Optimum parameters for each subject in bone remodeling models: A new methodology using surrogate and clinical data
Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling model...
Saved in:
Published in | European journal of mechanics, A, Solids Vol. 91; p. 104409 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling models do not consider distinct parameters for each subject. We aim to present a new methodology that accounts for specific parameters for each subject while reviewing bone remodeling, biological aspects, and coupling with the finite element method. We divide the new methodology into three steps: (a) obtaining the density distribution from the femur tomography and a finite element model; (b) implementing an algorithm for bone remodeling via Abaqus; and (c) implementing a Matlab code that combines the design of experiments, surrogate, bone remodeling model, and the finite element method to minimize the difference between the clinical and numerical density distributions. Furthermore, we considered subjects’ characteristics as the physical activity amount and body mass in the numerical simulations. The new methodology is valid whenever the remodeling model presents a tendency towards solution uniqueness. We applied the new methodology in 18 subjects and obtained a different set of parameters for each one. These parameters allowed characterizing a more accurate and realistic femoral density distribution for each subject. Furthermore, the new methodology decreased the density relative difference by 50%, compared with the traditional ones.
•Optimum parameters for simulating bone remodeling of a specific subject.•Optimization process accounts for surrogate and clinical data.•Numerical and clinical bone density distributions became closer.•Detailed analysis of the bone remodeling needs specific parameters for each subject. |
---|---|
AbstractList | Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using numerical methods, e.g., the density distribution. Different subjects require specific parameters. However, traditional bone remodeling models do not consider distinct parameters for each subject. We aim to present a new methodology that accounts for specific parameters for each subject while reviewing bone remodeling, biological aspects, and coupling with the finite element method. We divide the new methodology into three steps: (a) obtaining the density distribution from the femur tomography and a finite element model; (b) implementing an algorithm for bone remodeling via Abaqus; and (c) implementing a Matlab code that combines the design of experiments, surrogate, bone remodeling model, and the finite element method to minimize the difference between the clinical and numerical density distributions. Furthermore, we considered subjects’ characteristics as the physical activity amount and body mass in the numerical simulations. The new methodology is valid whenever the remodeling model presents a tendency towards solution uniqueness. We applied the new methodology in 18 subjects and obtained a different set of parameters for each one. These parameters allowed characterizing a more accurate and realistic femoral density distribution for each subject. Furthermore, the new methodology decreased the density relative difference by 50%, compared with the traditional ones.
•Optimum parameters for simulating bone remodeling of a specific subject.•Optimization process accounts for surrogate and clinical data.•Numerical and clinical bone density distributions became closer.•Detailed analysis of the bone remodeling needs specific parameters for each subject. |
ArticleNumber | 104409 |
Author | Dicati, Gabriela Wessling Oening Gubaua, José Eduardo Pereira, Jucélio Tomás |
Author_xml | – sequence: 1 givenname: Gabriela Wessling Oening orcidid: 0000-0002-5474-3040 surname: Dicati fullname: Dicati, Gabriela Wessling Oening email: gabioening@gmail.com organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil – sequence: 2 givenname: José Eduardo orcidid: 0000-0003-0993-6246 surname: Gubaua fullname: Gubaua, José Eduardo email: gubaua@ufpr.br organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil – sequence: 3 givenname: Jucélio Tomás orcidid: 0000-0002-2483-4339 surname: Pereira fullname: Pereira, Jucélio Tomás email: jucelio.tomas@ufpr.br organization: Postgraduate Program in Mechanical Engineering (PG-Mec), Federal University of Paraná (UFPR), Polytechnic Center, Curitiba, Brazil |
BookMark | eNqNkM9OwzAMhyMEEtvgHcIDdKRNuzZc0DTxT5q0C5wjN3G3TG0yJSlob0_LOCBOO9my_f0sfVNyaZ1FQu5SNk9Zurjfz7H3rkO1C66dZyxLh3meM3FBJmlV8qTMquKSTJgQZVIWvLom0xD2jLHxdkL85hBN13f0AB46jOgDbZynCGpHQ1_vUUVqLK2Ht9Rj5zS2xm7pTxMe6JJa_KIDuHPatW57pH0Y96H33m0hIgWrqRoYo6ClGiLckKsG2oC3v3VGPp6f3levyXrz8rZarhOV8UVMoKpznZWirpVADZWoleYo-EKXIADzCpsmT7EqG5GKmvGiULpBnmcAnKNmfEbEKVd5F4LHRh686cAfZcrkKE_u5R95chQiT_IG9vEfq0yEaJyNHkx7VsLqlDBowk-DXgZl0CrUxg9OpXbmjJRvX_SZvQ |
CitedBy_id | crossref_primary_10_1115_1_4066369 crossref_primary_10_1016_j_medengphy_2021_103739 crossref_primary_10_1016_j_jcp_2023_112576 |
Cites_doi | 10.1002/jor.1100080506 10.1016/j.jneumeth.2018.08.023 10.1016/S0021-9290(00)00221-9 10.1139/apnm-2012-0235 10.1080/10255842.2011.650635 10.1016/j.biomaterials.2010.05.077 10.1359/jbmr.081229 10.1002/jcb.25265 10.1016/8756-3282(94)90314-X 10.1016/j.orthres.2005.02.002 10.1007/s10237-005-0067-x 10.1177/0954411919857599 10.1016/j.medengphy.2005.06.003 10.1016/0021-9290(88)90015-2 10.1016/j.bone.2007.09.047 10.1177/0954411913487841 10.1016/j.jbiomech.2007.09.013 10.1016/j.bone.2008.03.025 10.1016/j.jbiomech.2009.09.045 10.1016/j.jtbi.2004.03.023 10.1002/ar.a.20344 10.1016/S0021-9290(01)00069-0 10.1016/S0021-9290(01)00178-6 10.1371/journal.pone.0148603 10.1016/j.medengphy.2020.08.004 10.1196/annals.1402.018 10.1016/j.jmbbm.2020.103657 10.1016/j.jbiomech.2012.10.025 10.1016/S8756-3282(03)00157-1 10.1016/j.clinbiomech.2014.08.001 10.1016/j.jbiomech.2009.04.002 10.1302/0301-620X.54B1.157 10.1016/j.jbiomech.2005.07.018 10.3389/fbioe.2014.00006 10.1016/S1350-4533(00)00056-4 10.1016/j.jbiomech.2003.12.030 10.1016/j.wneu.2020.04.184 10.1007/BF02406129 10.1007/s11914-018-0485-1 10.1007/s12356-012-0030-3 10.1097/00003086-199201000-00014 10.1002/ar.1092190104 10.1016/j.medengphy.2020.10.007 10.1007/s10237-019-01166-w 10.1016/0021-9290(92)90056-7 10.1016/j.oooo.2017.01.012 10.1146/annurev-bioeng-070909-105302 10.1196/annals.1365.035 10.1007/s10237-019-01158-w 10.1089/3dp.2013.0009 10.1007/s10237-019-01193-7 10.1016/j.abb.2008.03.018 10.1038/nrrheum.2009.239 10.1007/s00285-013-0736-9 10.1016/j.engfracmech.2003.08.003 10.1007/s10237-008-0122-5 10.1016/j.medengphy.2013.10.013 10.1007/978-4-431-89757-6_10 10.1080/10255840903045029 10.1080/10255842.2012.654783 10.1016/S8756-3282(96)00231-1 10.1002/jcp.1041430113 10.1016/j.jbiomech.2007.03.013 10.1007/s10237-015-0704-y 10.1016/j.brs.2018.12.894 10.1006/bulm.1999.0146 10.1038/s41598-021-82502-y 10.1016/j.medengphy.2016.04.018 10.1016/j.bone.2017.11.009 10.1016/S0021-9290(96)00189-3 10.1016/j.jbiomech.2007.02.010 10.1007/s10237-020-01353-0 10.1138/20060233 10.1016/0021-9290(94)00087-K 10.1016/j.jbiomech.2006.05.007 10.1016/j.jtbi.2011.01.003 10.1016/j.cma.2012.10.015 10.1016/j.jtbi.2019.04.020 10.1007/s11914-012-0105-4 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Masson SAS |
Copyright_xml | – notice: 2021 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.euromechsol.2021.104409 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-7285 |
ExternalDocumentID | 10_1016_j_euromechsol_2021_104409 S0997753821001650 |
GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) grantid: 001 funderid: http://dx.doi.org/10.13039/501100002322 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSZ T5K VH1 XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c236t-a8b4d279bbc9eda89bcd3e936d7a9ae48eff41e87f919b0355cdfe342aa33ed03 |
IEDL.DBID | .~1 |
ISSN | 0997-7538 |
IngestDate | Tue Jul 01 01:55:23 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Fri Feb 23 02:43:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element method Numerical uniqueness of solution Kriging Computerized tomography Individualization of bone remodeling model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-a8b4d279bbc9eda89bcd3e936d7a9ae48eff41e87f919b0355cdfe342aa33ed03 |
ORCID | 0000-0002-5474-3040 0000-0003-0993-6246 0000-0002-2483-4339 |
ParticipantIDs | crossref_primary_10_1016_j_euromechsol_2021_104409 crossref_citationtrail_10_1016_j_euromechsol_2021_104409 elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104409 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January-February 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January-February 2022 |
PublicationDecade | 2020 |
PublicationTitle | European journal of mechanics, A, Solids |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Bonewald (b13) 2007; 1116 Burr, Allen (b17) 2014 Komarova, Smith, Dixon, Sims, Wahl (b48) 2003; 33 Trichilo, Scheiner, Forwood, Cooper, Pivonka (b88) 2019; 473 Bahia, Hecke, Mercuri, Pinheiro (b8) 2020; 104 Della Corte, Giorgio, Scerrato (b25) 2020; 234 Cooper, Thomas, Clement, Hallgrí msson (b22) 2006; 288 Kowalczyk (b49) 2010; 43 Opolski, Erbano, Schio, De Salles Graça, Guarinello, De Oliveira, Leal, Foggiatto, Kubrusly (b60) 2014; 1 Martin, Sansalone, Cooper, Forwood, Pivonka (b54) 2019; 18 Roustant, Ginsbourger, Deville (b72) 2013; 51 Klarbring, Torstenfelt (b46) 2012; 4 Rieger, Hambli, Jennane (b71) 2011; 274 Martínez-Reina, Garcia-Aznar, Domínguez, Doblaré (b55) 2009; 8 Mercuri, Daniel, Hecke, Carvalho (b58) 2016; 38 Scheiner, Pivonka, Hellmich (b79) 2016; 15 Calvo-Gallego, P., M., J. (b18) 2021; 37 Hazelwood, Martin, Rashid, Rodrigo (b39) 2001; 34 Sharma, Debski, McMahon, Robertson (b81) 2009; 42 Souza, Matsuda, Peres, Amorim, Moraes, Silva, Baffa (b83) 2018; 309 Pastrama, Scheiner, Pivonka, Hellmich (b63) 2018; 107 Gubaua, Dicati, Mercuri, Pereira (b35) 2020; 84 Schaffler, Kennedy (b77) 2012; 10 Peng, Bai, Zeng, Zhou (b64) 2006; 28 Arun, Sathishkumar, Nithesh Kumar, Ajai, Aswin (b3) 2020 Saeidi, Gubaua, Kelly, Kazemi, Besier, Dicati, Pereira, Neitzert, Ramezani (b76) 2019; 19 Neuert, Dunning (b59) 2013; 227 Pérez, Seral-García (b67) 2013; 16 Damon, Clifton, Valero-Moreno, Quinones-Hinojosa (b24) 2020; 140 Reich, Gay, Frangos (b70) 1990; 143 Schileo, Taddei, Malandrino, Cristofolini (b80) 2007; 40 Adams, Mughal, Damilakis, Offiah (b2) 2012 Beaupré, Orr, Carter (b9) 1990; 8 Greenwald, Haynes (b34) 1972; 54 Avval, Klika, Bougherara (b6) 2014; 136 Rungsiyakull, Li, Sun, Li, Swain (b74) 2010; 31 Jacobs, Levenston, Beaupré, Simo, Carter (b43) 1995; 28 Hambli (b38) 2014; 2 Martínez-Reina, Ojeda, Mayo (b56) 2016; 11 Ashrafi, Galichi, Mirzakouchaki, Doblaré (b4) 2021; 11 Boyce, Xing (b15) 2008; 473 Oumghar, Barkaoui, Chabrand (b61) 2020; 8 Kroll (b50) 2000; 62 Jacobs, Temiyasathit, Castillo (b45) 2010; 12 You, Temiyasathit, Lee, Kim, Tummala, Yao, Kingery, Malone, Kwon, Jacobs (b96) 2008; 42 Cerrolaza, Vannessa, Garzón-Alvarado (b21) 2019; 18 (b23) 2001 Huiskes, Weinans, Rietbergen, van (b42) 1992; 274 Forrester, Sóbester, Keane (b31) 2008 Tyrovola, Odont (b91) 2015; 116 McNamara, Prendergast (b57) 2007; 40 Cardoso, Fritton, Gailani, Benalla, Cowin (b19) 2013; 46 Weinans, Huiskes, Grootenboer (b94) 1992; 25 Gomes, Costa, Chone, de Almeida Milani Altemani, ao Maurí cio Carrasco Altemani, Lima (b33) 2017; 123 Pérez, Moreo, García-Aznar, Doblaré (b66) 2008; 41 Frost (b32) 1987; 219 Pérez, Vendittoli, Lavigne, Nuño (b68) 2014; 36 Hinton, Rackard, Kennedy (b41) 2018; 16 Martelli, Pivonka, Ebeling (b53) 2014; 29 Pivonka, Zimak, Smith, Gardiner, Dunstan, Sims, Martin, Mundy (b69) 2008; 43 Adachi, Kameo (b1) 2006 Simões, Vaz, Blatcher, Taylor (b82) 2000; 22 Taddei, Cristofolini, Martelli, Gill, Viceconti (b85) 2006; 39 Upex, Jouffroy, Riouallon (b92) 2017; 103 Bendsøe, Sigmund (b11) 2003 Burgade, Uhl, Prat, Ruiz, Lorea, Delmas, Rosset, Le-Nail (b16) 2020 Doblaré, García (b28) 2002; 35 Klika, Pérez, García-Aznar, Maršík, Doblaré (b47) 2014; 69 Bonewald (b12) 2006; 3 Hadjifakis, Androulakis (b36) 2006; 1092 Souza, Matsuda, Peres, Amorim, Moraes, Silva, Baffa (b84) 2019; 12 Whalen, Carter, Steele (b95) 1988; 21 Ryser, Nigam, Komarova (b75) 2009; 24 Dicati, Gubaua, Pereira (b26) 2020; 85 Scheiner, Pivonka, Hellmich (b78) 2013; 254 Bagge (b7) 1999 Forrester, Sóbester, Keane (b30) 2007; 463 Lemaire, Tobin, Greller, Cho, Suva (b52) 2004; 229 Bonewald (b14) 2011; 3 Doblaré, García (b27) 2001; 34 Turner, Gillies, Sekel, Morris, Bruce, Walsh (b90) 2005; 23 Belinha, Jorge, Dinis (b10) 2013; 16 Jacobs, Simo, Beaupré, Carter (b44) 1997; 30 Thomsen, Mosekilde, Boyce, Mosekilde (b86) 1994; 15 Viceconti, Davinelli, Taddei, Cappello (b93) 2004; 37 Ashrafi, Gubaua, Pereira, Gahlichi, Doblaré (b5) 2020; 19 Laz, Stowe, Baldwin, Petrella, Rullkoetter (b51) 2007; 40 Rüberg, García-Aznar, Doblare (b73) 2005; 4 Ozcivici, Luu, Adler, Qin, Rubin, Judex, Rubin (b62) 2010; 6 Hernandez, Beaupré, Carter (b40) 2000; 37 Carter (b20) 1984; 36 Thomsen, Mosekilde, Mosekilde (b87) 2020; 19 Pérez, Fornells, Doblaré, García-Aznar (b65) 2010; 13 Tudor-Locke, Craig, Thyfault, Spence (b89) 2013; 38 Doblaré, García, Gómez (b29) 2004; 71 Hall (b37) 2007 Pastrama (10.1016/j.euromechsol.2021.104409_b63) 2018; 107 Bonewald (10.1016/j.euromechsol.2021.104409_b14) 2011; 3 Martin (10.1016/j.euromechsol.2021.104409_b54) 2019; 18 Mercuri (10.1016/j.euromechsol.2021.104409_b58) 2016; 38 Pérez (10.1016/j.euromechsol.2021.104409_b68) 2014; 36 Avval (10.1016/j.euromechsol.2021.104409_b6) 2014; 136 Weinans (10.1016/j.euromechsol.2021.104409_b94) 1992; 25 Cerrolaza (10.1016/j.euromechsol.2021.104409_b21) 2019; 18 Jacobs (10.1016/j.euromechsol.2021.104409_b43) 1995; 28 Bonewald (10.1016/j.euromechsol.2021.104409_b13) 2007; 1116 Hinton (10.1016/j.euromechsol.2021.104409_b41) 2018; 16 Souza (10.1016/j.euromechsol.2021.104409_b84) 2019; 12 Laz (10.1016/j.euromechsol.2021.104409_b51) 2007; 40 Trichilo (10.1016/j.euromechsol.2021.104409_b88) 2019; 473 Damon (10.1016/j.euromechsol.2021.104409_b24) 2020; 140 Doblaré (10.1016/j.euromechsol.2021.104409_b28) 2002; 35 McNamara (10.1016/j.euromechsol.2021.104409_b57) 2007; 40 Pérez (10.1016/j.euromechsol.2021.104409_b67) 2013; 16 Ashrafi (10.1016/j.euromechsol.2021.104409_b4) 2021; 11 Roustant (10.1016/j.euromechsol.2021.104409_b72) 2013; 51 Whalen (10.1016/j.euromechsol.2021.104409_b95) 1988; 21 Souza (10.1016/j.euromechsol.2021.104409_b83) 2018; 309 Della Corte (10.1016/j.euromechsol.2021.104409_b25) 2020; 234 You (10.1016/j.euromechsol.2021.104409_b96) 2008; 42 Gubaua (10.1016/j.euromechsol.2021.104409_b35) 2020; 84 Forrester (10.1016/j.euromechsol.2021.104409_b31) 2008 Hall (10.1016/j.euromechsol.2021.104409_b37) 2007 Klarbring (10.1016/j.euromechsol.2021.104409_b46) 2012; 4 Carter (10.1016/j.euromechsol.2021.104409_b20) 1984; 36 Martínez-Reina (10.1016/j.euromechsol.2021.104409_b56) 2016; 11 Komarova (10.1016/j.euromechsol.2021.104409_b48) 2003; 33 Burr (10.1016/j.euromechsol.2021.104409_b17) 2014 Greenwald (10.1016/j.euromechsol.2021.104409_b34) 1972; 54 Tyrovola (10.1016/j.euromechsol.2021.104409_b91) 2015; 116 Hadjifakis (10.1016/j.euromechsol.2021.104409_b36) 2006; 1092 Taddei (10.1016/j.euromechsol.2021.104409_b85) 2006; 39 Bahia (10.1016/j.euromechsol.2021.104409_b8) 2020; 104 Arun (10.1016/j.euromechsol.2021.104409_b3) 2020 Bendsøe (10.1016/j.euromechsol.2021.104409_b11) 2003 Adachi (10.1016/j.euromechsol.2021.104409_b1) 2006 Ashrafi (10.1016/j.euromechsol.2021.104409_b5) 2020; 19 Forrester (10.1016/j.euromechsol.2021.104409_b30) 2007; 463 Jacobs (10.1016/j.euromechsol.2021.104409_b44) 1997; 30 Thomsen (10.1016/j.euromechsol.2021.104409_b86) 1994; 15 Bagge (10.1016/j.euromechsol.2021.104409_b7) 1999 Cooper (10.1016/j.euromechsol.2021.104409_b22) 2006; 288 Huiskes (10.1016/j.euromechsol.2021.104409_b42) 1992; 274 Kroll (10.1016/j.euromechsol.2021.104409_b50) 2000; 62 Martínez-Reina (10.1016/j.euromechsol.2021.104409_b55) 2009; 8 Thomsen (10.1016/j.euromechsol.2021.104409_b87) 2020; 19 Martelli (10.1016/j.euromechsol.2021.104409_b53) 2014; 29 Scheiner (10.1016/j.euromechsol.2021.104409_b79) 2016; 15 Calvo-Gallego (10.1016/j.euromechsol.2021.104409_b18) 2021; 37 Rüberg (10.1016/j.euromechsol.2021.104409_b73) 2005; 4 Ozcivici (10.1016/j.euromechsol.2021.104409_b62) 2010; 6 Frost (10.1016/j.euromechsol.2021.104409_b32) 1987; 219 Pivonka (10.1016/j.euromechsol.2021.104409_b69) 2008; 43 Burgade (10.1016/j.euromechsol.2021.104409_b16) 2020 Klika (10.1016/j.euromechsol.2021.104409_b47) 2014; 69 Hambli (10.1016/j.euromechsol.2021.104409_b38) 2014; 2 Belinha (10.1016/j.euromechsol.2021.104409_b10) 2013; 16 Bonewald (10.1016/j.euromechsol.2021.104409_b12) 2006; 3 Upex (10.1016/j.euromechsol.2021.104409_b92) 2017; 103 Opolski (10.1016/j.euromechsol.2021.104409_b60) 2014; 1 Pérez (10.1016/j.euromechsol.2021.104409_b65) 2010; 13 Rungsiyakull (10.1016/j.euromechsol.2021.104409_b74) 2010; 31 Doblaré (10.1016/j.euromechsol.2021.104409_b29) 2004; 71 Peng (10.1016/j.euromechsol.2021.104409_b64) 2006; 28 Ryser (10.1016/j.euromechsol.2021.104409_b75) 2009; 24 Hazelwood (10.1016/j.euromechsol.2021.104409_b39) 2001; 34 Neuert (10.1016/j.euromechsol.2021.104409_b59) 2013; 227 Schaffler (10.1016/j.euromechsol.2021.104409_b77) 2012; 10 Simões (10.1016/j.euromechsol.2021.104409_b82) 2000; 22 Adams (10.1016/j.euromechsol.2021.104409_b2) 2012 Rieger (10.1016/j.euromechsol.2021.104409_b71) 2011; 274 Boyce (10.1016/j.euromechsol.2021.104409_b15) 2008; 473 Doblaré (10.1016/j.euromechsol.2021.104409_b27) 2001; 34 Schileo (10.1016/j.euromechsol.2021.104409_b80) 2007; 40 Saeidi (10.1016/j.euromechsol.2021.104409_b76) 2019; 19 Kowalczyk (10.1016/j.euromechsol.2021.104409_b49) 2010; 43 Viceconti (10.1016/j.euromechsol.2021.104409_b93) 2004; 37 Beaupré (10.1016/j.euromechsol.2021.104409_b9) 1990; 8 Sharma (10.1016/j.euromechsol.2021.104409_b81) 2009; 42 Scheiner (10.1016/j.euromechsol.2021.104409_b78) 2013; 254 Tudor-Locke (10.1016/j.euromechsol.2021.104409_b89) 2013; 38 Cardoso (10.1016/j.euromechsol.2021.104409_b19) 2013; 46 (10.1016/j.euromechsol.2021.104409_b23) 2001 Gomes (10.1016/j.euromechsol.2021.104409_b33) 2017; 123 Hernandez (10.1016/j.euromechsol.2021.104409_b40) 2000; 37 Oumghar (10.1016/j.euromechsol.2021.104409_b61) 2020; 8 Reich (10.1016/j.euromechsol.2021.104409_b70) 1990; 143 Pérez (10.1016/j.euromechsol.2021.104409_b66) 2008; 41 Dicati (10.1016/j.euromechsol.2021.104409_b26) 2020; 85 Lemaire (10.1016/j.euromechsol.2021.104409_b52) 2004; 229 Turner (10.1016/j.euromechsol.2021.104409_b90) 2005; 23 Jacobs (10.1016/j.euromechsol.2021.104409_b45) 2010; 12 |
References_xml | – volume: 34 start-page: 1157 year: 2001 end-page: 1170 ident: b27 article-title: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement publication-title: J. Biomech. – volume: 103 start-page: 331 year: 2017 end-page: 334 ident: b92 article-title: Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis publication-title: Orthop. Traumatol.: Surg. Res. – volume: 11 start-page: 2045 year: 2021 end-page: 2322 ident: b4 article-title: On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model publication-title: Sci. Rep. – volume: 36 start-page: S19 year: 1984 end-page: S24 ident: b20 article-title: Mechanical loading histories and cortical bone remodeling publication-title: Calcified Tissue Int. – volume: 123 start-page: e170 year: 2017 end-page: e175 ident: b33 article-title: Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: a case report publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. – start-page: 231 year: 2006 end-page: 257 ident: b1 article-title: Bone modeling and remodeling publication-title: Multiscale Mechanobiology of Bone Remodeling and Adaptation – volume: 18 start-page: 1639 year: 2019 end-page: 1663 ident: b21 article-title: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon publication-title: Biomech. Model. Mechanobiol. – volume: 274 start-page: 124 year: 1992 end-page: 134 ident: b42 article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials publication-title: Clin. Orthopaed. Relat. Res. – volume: 19 start-page: 2499 year: 2020 end-page: 2523 ident: b5 article-title: A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach publication-title: Biomech. Model. Mechanobiol. – volume: 1 start-page: 88 year: 2014 end-page: 94 ident: b60 article-title: Experimental three-dimensional biomodel of complex aortic aneurysms by rapid prototyping technology publication-title: 3D Print. Addit. Manuf. – volume: 37 start-page: 1597 year: 2004 end-page: 1605 ident: b93 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J. Biomech. – volume: 227 start-page: 994 year: 2013 end-page: 1001 ident: b59 article-title: Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna publication-title: Proc. Inst. Mech. Eng. H – volume: 12 start-page: 369 year: 2010 end-page: 400 ident: b45 article-title: Osteocyte mechanobiology and pericellular mechanics publication-title: Annu. Rev. Biomed. Eng. – volume: 38 start-page: 904 year: 2016 end-page: 910 ident: b58 article-title: Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling publication-title: Med. Eng. Phys. – volume: 13 start-page: 71 year: 2010 end-page: 80 ident: b65 article-title: Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 15 start-page: 655 year: 1994 end-page: 666 ident: b86 article-title: Stochastic simulation of vertebral trabecular bone remodeling publication-title: Bone – volume: 288 start-page: 806 year: 2006 end-page: 816 ident: b22 article-title: Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone publication-title: Anatom. Rec. A: Discov. Mole. Cell. Evolut. Biol. – volume: 16 start-page: 1022 year: 2013 end-page: 1031 ident: b67 article-title: A finite element analysis of the vibration behaviour of a cementless hip system publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 107 start-page: 208 year: 2018 end-page: 211 ident: b63 article-title: A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation publication-title: Bone – volume: 6 start-page: 50 year: 2010 end-page: 59 ident: b62 article-title: Mechanical signals as anabolic agents in bone publication-title: Nat. Rev. Rheumatol. – volume: 4 start-page: 147 year: 2005 end-page: 167 ident: b73 article-title: A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity publication-title: Biomech. Model. Mechanobiol. – volume: 22 start-page: 453 year: 2000 end-page: 459 ident: b82 article-title: Influence of head constraint and muscle forces on the strain distribution within the intact femur publication-title: Med. Eng. Phys. – volume: 8 start-page: 111 year: 2009 end-page: 127 ident: b55 article-title: A bone remodelling model including the directional activity of BMUs publication-title: Biomech. Model. Mechanobiol. – volume: 309 start-page: 109 year: 2018 end-page: 120 ident: b83 article-title: Development and characterization of the InVesalius navigator software for navigated transcranial magnetic stimulation publication-title: J. Neurosci. Methods – volume: 46 start-page: 253 year: 2013 end-page: 265 ident: b19 article-title: Advances in assessment of bone porosity, permeability and interstitial fluid flow publication-title: J. Biomech. – volume: 3 start-page: 141 year: 2011 end-page: 155 ident: b14 article-title: Osteocyte mechanosensation and transduction publication-title: Mechanosens. Biol. – volume: 40 start-page: 2831 year: 2007 end-page: 2836 ident: b51 article-title: Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics publication-title: J. Biomech. – volume: 36 start-page: 185 year: 2014 end-page: 195 ident: b68 article-title: Bone remodeling in the resurfaced femoral head: Effect of cement mantle thickness and interface characteristics publication-title: Med. Eng. Phys. – volume: 28 start-page: 449 year: 1995 end-page: 459 ident: b43 article-title: Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach publication-title: J. Biomech. – volume: 42 start-page: 172 year: 2008 end-page: 179 ident: b96 article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading publication-title: Bone – volume: 15 start-page: 9 year: 2016 end-page: 28 ident: b79 article-title: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure publication-title: Biomech. Model. Mechanobiol. – volume: 69 start-page: 1383 year: 2014 end-page: 1429 ident: b47 article-title: A coupled mechano-biochemical model for bone adaptation publication-title: J. Math. Biol. – start-page: 277 year: 2012 end-page: 307 ident: b2 article-title: Chapter 12: Radiology publication-title: Pediatric Bone – start-page: 124 year: 1999 ident: b7 article-title: Remodeling of bone structures – volume: 35 start-page: 1 year: 2002 end-page: 17 ident: b28 article-title: Anisotropic bone remodelling model based on a continuum damage-repair theory publication-title: J. Biomech. – volume: 62 start-page: 163 year: 2000 end-page: 188 ident: b50 article-title: Parathyroid hormone temporal effects on bone formation and resorption publication-title: Bull. Math. Biol. – volume: 40 start-page: 1381 year: 2007 end-page: 1391 ident: b57 article-title: Bone remodelling algorithms incorporating both strain and microdamage stimuli publication-title: J. Biomech. – volume: 28 start-page: 227 year: 2006 end-page: 233 ident: b64 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med. Eng. Phys. – volume: 39 start-page: 2457 year: 2006 end-page: 2467 ident: b85 article-title: Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy publication-title: J. Biomech. – volume: 84 start-page: 126 year: 2020 end-page: 135 ident: b35 article-title: Simulation of bone remodeling around a femoral prosthesis using a model that accounts for biological and mechanical interactions publication-title: Med. Eng. Phys. – year: 2020 ident: b3 article-title: Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study publication-title: Mater. Today: Proc. – volume: 4 start-page: 25 year: 2012 end-page: 32 ident: b46 article-title: Lazy zone bone remodeling theory and its relation to topology optimization publication-title: Ann. Solid Struct. Mech. – volume: 229 start-page: 293 year: 2004 end-page: 309 ident: b52 article-title: Modeling the interactions between osteoblast and osteoclast activities in bone remodeling publication-title: J. Theoret. Biol. – volume: 12 start-page: 571 year: 2019 ident: b84 article-title: Invesalius navigator, a free and open-source software for navigated transcranial magnetic stimulation publication-title: Brain Stimul. – volume: 51 start-page: 1 year: 2013 end-page: 55 ident: b72 article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization publication-title: J. Stat. Softw. – volume: 25 start-page: 1425 year: 1992 end-page: 1441 ident: b94 article-title: The behavior of adaptive bone-remodeling simulation models publication-title: J. Biomech. – volume: 8 start-page: 651 year: 1990 end-page: 661 ident: b9 article-title: An approach for time dependent bone modeling and remodeling - theoretical development publication-title: J. Orthop. Res. – volume: 34 start-page: 299 year: 2001 end-page: 308 ident: b39 article-title: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload publication-title: J. Biomech. – volume: 37 year: 2021 ident: b18 article-title: A novel algorithm to resolve lack of convergence and checkerboard instability in bone adaptation simulations using non-local averaging publication-title: Internat. J. Numer. Methods Engrg. – year: 2003 ident: b11 article-title: Topology Optimization - Theory, Methods, and Applications – volume: 3 start-page: 7 year: 2006 end-page: 15 ident: b12 article-title: Mechanosensation and transduction in osteocytes publication-title: BoneKEy Osteovis. – volume: 19 start-page: 505 year: 2020 end-page: 511 ident: b87 article-title: Quantification of remodeling parameter sensitivity - assessed by a computer simulation model publication-title: Bone – volume: 143 start-page: 100 year: 1990 end-page: 104 ident: b70 article-title: Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production publication-title: J. Cell. Physiol. – volume: 43 start-page: 563 year: 2010 end-page: 569 ident: b49 article-title: Simulation of orthotropic microstructure remodelling of cancellous bone publication-title: J. Biomech. – volume: 140 start-page: 173 year: 2020 end-page: 179 ident: b24 article-title: Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: Technical note publication-title: World Neurosurg. – volume: 71 start-page: 1809 year: 2004 end-page: 1840 ident: b29 article-title: Modelling bone tissue fracture and healing: A review publication-title: Eng. Fract. Mech. – volume: 274 start-page: 36 year: 2011 end-page: 42 ident: b71 article-title: Modeling of biological doses and mechanical effects on bone transduction publication-title: J. Theoret. Biol. – volume: 473 start-page: 139 year: 2008 end-page: 146 ident: b15 article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling publication-title: Arch. Biochem. Biophys. – volume: 1092 start-page: 385 year: 2006 end-page: 396 ident: b36 article-title: Bone remodeling publication-title: Ann. New York Acad. Sci. – volume: 37 start-page: 235 year: 2000 end-page: 244 ident: b40 article-title: A model of mechanobiologic and metabolic influences on bone adaptation publication-title: J. Rehab. Res. Develop. – volume: 11 start-page: 1 year: 2016 end-page: 17 ident: b56 article-title: On the use of bone remodelling models to estimate the density distribution of bones. Uniqueness of the solution publication-title: PLoS One – volume: 38 start-page: 100 year: 2013 end-page: 114 ident: b89 article-title: A step-defined sedentary lifestyle index: publication-title: Appl. Physiol. Nutr. Metabol. – volume: 136 year: 2014 ident: b6 article-title: Predicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical model publication-title: J. Biomech. Eng. – volume: 42 start-page: 1460 year: 2009 end-page: 1468 ident: b81 article-title: Adaptive glenoid bone remodeling simulation publication-title: J. Biomech. – year: 2001 ident: b23 article-title: Bone Mechanics Handbook – volume: 40 start-page: 2982 year: 2007 end-page: 2989 ident: b80 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J. Biomech. – volume: 19 start-page: 37 year: 2019 end-page: 46 ident: b76 article-title: The influence of an extra-articular implant on bone remodelling of the knee joint publication-title: Biomech. Model. Mechanobiol. – volume: 234 start-page: 273 year: 2020 end-page: 281 ident: b25 article-title: A review of recent developments in mathemathical modeling of bone remodeling publication-title: Proc. Inst. Mech. Eng. H – volume: 16 start-page: 746 year: 2018 end-page: 753 ident: b41 article-title: In vivo osteocyte mechanotransduction: recent developments and future directions publication-title: Curr. Osteopor. Rep. – start-page: 373 year: 2014 ident: b17 article-title: Basic and Applied Bone Biology – volume: 24 start-page: 860 year: 2009 end-page: 870 ident: b75 article-title: Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit publication-title: J. Bone Miner. Res. – year: 2020 ident: b16 article-title: 3D-modeling of sternal chondrosarcomas from angio-CT-scan: Clinical application and surgical perspectives publication-title: Ann. 3D Print. Med. – volume: 16 start-page: 1170 year: 2013 end-page: 1184 ident: b10 article-title: A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 54 start-page: 157 year: 1972 end-page: 163 ident: b34 article-title: Weight-bearing areas in the human hip joint publication-title: J. Bone Joint Surg. – year: 2007 ident: b37 article-title: Basic Biomechanics – volume: 8 year: 2020 ident: b61 article-title: Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review publication-title: Front. Bioeng. Biotechnol. – volume: 473 start-page: 67 year: 2019 end-page: 79 ident: b88 article-title: Computational model of the dual action of PTH - application to a rat model of osteoporosis publication-title: J. Theoret. Biol. – volume: 29 start-page: 869 year: 2014 end-page: 876 ident: b53 article-title: Femoral shaft strains during daily activities: Implications for atypical femoral fractures publication-title: Clin. Biomech. – volume: 23 start-page: 705 year: 2005 end-page: 712 ident: b90 article-title: Computational bone remodelling simulations and comparisons with DEXA results publication-title: J. Orthop. Res. – volume: 43 start-page: 249 year: 2008 end-page: 263 ident: b69 article-title: Model structure and control of bone remodeling: A theoretical study publication-title: Bone – volume: 1116 start-page: 281 year: 2007 end-page: 290 ident: b13 article-title: Osteocytes as dynamic multifunctional cells publication-title: Ann. New York Acad. Sci. – volume: 463 start-page: 3251 year: 2007 end-page: 3269 ident: b30 article-title: Multi-fidelity optimization via surrogate modelling publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 85 start-page: 113 year: 2020 end-page: 122 ident: b26 article-title: Analysis of the uniqueness and stability of solutions to problems regarding the bone-remodeling process publication-title: Med. Eng. Phys. – volume: 30 start-page: 603 year: 1997 end-page: 613 ident: b44 article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations publication-title: J. Biomech. – volume: 104 year: 2020 ident: b8 article-title: A bone remodeling model governed by cellular micromechanics and physiologically based pharmacokinetics publication-title: J. Mech. Behav. Biomed. Mater. – volume: 31 start-page: 7196 year: 2010 end-page: 7204 ident: b74 article-title: Surface morphology optimization for osseointegration of coated implants publication-title: Biomaterials – volume: 21 start-page: 825 year: 1988 end-page: 837 ident: b95 article-title: Influence of physical activity on the regulation of bone density publication-title: J. Biomech. – volume: 18 start-page: 1475 year: 2019 end-page: 1496 ident: b54 article-title: Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model publication-title: Biomech. Model. Mechanobiol. – volume: 41 start-page: 316 year: 2008 end-page: 325 ident: b66 article-title: Computational simulation of dental implant osseointegration through resonance frequency analysis publication-title: J. Biomech. – volume: 219 start-page: 1 year: 1987 end-page: 9 ident: b32 article-title: Bone “mass” and the “mechanostat”: a proposal publication-title: Anatom. Rec. – year: 2008 ident: b31 article-title: Engineering Design Via Surrogate Modelling: A Practical Guide – volume: 2 start-page: 6 year: 2014 ident: b38 article-title: Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling publication-title: Front. Bioeng. Biotechnol. – volume: 33 start-page: 206 year: 2003 end-page: 215 ident: b48 article-title: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling publication-title: Bone – volume: 254 start-page: 181 year: 2013 end-page: 196 ident: b78 article-title: Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 116 start-page: 2724 year: 2015 end-page: 2729 ident: b91 article-title: The “mechanostat theory” of frost and the OPG/RANKL/RANK system publication-title: J. Cell. Biochem. – volume: 10 start-page: 118 year: 2012 end-page: 125 ident: b77 article-title: Osteocyte signaling in bone publication-title: Curr. Osteoporos. Rep. – volume: 8 start-page: 651 year: 1990 ident: 10.1016/j.euromechsol.2021.104409_b9 article-title: An approach for time dependent bone modeling and remodeling - theoretical development publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080506 – volume: 37 start-page: 235 issue: 2 year: 2000 ident: 10.1016/j.euromechsol.2021.104409_b40 article-title: A model of mechanobiologic and metabolic influences on bone adaptation publication-title: J. Rehab. Res. Develop. – volume: 37 issue: 2 year: 2021 ident: 10.1016/j.euromechsol.2021.104409_b18 article-title: A novel algorithm to resolve lack of convergence and checkerboard instability in bone adaptation simulations using non-local averaging publication-title: Internat. J. Numer. Methods Engrg. – volume: 309 start-page: 109 year: 2018 ident: 10.1016/j.euromechsol.2021.104409_b83 article-title: Development and characterization of the InVesalius navigator software for navigated transcranial magnetic stimulation publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.08.023 – volume: 34 start-page: 299 issue: 3 year: 2001 ident: 10.1016/j.euromechsol.2021.104409_b39 article-title: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload publication-title: J. Biomech. doi: 10.1016/S0021-9290(00)00221-9 – volume: 38 start-page: 100 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b89 article-title: A step-defined sedentary lifestyle index: < 5000 steps/day publication-title: Appl. Physiol. Nutr. Metabol. doi: 10.1139/apnm-2012-0235 – volume: 16 start-page: 1022 issue: 9 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b67 article-title: A finite element analysis of the vibration behaviour of a cementless hip system publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2011.650635 – volume: 31 start-page: 7196 year: 2010 ident: 10.1016/j.euromechsol.2021.104409_b74 article-title: Surface morphology optimization for osseointegration of coated implants publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.077 – volume: 24 start-page: 860 year: 2009 ident: 10.1016/j.euromechsol.2021.104409_b75 article-title: Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.081229 – volume: 116 start-page: 2724 issue: 12 year: 2015 ident: 10.1016/j.euromechsol.2021.104409_b91 article-title: The “mechanostat theory” of frost and the OPG/RANKL/RANK system publication-title: J. Cell. Biochem. doi: 10.1002/jcb.25265 – year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b3 article-title: Development of patient specific bio-polymer incisor teeth by 3D printing process: A case study publication-title: Mater. Today: Proc. – volume: 136 issue: 5 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b6 article-title: Predicting bone remodeling in response to total hip arthroplasty: computational study using mechanobiochemical model publication-title: J. Biomech. Eng. – volume: 15 start-page: 655 issue: 6 year: 1994 ident: 10.1016/j.euromechsol.2021.104409_b86 article-title: Stochastic simulation of vertebral trabecular bone remodeling publication-title: Bone doi: 10.1016/8756-3282(94)90314-X – volume: 23 start-page: 705 year: 2005 ident: 10.1016/j.euromechsol.2021.104409_b90 article-title: Computational bone remodelling simulations and comparisons with DEXA results publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2005.02.002 – volume: 4 start-page: 147 year: 2005 ident: 10.1016/j.euromechsol.2021.104409_b73 article-title: A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-005-0067-x – volume: 234 start-page: 273 issue: 3 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b25 article-title: A review of recent developments in mathemathical modeling of bone remodeling publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411919857599 – volume: 28 start-page: 227 issue: 3 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b64 article-title: Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.06.003 – volume: 21 start-page: 825 year: 1988 ident: 10.1016/j.euromechsol.2021.104409_b95 article-title: Influence of physical activity on the regulation of bone density publication-title: J. Biomech. doi: 10.1016/0021-9290(88)90015-2 – volume: 42 start-page: 172 issue: 1 year: 2008 ident: 10.1016/j.euromechsol.2021.104409_b96 article-title: Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading publication-title: Bone doi: 10.1016/j.bone.2007.09.047 – start-page: 277 year: 2012 ident: 10.1016/j.euromechsol.2021.104409_b2 article-title: Chapter 12: Radiology – year: 2008 ident: 10.1016/j.euromechsol.2021.104409_b31 – volume: 227 start-page: 994 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b59 article-title: Determination of remodeling parameters for a strain-adaptive finite element model of the distal ulna publication-title: Proc. Inst. Mech. Eng. H doi: 10.1177/0954411913487841 – volume: 41 start-page: 316 year: 2008 ident: 10.1016/j.euromechsol.2021.104409_b66 article-title: Computational simulation of dental implant osseointegration through resonance frequency analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.09.013 – volume: 43 start-page: 249 year: 2008 ident: 10.1016/j.euromechsol.2021.104409_b69 article-title: Model structure and control of bone remodeling: A theoretical study publication-title: Bone doi: 10.1016/j.bone.2008.03.025 – volume: 43 start-page: 563 issue: 3 year: 2010 ident: 10.1016/j.euromechsol.2021.104409_b49 article-title: Simulation of orthotropic microstructure remodelling of cancellous bone publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.09.045 – volume: 229 start-page: 293 year: 2004 ident: 10.1016/j.euromechsol.2021.104409_b52 article-title: Modeling the interactions between osteoblast and osteoclast activities in bone remodeling publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2004.03.023 – volume: 288 start-page: 806 issue: 7 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b22 article-title: Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone publication-title: Anatom. Rec. A: Discov. Mole. Cell. Evolut. Biol. doi: 10.1002/ar.a.20344 – volume: 34 start-page: 1157 issue: 9 year: 2001 ident: 10.1016/j.euromechsol.2021.104409_b27 article-title: Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00069-0 – volume: 35 start-page: 1 year: 2002 ident: 10.1016/j.euromechsol.2021.104409_b28 article-title: Anisotropic bone remodelling model based on a continuum damage-repair theory publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00178-6 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.euromechsol.2021.104409_b56 article-title: On the use of bone remodelling models to estimate the density distribution of bones. Uniqueness of the solution publication-title: PLoS One doi: 10.1371/journal.pone.0148603 – volume: 84 start-page: 126 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b35 article-title: Simulation of bone remodeling around a femoral prosthesis using a model that accounts for biological and mechanical interactions publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.08.004 – volume: 1116 start-page: 281 issue: 1 year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b13 article-title: Osteocytes as dynamic multifunctional cells publication-title: Ann. New York Acad. Sci. doi: 10.1196/annals.1402.018 – volume: 104 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b8 article-title: A bone remodeling model governed by cellular micromechanics and physiologically based pharmacokinetics publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103657 – volume: 46 start-page: 253 issue: 2 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b19 article-title: Advances in assessment of bone porosity, permeability and interstitial fluid flow publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.10.025 – volume: 33 start-page: 206 year: 2003 ident: 10.1016/j.euromechsol.2021.104409_b48 article-title: Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling publication-title: Bone doi: 10.1016/S8756-3282(03)00157-1 – volume: 29 start-page: 869 issue: 8 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b53 article-title: Femoral shaft strains during daily activities: Implications for atypical femoral fractures publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2014.08.001 – volume: 42 start-page: 1460 year: 2009 ident: 10.1016/j.euromechsol.2021.104409_b81 article-title: Adaptive glenoid bone remodeling simulation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.04.002 – volume: 54 start-page: 157 year: 1972 ident: 10.1016/j.euromechsol.2021.104409_b34 article-title: Weight-bearing areas in the human hip joint publication-title: J. Bone Joint Surg. doi: 10.1302/0301-620X.54B1.157 – volume: 39 start-page: 2457 issue: 13 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b85 article-title: Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.07.018 – volume: 2 start-page: 6 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b38 article-title: Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2014.00006 – volume: 22 start-page: 453 issue: 7 year: 2000 ident: 10.1016/j.euromechsol.2021.104409_b82 article-title: Influence of head constraint and muscle forces on the strain distribution within the intact femur publication-title: Med. Eng. Phys. doi: 10.1016/S1350-4533(00)00056-4 – start-page: 124 year: 1999 ident: 10.1016/j.euromechsol.2021.104409_b7 – year: 2001 ident: 10.1016/j.euromechsol.2021.104409_b23 – volume: 37 start-page: 1597 year: 2004 ident: 10.1016/j.euromechsol.2021.104409_b93 article-title: Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2003.12.030 – volume: 140 start-page: 173 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b24 article-title: Cost-effective method for 3-dimensional printing dynamic multiobject and patient-specific brain tumor models: Technical note publication-title: World Neurosurg. doi: 10.1016/j.wneu.2020.04.184 – volume: 51 start-page: 1 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b72 article-title: DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization publication-title: J. Stat. Softw. – volume: 36 start-page: S19 year: 1984 ident: 10.1016/j.euromechsol.2021.104409_b20 article-title: Mechanical loading histories and cortical bone remodeling publication-title: Calcified Tissue Int. doi: 10.1007/BF02406129 – volume: 16 start-page: 746 issue: 6 year: 2018 ident: 10.1016/j.euromechsol.2021.104409_b41 article-title: In vivo osteocyte mechanotransduction: recent developments and future directions publication-title: Curr. Osteopor. Rep. doi: 10.1007/s11914-018-0485-1 – volume: 4 start-page: 25 year: 2012 ident: 10.1016/j.euromechsol.2021.104409_b46 article-title: Lazy zone bone remodeling theory and its relation to topology optimization publication-title: Ann. Solid Struct. Mech. doi: 10.1007/s12356-012-0030-3 – volume: 274 start-page: 124 year: 1992 ident: 10.1016/j.euromechsol.2021.104409_b42 article-title: The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials publication-title: Clin. Orthopaed. Relat. Res. doi: 10.1097/00003086-199201000-00014 – volume: 219 start-page: 1 year: 1987 ident: 10.1016/j.euromechsol.2021.104409_b32 article-title: Bone “mass” and the “mechanostat”: a proposal publication-title: Anatom. Rec. doi: 10.1002/ar.1092190104 – volume: 85 start-page: 113 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b26 article-title: Analysis of the uniqueness and stability of solutions to problems regarding the bone-remodeling process publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2020.10.007 – volume: 18 start-page: 1639 issue: 6 year: 2019 ident: 10.1016/j.euromechsol.2021.104409_b21 article-title: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01166-w – volume: 25 start-page: 1425 year: 1992 ident: 10.1016/j.euromechsol.2021.104409_b94 article-title: The behavior of adaptive bone-remodeling simulation models publication-title: J. Biomech. doi: 10.1016/0021-9290(92)90056-7 – volume: 123 start-page: e170 issue: 5 year: 2017 ident: 10.1016/j.euromechsol.2021.104409_b33 article-title: Three-dimensional volumetric analysis of ghost cell odontogenic carcinoma using 3-D reconstruction software: a case report publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol. doi: 10.1016/j.oooo.2017.01.012 – volume: 12 start-page: 369 issue: 1 year: 2010 ident: 10.1016/j.euromechsol.2021.104409_b45 article-title: Osteocyte mechanobiology and pericellular mechanics publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-070909-105302 – volume: 1092 start-page: 385 issue: 1 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b36 article-title: Bone remodeling publication-title: Ann. New York Acad. Sci. doi: 10.1196/annals.1365.035 – volume: 18 start-page: 1475 year: 2019 ident: 10.1016/j.euromechsol.2021.104409_b54 article-title: Mechanobiological osteocyte feedback drives mechanostat regulation of bone in a multiscale computational model publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01158-w – volume: 1 start-page: 88 issue: 2 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b60 article-title: Experimental three-dimensional biomodel of complex aortic aneurysms by rapid prototyping technology publication-title: 3D Print. Addit. Manuf. doi: 10.1089/3dp.2013.0009 – volume: 19 start-page: 37 year: 2019 ident: 10.1016/j.euromechsol.2021.104409_b76 article-title: The influence of an extra-articular implant on bone remodelling of the knee joint publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01193-7 – volume: 473 start-page: 139 issue: 2 year: 2008 ident: 10.1016/j.euromechsol.2021.104409_b15 article-title: Functions of RANKL/RANK/OPG in bone modeling and remodeling publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2008.03.018 – volume: 6 start-page: 50 year: 2010 ident: 10.1016/j.euromechsol.2021.104409_b62 article-title: Mechanical signals as anabolic agents in bone publication-title: Nat. Rev. Rheumatol. doi: 10.1038/nrrheum.2009.239 – volume: 69 start-page: 1383 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b47 article-title: A coupled mechano-biochemical model for bone adaptation publication-title: J. Math. Biol. doi: 10.1007/s00285-013-0736-9 – volume: 71 start-page: 1809 year: 2004 ident: 10.1016/j.euromechsol.2021.104409_b29 article-title: Modelling bone tissue fracture and healing: A review publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2003.08.003 – volume: 8 start-page: 111 year: 2009 ident: 10.1016/j.euromechsol.2021.104409_b55 article-title: A bone remodelling model including the directional activity of BMUs publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0122-5 – volume: 36 start-page: 185 issue: 2 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b68 article-title: Bone remodeling in the resurfaced femoral head: Effect of cement mantle thickness and interface characteristics publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.013 – volume: 3 start-page: 141 year: 2011 ident: 10.1016/j.euromechsol.2021.104409_b14 article-title: Osteocyte mechanosensation and transduction publication-title: Mechanosens. Biol. doi: 10.1007/978-4-431-89757-6_10 – volume: 463 start-page: 3251 year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b30 article-title: Multi-fidelity optimization via surrogate modelling publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 103 start-page: 331 issue: 3 year: 2017 ident: 10.1016/j.euromechsol.2021.104409_b92 article-title: Application of 3D printing for treating fractures of both columns of the acetabulum: Benefit of pre-contouring plates on the mirrored healthy pelvis publication-title: Orthop. Traumatol.: Surg. Res. – year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b37 – volume: 8 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b61 article-title: Toward a mathematical modeling of diseases’ impact on bone remodeling: Technical review publication-title: Front. Bioeng. Biotechnol. – start-page: 231 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b1 article-title: Bone modeling and remodeling – volume: 13 start-page: 71 issue: 1 year: 2010 ident: 10.1016/j.euromechsol.2021.104409_b65 article-title: Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840903045029 – volume: 16 start-page: 1170 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b10 article-title: A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2012.654783 – volume: 19 start-page: 505 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b87 article-title: Quantification of remodeling parameter sensitivity - assessed by a computer simulation model publication-title: Bone doi: 10.1016/S8756-3282(96)00231-1 – year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b16 article-title: 3D-modeling of sternal chondrosarcomas from angio-CT-scan: Clinical application and surgical perspectives publication-title: Ann. 3D Print. Med. – volume: 143 start-page: 100 year: 1990 ident: 10.1016/j.euromechsol.2021.104409_b70 article-title: Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production publication-title: J. Cell. Physiol. doi: 10.1002/jcp.1041430113 – volume: 40 start-page: 2831 issue: 13 year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b51 article-title: Incorporating uncertainty in mechanical properties for finite element-based evaluation of bone mechanics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.03.013 – volume: 15 start-page: 9 year: 2016 ident: 10.1016/j.euromechsol.2021.104409_b79 article-title: Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0704-y – volume: 12 start-page: 571 issue: 2 year: 2019 ident: 10.1016/j.euromechsol.2021.104409_b84 article-title: Invesalius navigator, a free and open-source software for navigated transcranial magnetic stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2018.12.894 – volume: 62 start-page: 163 issue: 1 year: 2000 ident: 10.1016/j.euromechsol.2021.104409_b50 article-title: Parathyroid hormone temporal effects on bone formation and resorption publication-title: Bull. Math. Biol. doi: 10.1006/bulm.1999.0146 – year: 2003 ident: 10.1016/j.euromechsol.2021.104409_b11 – volume: 11 start-page: 2045 issue: 1 year: 2021 ident: 10.1016/j.euromechsol.2021.104409_b4 article-title: On the effect of antiresorptive drugs on the bone remodeling of the mandible after dental implantation: a mathematical model publication-title: Sci. Rep. doi: 10.1038/s41598-021-82502-y – volume: 38 start-page: 904 year: 2016 ident: 10.1016/j.euromechsol.2021.104409_b58 article-title: Influence of different mechanical stimuli in a multi-scale mechanobiological isotropic model for bone remodelling publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2016.04.018 – start-page: 373 year: 2014 ident: 10.1016/j.euromechsol.2021.104409_b17 – volume: 107 start-page: 208 year: 2018 ident: 10.1016/j.euromechsol.2021.104409_b63 article-title: A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation publication-title: Bone doi: 10.1016/j.bone.2017.11.009 – volume: 30 start-page: 603 year: 1997 ident: 10.1016/j.euromechsol.2021.104409_b44 article-title: Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations publication-title: J. Biomech. doi: 10.1016/S0021-9290(96)00189-3 – volume: 40 start-page: 2982 issue: 13 year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b80 article-title: Subject-specific finite element models can accurately predict strain levels in long bones publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.02.010 – volume: 19 start-page: 2499 year: 2020 ident: 10.1016/j.euromechsol.2021.104409_b5 article-title: A mechano-chemo-biological model for bone remodeling with a new mechano-chemo-transduction approach publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-020-01353-0 – volume: 3 start-page: 7 issue: 10 year: 2006 ident: 10.1016/j.euromechsol.2021.104409_b12 article-title: Mechanosensation and transduction in osteocytes publication-title: BoneKEy Osteovis. doi: 10.1138/20060233 – volume: 28 start-page: 449 year: 1995 ident: 10.1016/j.euromechsol.2021.104409_b43 article-title: Numerical instabilities in bone remodeling simulations: The advantages of a node-based finite element approach publication-title: J. Biomech. doi: 10.1016/0021-9290(94)00087-K – volume: 40 start-page: 1381 issue: 6 year: 2007 ident: 10.1016/j.euromechsol.2021.104409_b57 article-title: Bone remodelling algorithms incorporating both strain and microdamage stimuli publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.05.007 – volume: 274 start-page: 36 issue: 1 year: 2011 ident: 10.1016/j.euromechsol.2021.104409_b71 article-title: Modeling of biological doses and mechanical effects on bone transduction publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2011.01.003 – volume: 254 start-page: 181 year: 2013 ident: 10.1016/j.euromechsol.2021.104409_b78 article-title: Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2012.10.015 – volume: 473 start-page: 67 year: 2019 ident: 10.1016/j.euromechsol.2021.104409_b88 article-title: Computational model of the dual action of PTH - application to a rat model of osteoporosis publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2019.04.020 – volume: 10 start-page: 118 year: 2012 ident: 10.1016/j.euromechsol.2021.104409_b77 article-title: Osteocyte signaling in bone publication-title: Curr. Osteoporos. Rep. doi: 10.1007/s11914-012-0105-4 |
SSID | ssj0002021 |
Score | 2.3148615 |
Snippet | Bone remodeling models use experimental and theoretical parameters to simulate bone tissue behavior. The physical parameters are computed satisfactorily using... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104409 |
SubjectTerms | Computerized tomography Finite element method Individualization of bone remodeling model Kriging Numerical uniqueness of solution |
Title | Optimum parameters for each subject in bone remodeling models: A new methodology using surrogate and clinical data |
URI | https://dx.doi.org/10.1016/j.euromechsol.2021.104409 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KBfHiW6yPMoLXtM3uNsmKl1IsVaEetNBbyGY3WrFpSdqrv92dTaIVBAVvIWRgmX3Mt5NvviHkUlApIuoJRws3ccxOpI6k1HW0q2ggDULnsWVbjLzhmN9NupMa6Ve1MEirLM_-4ky3p3X5pl16s72YTtuPWPNpwHZAUUbIs_d2zn1c5a33L5qHudzbrnmoOopfb5KLL44X6l_MdPxiprmFH-IfT47cxJ9i1FrcGeyS7RIwQq8Y0x6p6XSf7JTgEcqtmR-Q7MFs_tlqBijmPUOSSw4GkAKyJSFfScy3wDQFOU81ZNp2wDFhC-xDfgU9MAAbiobSNtUOSIl_NqZZNsdcG0SpgqqQEpBZekjGg5un_tApGyo4MWXe0okCyRX1hZSx0CoKhIwV04J5ykeRbh7oJOGuDvxEuEJ2DBSJVaIZp1HEmFYddkTqqRnlMQEDK5VyI6E8zblQKCnDu4HHzbQxFne6DRJULgzjUm0cm168hRWt7DVc836I3g8L7zcI_TRdFJIbfzG6ruYp_LZ-QhMafjc_-Z_5KdmiWBZhUzNnpL7MVvrcgJWlbNrV2CQbvdv74egDHQDthw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5kgvrib_G3J_hatyZZ14gvQ5Spcz6o4FtpmlQnrkq7_f_m2lQnCAq-ldKDcEnuvqTffQdwJJmSMQukZ6SfenYnMk8x5nvG1yxUFqGLpGRbDILeg7h6bD_OwFldC0O0Shf7q5heRmv3pum82XwfDpt3VPNpwXbISEYooHP7LKlTtRsw27287g0-A7I935eN80h4lAzm4PCL5kUSGCOTPNuZPqYP6aenIHriT2lqKvVcLMOiw4zYrYa1AjMmW4Ulhx_R7c5iDfJbu_9HkxGSnveIeC4FWkyKRJjEYqLoygWHGaq3zGBuyiY4NnNh-VCcYBctxsaqp3R5247Ein-ypnn-RtdtGGca61pKJHLpOjxcnN-f9TzXU8FLGA_GXhwqoVlHKpVIo-NQqkRzI3mgO6TTLUKTpsI3YSeVvlQti0YSnRouWBxzbnSLb0Ajs6PcBLTIUms_ljowQkhNqjKiHQbCzhznSau9BWHtwihxguPU9-I1qpllL9GU9yPyflR5fwvYp-l7pbrxF6PTep6ib0sostnhd_Pt_5kfwHzv_qYf9S8H1zuwwKhKoryp2YXGOJ-YPYtdxmrfrc0POLTwOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimum+parameters+for+each+subject+in+bone+remodeling+models%3A+A+new+methodology+using+surrogate+and+clinical+data&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Dicati%2C+Gabriela+Wessling+Oening&rft.au=Gubaua%2C+Jos%C3%A9+Eduardo&rft.au=Pereira%2C+Juc%C3%A9lio+Tom%C3%A1s&rft.date=2022-01-01&rft.issn=0997-7538&rft.volume=91&rft.spage=104409&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104409&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_euromechsol_2021_104409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon |