseointegration of coated implants
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.077
– volume: 24
  start-page: 860
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104409_b75
  article-title: Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.081229
– volume: 116
  start-page: 2724
  issue: 12
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104409_b91
  article-title: The “mechanostat theory” of frost and the OPG/RANKL/RANK system
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.25265
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b3
  article-title: Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study
  publication-title: Mater. Today: Proc.
– volume: 136
  issue: 5
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b6
  article-title: Predicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical model
  publication-title: J. Biomech. Eng.
– volume: 15
  start-page: 655
  issue: 6
  year: 1994
  ident: 10.1016/j.euromechsol.2021.104409_b86
  article-title: Stochastic simulation of vertebral trabecular bone remodeling
  publication-title: Bone
  doi: 10.1016/8756-3282(94)90314-X
– volume: 23
  start-page: 705
  year: 2005
  ident: 10.1016/j.euromechsol.2021.104409_b90
  article-title: Computational bone remodelling simulations and comparisons with DEXA results
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2005.02.002
– volume: 4
  start-page: 147
  year: 2005
  ident: 10.1016/j.euromechsol.2021.104409_b73
  article-title: A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-005-0067-x
– volume: 234
  start-page: 273
  issue: 3
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b25
  article-title: A review of recent developments in mathemathical modeling of bone remodeling
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411919857599
– volume: 28
  start-page: 227
  issue: 3
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b64
  article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2005.06.003
– volume: 21
  start-page: 825
  year: 1988
  ident: 10.1016/j.euromechsol.2021.104409_b95
  article-title: Influence of physical activity on the regulation of bone density
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(88)90015-2
– volume: 42
  start-page: 172
  issue: 1
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104409_b96
  article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading
  publication-title: Bone
  doi: 10.1016/j.bone.2007.09.047
– start-page: 277
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104409_b2
  article-title: Chapter 12: Radiology
– year: 2008
  ident: 10.1016/j.euromechsol.2021.104409_b31
– volume: 227
  start-page: 994
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b59
  article-title: Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1177/0954411913487841
– volume: 41
  start-page: 316
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104409_b66
  article-title: Computational simulation of dental implant osseointegration through resonance frequency analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.09.013
– volume: 43
  start-page: 249
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104409_b69
  article-title: Model structure and control of bone remodeling: A theoretical study
  publication-title: Bone
  doi: 10.1016/j.bone.2008.03.025
– volume: 43
  start-page: 563
  issue: 3
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104409_b49
  article-title: Simulation of orthotropic microstructure remodelling of cancellous bone
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.09.045
– volume: 229
  start-page: 293
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104409_b52
  article-title: Modeling the interactions between osteoblast and osteoclast activities in bone remodeling
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2004.03.023
– volume: 288
  start-page: 806
  issue: 7
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b22
  article-title: Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone
  publication-title: Anatom. Rec. A: Discov. Mole. Cell. Evolut. Biol.
  doi: 10.1002/ar.a.20344
– volume: 34
  start-page: 1157
  issue: 9
  year: 2001
  ident: 10.1016/j.euromechsol.2021.104409_b27
  article-title: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00069-0
– volume: 35
  start-page: 1
  year: 2002
  ident: 10.1016/j.euromechsol.2021.104409_b28
  article-title: Anisotropic bone remodelling model based on a continuum damage-repair theory
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00178-6
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104409_b56
  article-title: On the use of bone remodelling models to estimate the density distribution of bones. Uniqueness of the solution
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0148603
– volume: 84
  start-page: 126
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b35
  article-title: Simulation of bone remodeling around a femoral prosthesis using a model that accounts for biological and mechanical interactions
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.08.004
– volume: 1116
  start-page: 281
  issue: 1
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b13
  article-title: Osteocytes as dynamic multifunctional cells
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1196/annals.1402.018
– volume: 104
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b8
  article-title: A bone remodeling model governed by cellular micromechanics and physiologically based pharmacokinetics
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2020.103657
– volume: 46
  start-page: 253
  issue: 2
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b19
  article-title: Advances in assessment of bone porosity, permeability and interstitial fluid flow
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.10.025
– volume: 33
  start-page: 206
  year: 2003
  ident: 10.1016/j.euromechsol.2021.104409_b48
  article-title: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00157-1
– volume: 29
  start-page: 869
  issue: 8
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b53
  article-title: Femoral shaft strains during daily activities: Implications for atypical femoral fractures
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2014.08.001
– volume: 42
  start-page: 1460
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104409_b81
  article-title: Adaptive glenoid bone remodeling simulation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.04.002
– volume: 54
  start-page: 157
  year: 1972
  ident: 10.1016/j.euromechsol.2021.104409_b34
  article-title: Weight-bearing areas in the human hip joint
  publication-title: J. Bone Joint Surg.
  doi: 10.1302/0301-620X.54B1.157
– volume: 39
  start-page: 2457
  issue: 13
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b85
  article-title: Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.07.018
– volume: 2
  start-page: 6
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b38
  article-title: Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2014.00006
– volume: 22
  start-page: 453
  issue: 7
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104409_b82
  article-title: Influence of head constraint and muscle forces on the strain distribution within the intact femur
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(00)00056-4
– start-page: 124
  year: 1999
  ident: 10.1016/j.euromechsol.2021.104409_b7
– year: 2001
  ident: 10.1016/j.euromechsol.2021.104409_b23
– volume: 37
  start-page: 1597
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104409_b93
  article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2003.12.030
– volume: 140
  start-page: 173
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b24
  article-title: Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: Technical note
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2020.04.184
– volume: 51
  start-page: 1
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b72
  article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization
  publication-title: J. Stat. Softw.
– volume: 36
  start-page: S19
  year: 1984
  ident: 10.1016/j.euromechsol.2021.104409_b20
  article-title: Mechanical loading histories and cortical bone remodeling
  publication-title: Calcified Tissue Int.
  doi: 10.1007/BF02406129
– volume: 16
  start-page: 746
  issue: 6
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104409_b41
  article-title: In vivo osteocyte mechanotransduction: recent developments and future directions
  publication-title: Curr. Osteopor. Rep.
  doi: 10.1007/s11914-018-0485-1
– volume: 4
  start-page: 25
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104409_b46
  article-title: Lazy zone bone remodeling theory and its relation to topology optimization
  publication-title: Ann. Solid Struct. Mech.
  doi: 10.1007/s12356-012-0030-3
– volume: 274
  start-page: 124
  year: 1992
  ident: 10.1016/j.euromechsol.2021.104409_b42
  article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
  publication-title: Clin. Orthopaed. Relat. Res.
  doi: 10.1097/00003086-199201000-00014
– volume: 219
  start-page: 1
  year: 1987
  ident: 10.1016/j.euromechsol.2021.104409_b32
  article-title: Bone “mass” and the “mechanostat”: a proposal
  publication-title: Anatom. Rec.
  doi: 10.1002/ar.1092190104
– volume: 85
  start-page: 113
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b26
  article-title: Analysis of the uniqueness and stability of solutions to problems regarding the bone-remodeling process
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2020.10.007
– volume: 18
  start-page: 1639
  issue: 6
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104409_b21
  article-title: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01166-w
– volume: 25
  start-page: 1425
  year: 1992
  ident: 10.1016/j.euromechsol.2021.104409_b94
  article-title: The behavior of adaptive bone-remodeling simulation models
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(92)90056-7
– volume: 123
  start-page: e170
  issue: 5
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104409_b33
  article-title: Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: a case report
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
  doi: 10.1016/j.oooo.2017.01.012
– volume: 12
  start-page: 369
  issue: 1
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104409_b45
  article-title: Osteocyte mechanobiology and pericellular mechanics
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-070909-105302
– volume: 1092
  start-page: 385
  issue: 1
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b36
  article-title: Bone remodeling
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1196/annals.1365.035
– volume: 18
  start-page: 1475
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104409_b54
  article-title: Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01158-w
– volume: 1
  start-page: 88
  issue: 2
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b60
  article-title: Experimental three-dimensional biomodel of complex aortic aneurysms by rapid prototyping technology
  publication-title: 3D Print. Addit. Manuf.
  doi: 10.1089/3dp.2013.0009
– volume: 19
  start-page: 37
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104409_b76
  article-title: The influence of an extra-articular implant on bone remodelling of the knee joint
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01193-7
– volume: 473
  start-page: 139
  issue: 2
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104409_b15
  article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2008.03.018
– volume: 6
  start-page: 50
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104409_b62
  article-title: Mechanical signals as anabolic agents in bone
  publication-title: Nat. Rev. Rheumatol.
  doi: 10.1038/nrrheum.2009.239
– volume: 69
  start-page: 1383
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b47
  article-title: A coupled mechano-biochemical model for bone adaptation
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-013-0736-9
– volume: 71
  start-page: 1809
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104409_b29
  article-title: Modelling bone tissue fracture and healing: A review
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2003.08.003
– volume: 8
  start-page: 111
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104409_b55
  article-title: A bone remodelling model including the directional activity of BMUs
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0122-5
– volume: 36
  start-page: 185
  issue: 2
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b68
  article-title: Bone remodeling in the resurfaced femoral head: Effect of cement mantle thickness and interface characteristics
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.013
– volume: 3
  start-page: 141
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104409_b14
  article-title: Osteocyte mechanosensation and transduction
  publication-title: Mechanosens. Biol.
  doi: 10.1007/978-4-431-89757-6_10
– volume: 463
  start-page: 3251
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b30
  article-title: Multi-fidelity optimization via surrogate modelling
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 103
  start-page: 331
  issue: 3
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104409_b92
  article-title: Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis
  publication-title: Orthop. Traumatol.: Surg. Res.
– year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b37
– volume: 8
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b61
  article-title: Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review
  publication-title: Front. Bioeng. Biotechnol.
– start-page: 231
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b1
  article-title: Bone modeling and remodeling
– volume: 13
  start-page: 71
  issue: 1
  year: 2010
  ident: 10.1016/j.euromechsol.2021.104409_b65
  article-title: Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840903045029
– volume: 16
  start-page: 1170
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b10
  article-title: A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2012.654783
– volume: 19
  start-page: 505
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b87
  article-title: Quantification of remodeling parameter sensitivity - assessed by a computer simulation model
  publication-title: Bone
  doi: 10.1016/S8756-3282(96)00231-1
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b16
  article-title: 3D-modeling of sternal chondrosarcomas from angio-CT-scan: Clinical application and surgical perspectives
  publication-title: Ann. 3D Print. Med.
– volume: 143
  start-page: 100
  year: 1990
  ident: 10.1016/j.euromechsol.2021.104409_b70
  article-title: Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.1041430113
– volume: 40
  start-page: 2831
  issue: 13
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b51
  article-title: Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.03.013
– volume: 15
  start-page: 9
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104409_b79
  article-title: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-015-0704-y
– volume: 12
  start-page: 571
  issue: 2
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104409_b84
  article-title: Invesalius navigator, a free and open-source software for navigated transcranial magnetic stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2018.12.894
– volume: 62
  start-page: 163
  issue: 1
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104409_b50
  article-title: Parathyroid hormone temporal effects on bone formation and resorption
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.1999.0146
– year: 2003
  ident: 10.1016/j.euromechsol.2021.104409_b11
– volume: 11
  start-page: 2045
  issue: 1
  year: 2021
  ident: 10.1016/j.euromechsol.2021.104409_b4
  article-title: On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82502-y
– volume: 38
  start-page: 904
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104409_b58
  article-title: Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2016.04.018
– start-page: 373
  year: 2014
  ident: 10.1016/j.euromechsol.2021.104409_b17
– volume: 107
  start-page: 208
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104409_b63
  article-title: A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation
  publication-title: Bone
  doi: 10.1016/j.bone.2017.11.009
– volume: 30
  start-page: 603
  year: 1997
  ident: 10.1016/j.euromechsol.2021.104409_b44
  article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(96)00189-3
– volume: 40
  start-page: 2982
  issue: 13
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b80
  article-title: Subject-specific finite element models can accurately predict strain levels in long bones
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.02.010
– volume: 19
  start-page: 2499
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104409_b5
  article-title: A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01353-0
– volume: 3
  start-page: 7
  issue: 10
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104409_b12
  article-title: Mechanosensation and transduction in osteocytes
  publication-title: BoneKEy Osteovis.
  doi: 10.1138/20060233
– volume: 28
  start-page: 449
  year: 1995
  ident: 10.1016/j.euromechsol.2021.104409_b43
  article-title: Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)00087-K
– volume: 40
  start-page: 1381
  issue: 6
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104409_b57
  article-title: Bone remodelling algorithms incorporating both strain and microdamage stimuli
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.05.007
– volume: 274
  start-page: 36
  issue: 1
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104409_b71
  article-title: Modeling of biological doses and mechanical effects on bone transduction
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2011.01.003
– volume: 254
  start-page: 181
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104409_b78
  article-title: Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2012.10.015
– volume: 473
  start-page: 67
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104409_b88
  article-title: Computational model of the dual action of PTH - application to a rat model of osteoporosis
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2019.04.020
– volume: 10
  start-page: 118
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104409_b77
  article-title: Osteocyte signaling in bone
  publication-title: Curr. Osteoporos. Rep.
  doi: 10.1007/s11914-012-0105-4
SSID ssj0002021
Score 2.3148615
Snippet Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104409
SubjectTerms Computerized tomography
Finite element method
Individualization of bone remodeling model
Kriging
Numerical uniqueness of solution
Title Optimum parameters for each subject in bone remodeling models: A new methodology using surrogate and clinical data
URI https://dx.doi.org/10.1016/j.euromechsol.2021.104409
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBfHiW6yPMoLXtM3uNsmKl1IsVaEetNBbyGY3WrFpSdqrv92dTaIVBAVvIWRgmX3Mt5NvviHkUlApIuoJRws3ccxOpI6k1HW0q2ggDULnsWVbjLzhmN9NupMa6Ve1MEirLM_-4ky3p3X5pl16s72YTtuPWPNpwHZAUUbIs_d2zn1c5a33L5qHudzbrnmoOopfb5KLL44X6l_MdPxiprmFH-IfT47cxJ9i1FrcGeyS7RIwQq8Y0x6p6XSf7JTgEcqtmR-Q7MFs_tlqBijmPUOSSw4GkAKyJSFfScy3wDQFOU81ZNp2wDFhC-xDfgU9MAAbiobSNtUOSIl_NqZZNsdcG0SpgqqQEpBZekjGg5un_tApGyo4MWXe0okCyRX1hZSx0CoKhIwV04J5ykeRbh7oJOGuDvxEuEJ2DBSJVaIZp1HEmFYddkTqqRnlMQEDK5VyI6E8zblQKCnDu4HHzbQxFne6DRJULgzjUm0cm168hRWt7DVc836I3g8L7zcI_TRdFJIbfzG6ruYp_LZ-QhMafjc_-Z_5KdmiWBZhUzNnpL7MVvrcgJWlbNrV2CQbvdv74egDHQDthw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5kgvrib_G3J_hatyZZ14gvQ5Spcz6o4FtpmlQnrkq7_f_m2lQnCAq-ldKDcEnuvqTffQdwJJmSMQukZ6SfenYnMk8x5nvG1yxUFqGLpGRbDILeg7h6bD_OwFldC0O0Shf7q5heRmv3pum82XwfDpt3VPNpwXbISEYooHP7LKlTtRsw27287g0-A7I935eN80h4lAzm4PCL5kUSGCOTPNuZPqYP6aenIHriT2lqKvVcLMOiw4zYrYa1AjMmW4Ulhx_R7c5iDfJbu_9HkxGSnveIeC4FWkyKRJjEYqLoygWHGaq3zGBuyiY4NnNh-VCcYBctxsaqp3R5247Ein-ypnn-RtdtGGca61pKJHLpOjxcnN-f9TzXU8FLGA_GXhwqoVlHKpVIo-NQqkRzI3mgO6TTLUKTpsI3YSeVvlQti0YSnRouWBxzbnSLb0Ajs6PcBLTIUms_ljowQkhNqjKiHQbCzhznSau9BWHtwihxguPU9-I1qpllL9GU9yPyflR5fwvYp-l7pbrxF6PTep6ib0sostnhd_Pt_5kfwHzv_qYf9S8H1zuwwKhKoryp2YXGOJ-YPYtdxmrfrc0POLTwOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+parameters+for+each+subject+in+bone+remodeling+models%3A+A+new+methodology+using+surrogate+and+clinical+data&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Dicati%2C+Gabriela+Wessling+Oening&rft.au=Gubaua%2C+Jos%C3%A9+Eduardo&rft.au=Pereira%2C+Juc%C3%A9lio+Tom%C3%A1s&rft.date=2022-01-01&rft.issn=0997-7538&rft.volume=91&rft.spage=104409&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104409&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_euromechsol_2021_104409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon