Structural vibration control of the curved bridge based on the combined effects of TLMD and LMD

The abnormal vibration of the bridges, particularly those with curved bridges, poses a significant threat to structural safety due to the complex dynamics of vehicle-bridge coupling. This coupling emerges from the generation of centripetal and eccentric forces as moving loads traverse the bridge, le...

Full description

Saved in:
Bibliographic Details
Published inAdvances in structural engineering Vol. 28; no. 10; pp. 1910 - 1922
Main Authors Xia, Qi, Chen, Ze, Yang, Lin, Hou, Jie, Zhang, Jin-bei, Wang, Zheng-xing, Wu, Wang-lin, Ye, Zhi-wei, Tan, Hai-shan
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.07.2025
Subjects
Online AccessGet full text
ISSN1369-4332
2048-4011
DOI10.1177/13694332251321206

Cover

Loading…
Abstract The abnormal vibration of the bridges, particularly those with curved bridges, poses a significant threat to structural safety due to the complex dynamics of vehicle-bridge coupling. This coupling emerges from the generation of centripetal and eccentric forces as moving loads traverse the bridge, leading to intricate interactions that induce unusual vibrations within the structure. The Nanping Curved Bridge (NPCB) in Shenzhen City secrves as a case study, where vertical vibration acceleration can reach up to 1200 mm/s2. The primary research involves: (1) Conducting measurements and analyses of the structural dynamic characteristics both before and after the installation of dampers. (2) Analyzing field test data to reveal that the excitation effects on bridge structures vary depending on the type of vehicle (trucks, cars) and environmental factors. Specific frequency bands for vibration reduction were identified by incorporating finite element analysis results. (3) Innovatively, a combined control strategy of Tuned Liquid-Mass Dampers (TLMDs) and Lever Mass Dampers (LMDs) is proposed to address the challenge of controlling NPCB due to its wide frequency domain distribution. (4) After the installation of the dampers, the corresponding vibration tests were conducted. The analysis results indicated that TLMD and LMD combined operation could reduce bridge vibration by 37.7% and double the damping ratio.
AbstractList The abnormal vibration of the bridges, particularly those with curved bridges, poses a significant threat to structural safety due to the complex dynamics of vehicle-bridge coupling. This coupling emerges from the generation of centripetal and eccentric forces as moving loads traverse the bridge, leading to intricate interactions that induce unusual vibrations within the structure. The Nanping Curved Bridge (NPCB) in Shenzhen City secrves as a case study, where vertical vibration acceleration can reach up to 1200 mm/s 2 . The primary research involves: (1) Conducting measurements and analyses of the structural dynamic characteristics both before and after the installation of dampers. (2) Analyzing field test data to reveal that the excitation effects on bridge structures vary depending on the type of vehicle (trucks, cars) and environmental factors. Specific frequency bands for vibration reduction were identified by incorporating finite element analysis results. (3) Innovatively, a combined control strategy of Tuned Liquid-Mass Dampers (TLMDs) and Lever Mass Dampers (LMDs) is proposed to address the challenge of controlling NPCB due to its wide frequency domain distribution. (4) After the installation of the dampers, the corresponding vibration tests were conducted. The analysis results indicated that TLMD and LMD combined operation could reduce bridge vibration by 37.7% and double the damping ratio.
The abnormal vibration of the bridges, particularly those with curved bridges, poses a significant threat to structural safety due to the complex dynamics of vehicle-bridge coupling. This coupling emerges from the generation of centripetal and eccentric forces as moving loads traverse the bridge, leading to intricate interactions that induce unusual vibrations within the structure. The Nanping Curved Bridge (NPCB) in Shenzhen City secrves as a case study, where vertical vibration acceleration can reach up to 1200 mm/s2. The primary research involves: (1) Conducting measurements and analyses of the structural dynamic characteristics both before and after the installation of dampers. (2) Analyzing field test data to reveal that the excitation effects on bridge structures vary depending on the type of vehicle (trucks, cars) and environmental factors. Specific frequency bands for vibration reduction were identified by incorporating finite element analysis results. (3) Innovatively, a combined control strategy of Tuned Liquid-Mass Dampers (TLMDs) and Lever Mass Dampers (LMDs) is proposed to address the challenge of controlling NPCB due to its wide frequency domain distribution. (4) After the installation of the dampers, the corresponding vibration tests were conducted. The analysis results indicated that TLMD and LMD combined operation could reduce bridge vibration by 37.7% and double the damping ratio.
Author Xia, Qi
Wu, Wang-lin
Ye, Zhi-wei
Zhang, Jin-bei
Yang, Lin
Tan, Hai-shan
Chen, Ze
Hou, Jie
Wang, Zheng-xing
Author_xml – sequence: 1
  givenname: Qi
  surname: Xia
  fullname: Xia, Qi
  organization: , Shenzhen, China
– sequence: 2
  givenname: Ze
  surname: Chen
  fullname: Chen, Ze
  organization: , Shenzhen, China
– sequence: 3
  givenname: Lin
  surname: Yang
  fullname: Yang, Lin
  organization: , Shenzhen, China
– sequence: 4
  givenname: Jie
  surname: Hou
  fullname: Hou, Jie
  organization: , Shenzhen, China
– sequence: 5
  givenname: Jin-bei
  surname: Zhang
  fullname: Zhang, Jin-bei
  organization: , Shenzhen, China
– sequence: 6
  givenname: Zheng-xing
  surname: Wang
  fullname: Wang, Zheng-xing
  email: wanglin.wu@connect.polyu.hk
  organization: , Shenzhen, China
– sequence: 7
  givenname: Wang-lin
  orcidid: 0009-0008-2582-3317
  surname: Wu
  fullname: Wu, Wang-lin
  email: wanglin.wu@connect.polyu.hk
  organization: , Shenzhen, China
– sequence: 8
  givenname: Zhi-wei
  surname: Ye
  fullname: Ye, Zhi-wei
  organization: , Shenzhen, China
– sequence: 9
  givenname: Hai-shan
  surname: Tan
  fullname: Tan, Hai-shan
  organization: , Shenzhen, China
BookMark eNp9kM1OwzAQhC1UJNrCA3DzC6R4bcdJjqj8SkEcKOfIvyVVayPbqcTbk1BuSJxGszvfajULNPPBW4SugawAquoGmGg4Y5SWwChQIs7QnBJeF5wAzNB82hdT4AItUtoRArSqYI66txwHnYco9_jYqyhzHzzWwecY9jg4nD8s1kM8WoNV7M3WYiXTaMbUzyocVO9Hb52zOqcJ2bQvd1h6g0e9ROdO7pO9-tUlen-436yfivb18Xl92xaaMpGLxhFDSiU0K60xVjhwgqpG2bKulFDTpOaGO9nwqqYAmtWuBJCiMY5zXbIlgtNdHUNK0bruM_YHGb86IN3UUPenoZFZnZgkt7bbhSH68cV_gG_Sk2fh
Cites_doi 10.1002/stc.3016
10.1002/stc.471
10.1002/stc.190
10.1155/2014/506578
10.1016/j.engstruct.2018.06.099
10.1002/stc.176
10.1002/stc.3121
10.1177/13694332241268170
10.1177/13694332221132316
10.1061/(ASCE)BE.1943-5592.0001256
10.1177/13694332241237572
10.1016/j.jsv.2004.01.019
10.1177/1369433220919079
10.1061/(ASCE)BE.1943-5592.0000887
10.1177/1369433220908031
10.1177/1077546307082189
10.1680/jbren.21.00090
10.1016/j.ymssp.2024.111702
10.1016/j.engstruct.2021.112743
10.1155/2024/2161065
10.1061/(ASCE)1084-0702(2005)10:3(312)
10.1177/13694332241269259
10.1177/13694332211033955
10.1061/(ASCE)BE.1943-5592.0001510
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID AAYXX
CITATION
DOI 10.1177/13694332251321206
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4011
EndPage 1922
ExternalDocumentID 10_1177_13694332251321206
10.1177_13694332251321206
GrantInformation_xml – fundername: Jiangsu Provincial Double-Innovation Doctoral Program
  grantid: JSSCBS20210129
– fundername: National Natural Science Foundation of China
  grantid: 52208305
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20220852
  funderid: https://doi.org/10.13039/501100004608
GroupedDBID -TM
-TN
0R~
23M
4.4
54M
5GY
6KP
AABPG
AADUE
AAGGD
AAGLT
AAJPV
AANSI
AAOTM
AAOVH
AAPEO
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABDBF
ABDWY
ABEIX
ABFNE
ABFWQ
ABGWC
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUBZ
ABUJY
ABYTW
ACDXX
ACGBL
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADEBD
ADEIA
ADGDL
ADMLS
ADRRZ
ADTBJ
ADUKL
ADVBO
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFGYO
AFKRG
AFMOU
AFQAA
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AIZZC
AJEFB
AJGYC
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CBRKF
CFDXU
CKLRP
CORYS
CS3
DH.
DOPDO
DV7
EBS
EJD
ESX
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MV1
O9-
Q1R
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAEJI
AAPII
AAYXX
ABCJG
AJHME
AJVBE
CITATION
ID FETCH-LOGICAL-c236t-9f0d05b6c35edde6f1f62b9be587b6bde6f84d4fa9478211c38f511a69df44c53
ISSN 1369-4332
IngestDate Thu Aug 14 00:12:58 EDT 2025
Sun Jun 22 05:40:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords TLMD
curved bridge
LMD
Vibration control
vehicle-bridge coupling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-9f0d05b6c35edde6f1f62b9be587b6bde6f84d4fa9478211c38f511a69df44c53
ORCID 0009-0008-2582-3317
PageCount 13
ParticipantIDs crossref_primary_10_1177_13694332251321206
sage_journals_10_1177_13694332251321206
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Advances in structural engineering
PublicationYear 2025
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Li, Su, Fan 2005; 10
Živanović, Pavic, Reynolds 2005; 279
Wang, Nagarajaiah, Shi 2021; 244
Zhou, Xu 2007; 14
Ghosh, Basu 2007; 14
Wang, Wang, Chai 2015; 45
Xu, Dai, Bi 2022; 29
Javanbakht, Cheng, Ghrib 2022; 29
Zhou, Liu, Li 2020; 23
Sun, Zou, Ying 2020; 25
Huang, Wang, Teng 2024; 27
Sun, Chen, Huang 2022; 25
Cao, Jiang 2021; 24
Wang, Chai, Peng 2024; 2024
Kim, Kimura, Sugiyama 2024; 27
Yin, Liu, Song 2018; 23
Shi, Cai 2008; 14
Tang, Zhu 2023; 2023
Chen, Wang, Wang 2015; 45
Casado, Díaz, Sebastián 2013; 20
Lavasani, Alizadeh, Doroudi 2020; 23
Wen, Hua, Chen 2016; 20
Xia, Zhou, Yang 2024; 27
Zhang, Xiang, Cheng 2024; 0
Wang, Tao, Cheng 2014; 2014
Wang, Wang, Hua 2018; 173
Du, Liu, Zhou 2024; 24
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
Wang ZX (e_1_3_4_18_1) 2015; 45
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
Zhang EQ (e_1_3_4_26_1) 2024; 0
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
Tang QC (e_1_3_4_16_1) 2023; 2023
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_29_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_11_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
Chen WX (e_1_3_4_4_1) 2015; 45
e_1_3_4_19_1
References_xml – volume: 45
  start-page: 13
  year: 2015
  end-page: 19
  article-title: Research advancement of damping techniques for stay cables of long span cable-stayed bridges
  publication-title: Bridge Construction
– volume: 279
  start-page: 1
  year: 2005
  end-page: 74
  article-title: Vibration serviceability of footbridges under human induced excitation: a literature review
  publication-title: Journal of Sound and Vibration
– volume: 2014
  start-page: 506578
  issue: 1
  year: 2014
  article-title: Simulation study on train-induced vibration control of a long-span steel truss girder bridge by tuned mass dampers
  publication-title: Mathematical Problems in Engineering
– volume: 10
  start-page: 312
  year: 2005
  end-page: 320
  article-title: Vibration control of railway bridges under high-speed trains using multiple tuned mass dampers
  publication-title: Journal of Bridge Engineering
– volume: 0
  start-page: 1
  issue: 0
  year: 2024
  end-page: 17
  article-title: Intelligent vibration control of tensile cable based on deep reinforcement learning
  publication-title: Advances in Structural Engineering
– volume: 25
  start-page: 3368
  issue: 16
  year: 2022
  end-page: 3404
  article-title: Stay cable vibration mitigation: a review
  publication-title: Advances in Structural Engineering
– volume: 27
  start-page: 819
  issue: 5
  year: 2024
  end-page: 834
  article-title: Bearing condition assessment of a simply elastic supported beam based on impact vibration testing
  publication-title: Advances in Structural Engineering
– volume: 14
  start-page: 681
  year: 2007
  end-page: 692
  article-title: A closed-form optimal tuning criterion for TMD in damped structures
  publication-title: Structural Control and Health Monitoring
– volume: 27
  start-page: 2790
  year: 2024
  end-page: 2802
  article-title: Ride comfort and impact factor of a seven-span continuous cable-stayed bridge
  publication-title: Advances in Structural Engineering
– volume: 23
  start-page: 0001256
  issue: 7
  year: 2018
  article-title: Suppression of bridge vibration induced by moving vehicles using pounding tuned mass dampers
  publication-title: Journal of Bridge Engineering
– volume: 2023
  start-page: 6696148
  issue: 1
  year: 2023
  article-title: Vibration control of the steel-concrete composite box girder bridge with slip and shear-lag effects by MTMDs under the train-bridge interaction
  publication-title: Structural Control and Health Monitoring
– volume: 20
  start-page: 70
  year: 2013
  end-page: 87
  article-title: Implementation of passive and active vibration control on an in-service footbridge
  publication-title: Structural Control and Health Monitoring
– volume: 2024
  start-page: 111702
  year: 2024
  article-title: A novel tuned liquid mass damper for low-frequency vertical vibration control: model experiments and field tests
  publication-title: Mechanical Systems and Signal Processing
– volume: 24
  start-page: 3550
  issue: 15
  year: 2021
  end-page: 3563
  article-title: Shape memory alloy-spring damper for seismic control and its application to bridge with laminated rubber bearings
  publication-title: Advances in Structural Engineering
– volume: 45
  start-page: 7
  year: 2015
  end-page: 11
  article-title: Comparison and selection of damping schemes for very long stay cables of main ship channel bridge of Hutong Changjiang river bridge
  publication-title: Bridge Construction
– volume: 25
  start-page: 0001510
  issue: 1
  year: 2020
  article-title: Tuned mass dampers for wind-induced vibration control of Chongqi bridge
  publication-title: Journal of Bridge Engineering
– volume: 244
  start-page: 112743
  year: 2021
  article-title: Semi-active control of walking-induced vibrations in bridges using adaptive tuned mass damper considering human-structure-interaction
  publication-title: Engineering Structures
– volume: 23
  start-page: 2086
  issue: 10
  year: 2020
  end-page: 2096
  article-title: Experimental study on seismic control of towers in cable-ported bridges by incorporating fluid viscous dampers between sub-towers
  publication-title: Advances in Structural Engineering
– volume: 14
  start-page: 1037
  issue: 7
  year: 2008
  end-page: 1054
  article-title: Suppression of vehicle-induced bridge vibration using tuned mass damper
  publication-title: Journal of Vibration and Control
– volume: 23
  start-page: 2626
  issue: 12
  year: 2020
  end-page: 2641
  article-title: Vibration control of suspension bridge due to vertical ground motions
  publication-title: Advances in Structural Engineering
– volume: 14
  start-page: 1013
  issue: 7
  year: 2007
  end-page: 1033
  article-title: Wind–rain-induced vibration and control of stay cables in a cable-stayed bridge
  publication-title: Structural Control and Health Monitoring
– volume: 24
  start-page: 2161065
  year: 2024
  article-title: Semiactive control of nonlinear parametric vibration of super-long stay cable in cable-stayed bridge installed with magnetorheological fluid damper
  publication-title: Structural Control and Health Monitoring
– volume: 27
  start-page: 2391
  year: 2024
  end-page: 2408
  article-title: Coupled vibration of low-medium-speed maglev vehicle-guideway system on isolated bridge with lead rubber bearings
  publication-title: Advances in Structural Engineering
– volume: 29
  start-page: e3121
  issue: 12
  year: 2022
  article-title: Semi-active adaptive control of stay cable vibrations using MR dampers
  publication-title: Structural Control and Health Monitoring
– volume: 20
  start-page: 04016028
  issue: 7
  year: 2016
  article-title: Control of human-induced vibrations of a curved cable-stayed bridge: design, implementation, and field validation
  publication-title: Journal of Bridge Engineering
– volume: 29
  start-page: e3016
  issue: 10
  year: 2022
  article-title: Closed-form design formulas of TMDI for suppressing vortex-induced vibration of bridge structures
  publication-title: Structural Control and Health Monitoring
– volume: 173
  start-page: 61
  issue: 15
  year: 2018
  end-page: 75
  article-title: Vibration control of vortex-induced vibrations of a bridge deck by a single-side pounding tuned mass damper
  publication-title: Engineering Structures
– ident: e_1_3_4_24_1
  doi: 10.1002/stc.3016
– ident: e_1_3_4_3_1
  doi: 10.1002/stc.471
– volume: 0
  start-page: 1
  issue: 0
  year: 2024
  ident: e_1_3_4_26_1
  article-title: Intelligent vibration control of tensile cable based on deep reinforcement learning
  publication-title: Advances in Structural Engineering
– ident: e_1_3_4_27_1
  doi: 10.1002/stc.190
– ident: e_1_3_4_17_1
  doi: 10.1155/2014/506578
– ident: e_1_3_4_19_1
  doi: 10.1016/j.engstruct.2018.06.099
– ident: e_1_3_4_6_1
  doi: 10.1002/stc.176
– ident: e_1_3_4_8_1
  doi: 10.1002/stc.3121
– ident: e_1_3_4_7_1
  doi: 10.1177/13694332241268170
– ident: e_1_3_4_15_1
  doi: 10.1177/13694332221132316
– ident: e_1_3_4_25_1
  doi: 10.1061/(ASCE)BE.1943-5592.0001256
– ident: e_1_3_4_23_1
  doi: 10.1177/13694332241237572
– ident: e_1_3_4_29_1
  doi: 10.1016/j.jsv.2004.01.019
– ident: e_1_3_4_10_1
  doi: 10.1177/1369433220919079
– ident: e_1_3_4_22_1
  doi: 10.1061/(ASCE)BE.1943-5592.0000887
– ident: e_1_3_4_28_1
  doi: 10.1177/1369433220908031
– ident: e_1_3_4_13_1
  doi: 10.1177/1077546307082189
– ident: e_1_3_4_12_1
  doi: 10.1680/jbren.21.00090
– ident: e_1_3_4_21_1
  doi: 10.1016/j.ymssp.2024.111702
– volume: 45
  start-page: 7
  year: 2015
  ident: e_1_3_4_4_1
  article-title: Comparison and selection of damping schemes for very long stay cables of main ship channel bridge of Hutong Changjiang river bridge
  publication-title: Bridge Construction
– ident: e_1_3_4_20_1
  doi: 10.1016/j.engstruct.2021.112743
– ident: e_1_3_4_5_1
  doi: 10.1155/2024/2161065
– ident: e_1_3_4_11_1
  doi: 10.1061/(ASCE)1084-0702(2005)10:3(312)
– volume: 45
  start-page: 13
  year: 2015
  ident: e_1_3_4_18_1
  article-title: Research advancement of damping techniques for stay cables of long span cable-stayed bridges
  publication-title: Bridge Construction
– ident: e_1_3_4_9_1
  doi: 10.1177/13694332241269259
– ident: e_1_3_4_2_1
  doi: 10.1177/13694332211033955
– ident: e_1_3_4_14_1
  doi: 10.1061/(ASCE)BE.1943-5592.0001510
– volume: 2023
  start-page: 6696148
  issue: 1
  year: 2023
  ident: e_1_3_4_16_1
  article-title: Vibration control of the steel-concrete composite box girder bridge with slip and shear-lag effects by MTMDs under the train-bridge interaction
  publication-title: Structural Control and Health Monitoring
SSID ssj0012771
Score 2.3543527
Snippet The abnormal vibration of the bridges, particularly those with curved bridges, poses a significant threat to structural safety due to the complex dynamics of...
SourceID crossref
sage
SourceType Index Database
Publisher
StartPage 1910
Title Structural vibration control of the curved bridge based on the combined effects of TLMD and LMD
URI https://journals.sagepub.com/doi/full/10.1177/13694332251321206
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZetkOpe021q-hw2Aw8LBlWbaOSbMSRlsYSyHbxUiyBLkkY0166J_Qv7pPH7G1JYW2Fzt-ebaI3s9P7-l9BKFPvOSSMKESJmkKDopoEjDqTUK4IrkphGCZrR2-vGLja_p9Wkx7vfsoa2m1lF_V3da6kpdIFWggV1sl-wzJtg8FAnwG-cIRJAzHJ8n4p2v-6hpn3Fq318lynXwegv9q9ffWWpm-MMsuWk0IENh0cvCL4TpK6phcXI5cQAHOseE68LkCLnv2phtWd-0M16Kb-vTbH7Muc8Crtt8thn6FTeqLWQvN8WLlADXT8T4EKdqc1TgAtnWrMcsZt5VZXutqR7P9ggEaQdEGTUyqGHFppFfBq0yjNRrMUrJd_7sItB3Qjge2Ww5Lc_pfr-3g_DjueoP3Fdoh4HKQPtoZDEfD8zYmBdRQxed_TYiR2_ZdGw_5x8qJUgSd1TLZQ7vB3cADj5191NPzA_QmakL5FtUdinCLIhxQhBcGA1SwRxH2KMIORRi43FcBRTigyN5iUYQBRRjO79D1-bfJ2TgJf7uRwOvJlgk3aZMWkqm80LD4MZMZRiSXuqhKyaSlVLShRnAK5mWWqbwyYLYLxhtDqSry96g_X8z1B4SrVCgjGRdlmVNWSE6NFmnJlIGbGFOH6Mt6muo_vrtKnYUG9Btzeog-24mswwt48zjn0ZM5j9HrDssnqA8Trk_BylzKj0H8D1bGcwQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+vibration+control+of+the+curved+bridge+based+on+the+combined+effects+of+TLMD+and+LMD&rft.jtitle=Advances+in+structural+engineering&rft.au=Xia%2C+Qi&rft.au=Chen%2C+Ze&rft.au=Yang%2C+Lin&rft.au=Hou%2C+Jie&rft.date=2025-07-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=28&rft.issue=10&rft.spage=1910&rft.epage=1922&rft_id=info:doi/10.1177%2F13694332251321206&rft.externalDocID=10.1177_13694332251321206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon