Effects of redox potential on chalcopyrite leaching: An overview

Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissoluti...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 172; p. 107135
Main Authors Tian, Zuyuan, Li, Haodong, Wei, Qian, Qin, Wenqing, Yang, Congren
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN0892-6875
1872-9444
DOI10.1016/j.mineng.2021.107135

Cover

Loading…
Abstract Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissolution kinetics of chalcopyrite in hydrometallurgy are low due to its high lattice energy. Redox potential has a significant role as chalcopyrite dissolves, and the possibility of controlling redox potential to promote chalcopyrite leaching cannot be ignored. In this article, the impact of redox potential on chemical leaching and bioleaching of chalcopyrite, reported in previous publications, are summarized. The effects of ferrous ions, ferric ions and copper ions in chalcopyrite leaching system are discussed, and the leaching behavior of chalcopyrite is explained by the band theory.
AbstractList Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissolution kinetics of chalcopyrite in hydrometallurgy are low due to its high lattice energy. Redox potential has a significant role as chalcopyrite dissolves, and the possibility of controlling redox potential to promote chalcopyrite leaching cannot be ignored. In this article, the impact of redox potential on chemical leaching and bioleaching of chalcopyrite, reported in previous publications, are summarized. The effects of ferrous ions, ferric ions and copper ions in chalcopyrite leaching system are discussed, and the leaching behavior of chalcopyrite is explained by the band theory.
ArticleNumber 107135
Author Yang, Congren
Tian, Zuyuan
Wei, Qian
Qin, Wenqing
Li, Haodong
Author_xml – sequence: 1
  givenname: Zuyuan
  surname: Tian
  fullname: Tian, Zuyuan
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Haodong
  surname: Li
  fullname: Li, Haodong
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Qian
  surname: Wei
  fullname: Wei, Qian
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Wenqing
  surname: Qin
  fullname: Qin, Wenqing
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Congren
  orcidid: 0000-0001-7040-2302
  surname: Yang
  fullname: Yang, Congren
  email: yangcongren@csu.edu.cn
  organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
BookMark eNqFkM1KAzEYRYNUsFbfwEVeYGqSSTKZLsRS6g8U3Og6ZDJf2pRpUjKh2rd3Sl250NWFC-fCPddoFGIAhO4omVJC5f12uvMBwnrKCKNDVdFSXKAxVRUras75CI2JqlkhVSWu0HXfbwkholL1GD0unQObexwdTtDGL7yPGUL2psMxYLsxnY37Y_IZcAfGbnxYz_A84HiAdPDweYMunel6uP3JCfp4Wr4vXorV2_PrYr4qLCtlLurGKVFS2TSqAcG5lC1nvBYSGsIIYdwwSRXwugRROskc1IzYphWGcqsqUk7Q7LxrU-z7BE5bn032MeRkfKcp0ScXeqvPLvTJhT67GGD-C94nvzPp-B_2cMZgODacTbq3HoKF1qdBmm6j_3vgG9PRfD0
CitedBy_id crossref_primary_10_1016_j_jiec_2021_11_055
crossref_primary_10_1016_j_mineng_2023_108409
crossref_primary_10_1007_s40831_025_01041_2
crossref_primary_10_53360_2788_7995_2024_3_15__47
crossref_primary_10_1016_j_hydromet_2023_106245
crossref_primary_10_1021_acsomega_3c07218
crossref_primary_10_1016_j_mineng_2022_107677
crossref_primary_10_1016_j_mineng_2024_109043
crossref_primary_10_1016_j_molliq_2024_125756
crossref_primary_10_1002_bit_28945
crossref_primary_10_3390_separations10070375
crossref_primary_10_1016_j_mineng_2024_108673
crossref_primary_10_1080_08827508_2024_2367423
crossref_primary_10_1016_j_mineng_2023_108530
crossref_primary_10_1002_ejic_202400704
crossref_primary_10_1016_S1003_6326_24_66519_2
crossref_primary_10_3390_pr12010013
crossref_primary_10_1016_j_chemosphere_2022_136972
crossref_primary_10_1016_S1003_6326_23_66231_4
crossref_primary_10_1039_D3NJ01998E
crossref_primary_10_1016_j_apgeochem_2024_105984
crossref_primary_10_3390_mining4020020
crossref_primary_10_1007_s11837_025_07265_7
crossref_primary_10_1016_j_jece_2022_108516
crossref_primary_10_1016_S1003_6326_24_66657_4
crossref_primary_10_1080_08827508_2022_2155153
crossref_primary_10_3390_met11121969
crossref_primary_10_1016_j_mineng_2023_108417
crossref_primary_10_1177_25726641251316396
crossref_primary_10_1016_j_mineng_2022_107686
crossref_primary_10_54097_hset_v17i_2599
crossref_primary_10_1016_j_mineng_2024_108762
crossref_primary_10_1016_j_mineng_2024_109014
crossref_primary_10_1016_j_wasman_2023_08_026
crossref_primary_10_1016_j_mineng_2022_107594
crossref_primary_10_1016_j_jclepro_2025_145352
crossref_primary_10_1016_j_psep_2025_106797
crossref_primary_10_1016_j_gca_2023_11_008
crossref_primary_10_1016_j_arabjc_2023_104905
crossref_primary_10_1089_ees_2022_0186
Cites_doi 10.1016/j.electacta.2013.04.051
10.1016/j.hydromet.2011.11.003
10.1016/0304-386X(88)90003-5
10.1016/0304-386X(95)00041-E
10.1016/j.mineng.2014.08.021
10.1016/j.minpro.2009.11.005
10.1016/j.hydromet.2007.11.005
10.2473/shigentosozai.120.600
10.1016/S0169-4332(02)01284-9
10.1016/S0304-386X(00)00173-0
10.1016/S0032-9592(02)00169-3
10.1016/j.mineng.2016.10.003
10.1016/j.hydromet.2015.10.014
10.1016/S0301-7516(00)00045-4
10.1016/j.biortech.2012.11.050
10.1016/j.hydromet.2010.03.003
10.4028/www.scientific.net/AMR.1130.338
10.1016/j.hydromet.2008.08.003
10.1128/aem.36.3.523-525.1978
10.1016/j.colsurfb.2012.01.022
10.1016/S1003-6326(14)63269-6
10.1107/S0567740873002943
10.32390/ksmer.2019.56.4.326
10.1007/s00253-012-4099-8
10.1002/bit.10184
10.1016/j.hydromet.2019.105192
10.1016/j.gca.2006.06.1555
10.1016/0301-7516(94)00040-7
10.1016/j.hydromet.2009.06.004
10.2473/shigentosozai.117.215
10.1016/S0304-386X(01)00206-7
10.1016/j.hydromet.2014.11.009
10.1016/j.mineng.2007.11.005
10.1016/j.mineng.2007.10.018
10.1016/S0304-386X(01)00228-6
10.1016/S0304-386X(00)00181-X
10.1016/j.hydromet.2006.05.001
10.1007/BF02667506
10.1016/0304-386X(90)90002-J
10.1128/AEM.65.1.319-321.1999
10.1016/j.hydromet.2013.09.013
10.1016/j.hydromet.2008.04.015
10.1021/acs.iecr.7b02051
10.1016/j.mineng.2017.03.013
10.1016/j.hydromet.2020.105299
10.1016/j.hydromet.2004.01.003
10.1016/S0167-577X(00)00199-3
10.1016/j.hydromet.2006.03.036
10.1016/S0304-386X(00)00155-9
10.1016/S1003-6326(15)63897-3
10.1016/0016-7037(95)00026-V
10.1016/j.hydromet.2012.07.013
10.1016/0892-6875(96)00089-1
10.1016/S0304-386X(97)00032-7
10.1016/j.biortech.2010.11.090
10.1016/S0304-386X(00)00089-X
10.1016/j.mineng.2019.03.014
10.1016/S1003-6326(15)64062-6
10.1016/S0960-8974(99)00016-9
10.1016/j.hydromet.2010.03.004
10.1016/j.hydromet.2011.01.011
10.1016/S1003-6326(13)62535-2
10.1016/j.cis.2013.03.004
10.1073/pnas.3.11.644
10.1016/j.hydromet.2006.03.039
10.1016/j.minpro.2017.04.002
10.1016/j.electacta.2012.07.119
10.1016/j.mineng.2016.09.008
10.1016/j.hydromet.2010.02.024
10.1016/j.mineng.2016.07.019
10.1007/BF02658429
10.1016/j.hydromet.2012.06.006
10.1016/j.minpro.2014.08.008
10.1016/S0892-6875(01)00208-4
10.1016/j.hydromet.2007.12.005
10.1016/j.hydromet.2013.12.003
10.1128/aem.58.1.85-92.1992
10.1179/1879139515Y.0000000007
10.1007/s11771-018-3922-5
10.1016/j.hydromet.2010.10.012
10.1016/S1003-6326(10)60495-5
10.1016/j.gca.2011.07.003
10.1016/j.minpro.2015.02.008
10.1007/s11771-020-4371-5
10.1071/CH9810013
10.1016/S1003-6326(15)63605-6
10.1016/S0304-386X(03)00175-0
10.1016/j.mineng.2014.08.011
10.1016/S0016-7037(99)00296-3
10.1016/S1003-6326(16)64369-8
10.1016/j.minpro.2008.06.002
10.1016/j.gca.2010.02.029
10.3390/min9100639
10.1016/j.minpro.2009.11.006
10.1016/j.mineng.2004.08.004
10.1016/S0304-386X(00)00115-8
10.1016/j.apsusc.2003.10.030
10.1016/j.scitotenv.2020.139485
10.1016/j.mineng.2009.03.001
10.1021/jp300713z
10.1016/j.hydromet.2008.05.009
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2021.107135
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
ExternalDocumentID 10_1016_j_mineng_2021_107135
S0892687521003642
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
RIG
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c236t-9bf85316bb8be54466d424956eb020024a2618e493e53f62fe920cbd5a14c8703
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:30 EDT 2025
Thu Apr 24 22:59:17 EDT 2025
Fri Feb 23 02:43:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Band theory
Bioleaching
Chalcopyrite
Redox potential
Chemical leaching
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-9bf85316bb8be54466d424956eb020024a2618e493e53f62fe920cbd5a14c8703
ORCID 0000-0001-7040-2302
ParticipantIDs crossref_citationtrail_10_1016_j_mineng_2021_107135
crossref_primary_10_1016_j_mineng_2021_107135
elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Minerals engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pradhan, Nathsarma, Rao, Sukla, Mishra (b0385) 2008; 21
Hiroyoshi, Miki, Hirajima, Tsunekawa (b0175) 2000; 57
Elsherief (b0090) 2002; 15
Yao, Wen, Gao, Wang (b0565) 2010; 41
Yoo (b0580) 2019; 56
Vilcáez, Suto, Inoue (b0495) 2008; 88
Nikiforov (b0350) 1999; 39
Liu, Diao, Yang, Qin, Wu (b0215) 2010; 20
Watling (b0510) 2006; 84
Lara, Viridiana Garcia-Meza, Gonzalez, Cruz (b0265) 2013; 97
Crundwell (b0045) 1988; 21
López-Juárez, Gutiérrez-Arenas, Rivera-Santillán (b0315) 2006; 83
Third, Cord-Ruwisch, Watling (b0455) 2000; 57
Yang, Liu, Chen (b0560) 2015; 70
Vilcáez, Inoue (b0485) 2009; 22
Yang, Jiao, Qin (b0545) 2018; 25
Acres, Harmer, Beattie (b0005) 2010; 94
Huang, Liao, Yang, Yu, Wu, Hong, Wang, Zhao, Gan, Jiao, Qin, Qiu (b0205) 2020; 27
Li, Kawashima, Kaplun, Absolon, Gerson (b0280) 2010; 74
Xia, Yang, He, Liang, Zhao, Zheng, Ma, Zhao, Nie, Qiu (b0530) 2010; 94
Liang, Xia, Yang, Nie, Qiu (b0290) 2012; 22
Hiroyoshi, Miki, Hirajima, Tsunekawa (b0180) 2001; 60
Kametani, Aoki (b0220) 1985; 16
Li, Kawashima, Li, Chandra, Gerson (b0285) 2013; 197-198
Hiroyoshi, Arai, Miki, Tsunekawa, Hirajima (b0155) 2002; 63
Yévenes, Miki, Nicol (bib632) 2010; 103
Crundwell (b0050) 2003; 71
Gu, Hu, Li (b0125) 2014; 24
Yang, Qin, Zhao, Wang, Wang (b0550) 2018; 57
Kartal, Xia, Ralph, Rickard, Renard, Li (b0235) 2020; 191
Nicol, Miki, Velásquez-Yévenes (b0340) 2010; 103
Schippers, Sand (b0445) 1999; 65
Yin, Kelsall, Vaughan, England (b0575) 1995; 59
Gericke, Govender, Pinches (b0105) 2010; 104
Panda, Sanjay, Sukla, Pradhan, Subbaiah, Mishra, Prasad, Ray (b0360) 2012; 125–126
Qin, Yang, Lai, Wang, Liu, Zhang (b0390) 2013; 129
Hu (b0200) 2014
Crundwell, Van Aswegen, Bryson, Biley, Craig, Marsicano, Keartland (b0060) 2015; 158
Song, Liu, Jiang (b0450) 2015; 1130
Zhou, Xie, Zhang, Zeng, Luo, Wang (b0620) 2010; 41
Zhao, Wang, Qin, Zheng, Tao, Gan, Qiu (b0600) 2015; 25
Klauber, Parker, Bronswijk, Watling (b0250) 2001; 62
Peng, Tang, Xia, Xia, Zhao, Nie, Zhu (b0370) 2012; 22
Rais, Gismelseed, Al-Rawas (b0405) 2000; 46
Yang, Luo, Wang, Yu, Gan, Wang, Liu, Qiu (b0535) 2020; 737
Okamoto, Nakayama, Kuroiwa, Hiroyoshi, Tsunekawa (b0355) 2004; 120
Yévenes, Nicol, Miki (bib631) 2010; 103
Córdoba, Muñoz, Blázquez, González, Ballester (b0040) 2008; 93
Khoshkhoo, Dopson, Engström, Sandström (b0240) 2017; 100
Edelbro, Sandstrom, Paul (b0085) 2003; 206
Liang, Xia, Yang, Nie, Zhao, Zheng, Ma, Zhao (b0295) 2011; 107
Ghahremaninezhad, Dixon, Asselin (b0110) 2013; 87
Sasaki, Nakamuta, Hirajima, Tuovinen (b0430) 2009; 95
Nicol, Lázaro (b0345) 2002; 63
Harmer, Thomas, Fornasiero, Gerson (b0135) 2006; 70
Holmes, Crundwell (b0190) 2000; 64
Watling (b0515) 2013; 140
Zhao, Zhang, Zhang, Qian, Sun, Yang, Zhang, Wang, Kim, Qiu (b0615) 2019; 136
Sand, Rohde, Sobotke, Zenneck (b0415) 1992; 58
Hiroyoshi, Kitagawa, Tsunekawa (b0165) 2008; 91
Torres, Ghorbani, Hernández, Justel, Aravena, Herreros (b0470) 2019; 9
Burdick, Ellis (b0025) 1917; 3
Liu, Xia, Nie, Ma, Zheng, Hong, Zhao, Wen (b0305) 2016; 98
Tributsch (b0475) 2001; 59
Havlík, Škrobian, Baláž, Kammel (b0140) 1995; 43
Santos, Arena, Benedetti, Bevilaqua (b0425) 2017; 42
Konishi, Tokushige, Asai, Suzuki (b0255) 2001; 59
Chen, Lan, Liao (b0030) 2013; 23
Zhao, Wang, Yang, Hu, Gan, Tao, Qin, Qiu (b0610) 2015; 151
Rawlings (b0410) 2005; 4
Khoshkhoo, Dopson, Shchukarev, Sandström (b0245) 2014; 144–145
Córdoba, Muñoz, Blázquez, González, Ballester (b0035) 2008; 93
Vilcáez, Yamada, Inoue (b0500) 2009; 96
Brierley (b0020) 1978; 36
Nicol, Lazaro (b0270) 2003
Dutrizac (b0080) 1990; 23
Third, Cord-Ruwisch, Watling (b0460) 2002; 78
He, Xia, Yang, Jiang, Xiao, Zheng, Ma, Zhao, Qiu (b0145) 2009; 99
Majuste, Ciminelli, Osseo-Asare, Dantas, Magalhaes-Paniago (b0320) 2012; 111
Zhao, Wang, Tao, Cao, Yang, Qin, Qiu (b0605) 2017; 162
Holmes, Crundwell (b0185) 1995; 39
Liu, Nie, Xia, Zhu, Yang, Zhao, Zheng, Zhao (b0300) 2015; 137
Yang (b0540) 2015
Zhu, Li, Jiao, Jiang, Sand, Xia, Liu, Qin, Qiu, Hu, Chai (b0625) 2012; 94
Yang, Harmer, Chen (b0555) 2014; 69
Li, Wang (b0275) 2004; 56
de Oliveira, de Lima, de Abreu, Duarte (b0070) 2012; 116
Tian, Li, Wei, Jiao, Qin, Yang (b0465) 2021; 31
Parker, Paul, Power, Parker, Paul, Power (b0365) 1981; 34
Gu, Guo (b0120) 2011; 42
Liu, Xia, Nie, Wen, Yang, Ma, Zheng, Zhao (b0310) 2016; 26
Zhao, Huang, Wang, Li, Liao, Wang, Qiu, Xiong, Qin, Qiu (b0595) 2017; 109
Sasaki, Takatsugi, Tuovinen (b0435) 2012; 127–128
Hirato, Majima, Awakura (b0150) 1987; 18
Wu, Yang, Qin, Jiao, Wang, Zhang (b0525) 2015; 25
Zhao, Hu, Li, Zhu, Qin, Qiu, Wang (b0590) 2015; 25
Wang, Li, Wang, Wang (b0195) 2018; 12
Petersen, Dixon (b0375) 2006; 83
Sandström, Shchukarev, Paul (b0420) 2005; 18
Hall, Stewart (b0400) 1973; 29
Cui, Feng, Huang, Chen, Yang (b0065) 2019; 35
Phuong Thao, Tsuji, Jeon, Park, Tabelin, Ito, Hiroyoshi (b0380) 2020; 194
Zeng, Qiu, Zhou, Chen (b0585) 2011; 105
Bevilaqua, Lahti-Tommila, Garcia, Puhakka, Tuovinen (b0010) 2014; 132
Bevilaqua, Leite, Garcia, Tuovinen (b0015) 2002; 38
Crundwell (b0055) 2015; 54
Hiroyoshi, Hirota, Hirajima, Tsunekawa (b0160) 1997; 47
Miki, Hiroyoshi, Hirajima, Tsunekawa (b0330) 2001; 117
Gu, Hu, Zhang, Xiong, Yang (b0130) 2013; 103
Vilcaez, Suto, Inoue (b0490) 2008; 21
Kaplun, Li, Kawashima, Gerson (b0230) 2011; 75
Gomez, Lzquez, Ballester, Gonzalez (b0115) 1996; 9
Mikhlin, Tomashevich, Asanov, Okotrub, Varnek, Vyalikh (b0325) 2004; 225
Hiroyoshi, Kuroiwa, Miki, Tsunekawa, Hirajima (b0170) 2004; 74
Zhu, Xia, Yang, Nie, Zheng, Ma, Zhang, Peng, Tang, Qiu (b0630) 2011; 102
Deng (b0075) 2004; 34
Wang, Gan, Zhao, Hu, Li, Qin, Qiu (b0505) 2016; 98
Yang (10.1016/j.mineng.2021.107135_b0560) 2015; 70
Parker (10.1016/j.mineng.2021.107135_b0365) 1981; 34
Khoshkhoo (10.1016/j.mineng.2021.107135_b0245) 2014; 144–145
Mikhlin (10.1016/j.mineng.2021.107135_b0325) 2004; 225
Wu (10.1016/j.mineng.2021.107135_b0525) 2015; 25
Nikiforov (10.1016/j.mineng.2021.107135_b0350) 1999; 39
Li (10.1016/j.mineng.2021.107135_b0280) 2010; 74
Gericke (10.1016/j.mineng.2021.107135_b0105) 2010; 104
Sandström (10.1016/j.mineng.2021.107135_b0420) 2005; 18
Wang (10.1016/j.mineng.2021.107135_b0195) 2018; 12
Schippers (10.1016/j.mineng.2021.107135_b0445) 1999; 65
Liu (10.1016/j.mineng.2021.107135_b0215) 2010; 20
Hall (10.1016/j.mineng.2021.107135_b0400) 1973; 29
Cui (10.1016/j.mineng.2021.107135_b0065) 2019; 35
Santos (10.1016/j.mineng.2021.107135_b0425) 2017; 42
Third (10.1016/j.mineng.2021.107135_b0460) 2002; 78
Yang (10.1016/j.mineng.2021.107135_b0555) 2014; 69
Gomez (10.1016/j.mineng.2021.107135_b0115) 1996; 9
Holmes (10.1016/j.mineng.2021.107135_b0190) 2000; 64
Córdoba (10.1016/j.mineng.2021.107135_b0035) 2008; 93
Crundwell (10.1016/j.mineng.2021.107135_b0045) 1988; 21
Gu (10.1016/j.mineng.2021.107135_b0120) 2011; 42
Watling (10.1016/j.mineng.2021.107135_b0510) 2006; 84
Wang (10.1016/j.mineng.2021.107135_b0505) 2016; 98
Liang (10.1016/j.mineng.2021.107135_b0295) 2011; 107
Vilcaez (10.1016/j.mineng.2021.107135_b0490) 2008; 21
Panda (10.1016/j.mineng.2021.107135_b0360) 2012; 125–126
Vilcáez (10.1016/j.mineng.2021.107135_b0485) 2009; 22
Zhao (10.1016/j.mineng.2021.107135_b0600) 2015; 25
Liu (10.1016/j.mineng.2021.107135_b0300) 2015; 137
Vilcáez (10.1016/j.mineng.2021.107135_b0495) 2008; 88
Li (10.1016/j.mineng.2021.107135_b0275) 2004; 56
Petersen (10.1016/j.mineng.2021.107135_b0375) 2006; 83
Kartal (10.1016/j.mineng.2021.107135_b0235) 2020; 191
Nicol (10.1016/j.mineng.2021.107135_b0345) 2002; 63
Zhao (10.1016/j.mineng.2021.107135_b0610) 2015; 151
López-Juárez (10.1016/j.mineng.2021.107135_b0315) 2006; 83
Yin (10.1016/j.mineng.2021.107135_b0575) 1995; 59
Córdoba (10.1016/j.mineng.2021.107135_b0040) 2008; 93
Gu (10.1016/j.mineng.2021.107135_b0130) 2013; 103
Kametani (10.1016/j.mineng.2021.107135_b0220) 1985; 16
Tian (10.1016/j.mineng.2021.107135_b0465) 2021; 31
Hiroyoshi (10.1016/j.mineng.2021.107135_b0180) 2001; 60
Dutrizac (10.1016/j.mineng.2021.107135_b0080) 1990; 23
Vilcáez (10.1016/j.mineng.2021.107135_b0500) 2009; 96
Zhu (10.1016/j.mineng.2021.107135_b0630) 2011; 102
Tributsch (10.1016/j.mineng.2021.107135_b0475) 2001; 59
Zhao (10.1016/j.mineng.2021.107135_b0605) 2017; 162
Bevilaqua (10.1016/j.mineng.2021.107135_b0010) 2014; 132
Yang (10.1016/j.mineng.2021.107135_b0540) 2015
Crundwell (10.1016/j.mineng.2021.107135_b0050) 2003; 71
Miki (10.1016/j.mineng.2021.107135_b0330) 2001; 117
Gu (10.1016/j.mineng.2021.107135_b0125) 2014; 24
Havlík (10.1016/j.mineng.2021.107135_b0140) 1995; 43
Crundwell (10.1016/j.mineng.2021.107135_b0060) 2015; 158
Holmes (10.1016/j.mineng.2021.107135_b0185) 1995; 39
Xia (10.1016/j.mineng.2021.107135_b0530) 2010; 94
Harmer (10.1016/j.mineng.2021.107135_b0135) 2006; 70
Konishi (10.1016/j.mineng.2021.107135_b0255) 2001; 59
Zhao (10.1016/j.mineng.2021.107135_b0595) 2017; 109
Elsherief (10.1016/j.mineng.2021.107135_b0090) 2002; 15
Ghahremaninezhad (10.1016/j.mineng.2021.107135_b0110) 2013; 87
He (10.1016/j.mineng.2021.107135_b0145) 2009; 99
Torres (10.1016/j.mineng.2021.107135_b0470) 2019; 9
Peng (10.1016/j.mineng.2021.107135_b0370) 2012; 22
Third (10.1016/j.mineng.2021.107135_b0455) 2000; 57
Yang (10.1016/j.mineng.2021.107135_b0535) 2020; 737
Edelbro (10.1016/j.mineng.2021.107135_b0085) 2003; 206
Rais (10.1016/j.mineng.2021.107135_b0405) 2000; 46
Liang (10.1016/j.mineng.2021.107135_b0290) 2012; 22
Pradhan (10.1016/j.mineng.2021.107135_b0385) 2008; 21
Zhao (10.1016/j.mineng.2021.107135_b0615) 2019; 136
Nicol (10.1016/j.mineng.2021.107135_b0340) 2010; 103
Hiroyoshi (10.1016/j.mineng.2021.107135_b0170) 2004; 74
Phuong Thao (10.1016/j.mineng.2021.107135_b0380) 2020; 194
Hiroyoshi (10.1016/j.mineng.2021.107135_b0155) 2002; 63
Klauber (10.1016/j.mineng.2021.107135_b0250) 2001; 62
Yao (10.1016/j.mineng.2021.107135_b0565) 2010; 41
Brierley (10.1016/j.mineng.2021.107135_b0020) 1978; 36
Chen (10.1016/j.mineng.2021.107135_b0030) 2013; 23
Huang (10.1016/j.mineng.2021.107135_b0205) 2020; 27
Zhou (10.1016/j.mineng.2021.107135_b0620) 2010; 41
Bevilaqua (10.1016/j.mineng.2021.107135_b0015) 2002; 38
Deng (10.1016/j.mineng.2021.107135_b0075) 2004; 34
de Oliveira (10.1016/j.mineng.2021.107135_b0070) 2012; 116
Sasaki (10.1016/j.mineng.2021.107135_b0430) 2009; 95
Li (10.1016/j.mineng.2021.107135_b0285) 2013; 197-198
Hiroyoshi (10.1016/j.mineng.2021.107135_b0175) 2000; 57
Hiroyoshi (10.1016/j.mineng.2021.107135_b0160) 1997; 47
Yang (10.1016/j.mineng.2021.107135_b0545) 2018; 25
Burdick (10.1016/j.mineng.2021.107135_b0025) 1917; 3
Khoshkhoo (10.1016/j.mineng.2021.107135_b0240) 2017; 100
Yoo (10.1016/j.mineng.2021.107135_b0580) 2019; 56
Zhu (10.1016/j.mineng.2021.107135_b0625) 2012; 94
Hirato (10.1016/j.mineng.2021.107135_b0150) 1987; 18
Nicol (10.1016/j.mineng.2021.107135_b0270) 2003
Zeng (10.1016/j.mineng.2021.107135_b0585) 2011; 105
Liu (10.1016/j.mineng.2021.107135_b0310) 2016; 26
Lara (10.1016/j.mineng.2021.107135_b0265) 2013; 97
Yévenes (10.1016/j.mineng.2021.107135_bib632) 2010; 103
Watling (10.1016/j.mineng.2021.107135_b0515) 2013; 140
Liu (10.1016/j.mineng.2021.107135_b0305) 2016; 98
Majuste (10.1016/j.mineng.2021.107135_b0320) 2012; 111
Rawlings (10.1016/j.mineng.2021.107135_b0410) 2005; 4
Hu (10.1016/j.mineng.2021.107135_b0200) 2014
Qin (10.1016/j.mineng.2021.107135_b0390) 2013; 129
Yévenes (10.1016/j.mineng.2021.107135_bib631) 2010; 103
Crundwell (10.1016/j.mineng.2021.107135_b0055) 2015; 54
Sand (10.1016/j.mineng.2021.107135_b0415) 1992; 58
Sasaki (10.1016/j.mineng.2021.107135_b0435) 2012; 127–128
Zhao (10.1016/j.mineng.2021.107135_b0590) 2015; 25
Acres (10.1016/j.mineng.2021.107135_b0005) 2010; 94
Kaplun (10.1016/j.mineng.2021.107135_b0230) 2011; 75
Song (10.1016/j.mineng.2021.107135_b0450) 2015; 1130
Hiroyoshi (10.1016/j.mineng.2021.107135_b0165) 2008; 91
Okamoto (10.1016/j.mineng.2021.107135_b0355) 2004; 120
Yang (10.1016/j.mineng.2021.107135_b0550) 2018; 57
References_xml – volume: 197-198
  start-page: 1
  year: 2013
  end-page: 32
  ident: b0285
  article-title: A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite
  publication-title: Adv. Colloid Interface Sci.
– volume: 27
  start-page: 1351
  year: 2020
  end-page: 1366
  ident: b0205
  article-title: Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: an overview
  publication-title: J. Cent. South Univ.
– volume: 58
  start-page: 85
  year: 1992
  end-page: 92
  ident: b0415
  article-title: Evaluation of leptospirillum ferrooxidans for leaching
  publication-title: Appl. Environ. Microbiol.
– volume: 1130
  start-page: 338
  year: 2015
  end-page: 341
  ident: b0450
  article-title: Bioleaching of chalcopyrite by thermophilic Archaea
  publication-title: Adv. Mater. Res
– volume: 20
  start-page: 346
  year: 2010
  end-page: 353
  ident: b0215
  article-title: Bioleaching of chalcopyrite concentrate using mixed thermophilic culture and succession of microbial community during leaching process
  publication-title: Chinese J. Trans. Nonferrous Met.
– volume: 42
  start-page: 2167
  year: 2011
  end-page: 2172
  ident: b0120
  article-title: Chalcopyrite dissolution behavior under microbe-mineral contact/uncontact model
  publication-title: J. Cent. South Univ.
– volume: 194
  start-page: 105299
  year: 2020
  ident: b0380
  article-title: Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments
  publication-title: Hydrometallurgy
– volume: 109
  start-page: 153
  year: 2017
  end-page: 161
  ident: b0595
  article-title: Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite
  publication-title: Miner. Eng.
– volume: 22
  start-page: 2930
  year: 2012
  end-page: 2937
  ident: b0370
  article-title: Sulfur/iron oxidation activity of three typical bioleaching bacteria and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Chinese J. Nonferrous Met.
– volume: 87
  start-page: 97
  year: 2013
  end-page: 112
  ident: b0110
  article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 31
  year: 1987
  end-page: 39
  ident: b0150
  article-title: The leaching of chalcopyrite with cupric chloride
  publication-title: Metall. Trans. B
– volume: 103
  start-page: 80
  year: 2010
  end-page: 85
  ident: bib632
  article-title: The dissolution of chalcopyrite in chloride solutions Part 2: Effect of various parameters on the rate
  publication-title: Hydrometallurgy
– volume: 162
  start-page: 81
  year: 2017
  end-page: 91
  ident: b0605
  article-title: Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C
  publication-title: Int. J. Miner. Process.
– volume: 3
  start-page: 644
  year: 1917
  end-page: 649
  ident: b0025
  article-title: The crystal structure of chalcopyrite determined by X rays
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 59
  start-page: 177
  year: 2001
  end-page: 185
  ident: b0475
  article-title: Direct versus indirect bioleaching
  publication-title: Hydrometallurgy
– volume: 83
  start-page: 40
  year: 2006
  end-page: 49
  ident: b0375
  article-title: Competitive bioleaching of pyrite and chalcopyrite
  publication-title: Hydrometallurgy
– volume: 57
  start-page: 1733
  year: 2018
  end-page: 1744
  ident: b0550
  article-title: Mixed potential plays a key role in leaching of chalcopyrite: experimental and theoretical analysis
  publication-title: Ind. Eng. Chem. Res.
– volume: 22
  start-page: 951
  year: 2009
  end-page: 960
  ident: b0485
  article-title: Mathematical modeling of thermophilic bioleaching of chalcopyrite
  publication-title: Miner. Eng.
– volume: 25
  start-page: 2380
  year: 2018
  end-page: 2386
  ident: b0545
  article-title: Leaching of chalcopyrite: An emphasis on effect of copper and iron ions
  publication-title: J. Cent. South Univ.
– volume: 91
  start-page: 144
  year: 2008
  end-page: 149
  ident: b0165
  article-title: Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions
  publication-title: Hydrometallurgy
– volume: 23
  start-page: 824
  year: 2013
  end-page: 831
  ident: b0030
  article-title: Depression effect of pseudo glycolythiourea acid inflotation separation of copper-molybdenum
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 62
  start-page: 65
  year: 2001
  end-page: 94
  ident: b0250
  article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy
  publication-title: Int. J. Miner. Process.
– volume: 18
  start-page: 505
  year: 2005
  end-page: 515
  ident: b0420
  article-title: XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential
  publication-title: Miner. Eng.
– volume: 191
  year: 2020
  ident: b0235
  article-title: Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation
  publication-title: Hydrometallurgy
– volume: 39
  start-page: 353
  year: 1995
  end-page: 375
  ident: b0185
  article-title: Kinetic aspects of galvanic interactions between minerals during dissolution
  publication-title: Hydrometallurgy
– volume: 88
  start-page: 37
  year: 2008
  end-page: 44
  ident: b0495
  article-title: Bioleaching of chalcopyrite with thermophiles: temperature–pH–ORP dependence
  publication-title: Int. J. Miner. Process.
– volume: 158
  start-page: 119
  year: 2015
  end-page: 131
  ident: b0060
  article-title: The effect of visible light on the dissolution of natural chalcopyrite (CuFeS
  publication-title: Hydrometallurgy
– volume: 59
  start-page: 271
  year: 2001
  end-page: 282
  ident: b0255
  article-title: Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors
  publication-title: Hydrometallurgy
– volume: 70
  start-page: 99
  year: 2015
  end-page: 108
  ident: b0560
  article-title: XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and 48°C
  publication-title: Miner. Eng.
– volume: 4
  year: 2005
  ident: b0410
  article-title: Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
  publication-title: Microb. Cell Fact.
– volume: 29
  start-page: 579
  year: 1973
  end-page: 585
  ident: b0400
  article-title: The crystal structure refinement of chalcopyrite, CuFeS
  publication-title: Acta Crystallogr., Sect. B
– volume: 94
  start-page: 43
  year: 2010
  end-page: 51
  ident: b0005
  article-title: Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite
  publication-title: Int. J. Miner. Process.
– volume: 25
  start-page: 2725
  year: 2015
  end-page: 2733
  ident: b0600
  article-title: Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 206
  start-page: 300
  year: 2003
  end-page: 313
  ident: b0085
  article-title: Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite
  publication-title: Appl. Surf. Sci.
– volume: 140
  start-page: 163
  year: 2013
  end-page: 180
  ident: b0515
  article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options
  publication-title: Hydrometallurgy
– volume: 103
  start-page: 108113
  year: 2010
  ident: bib631
  article-title: The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential
  publication-title: Hydrometallurgy
– volume: 95
  start-page: 153
  year: 2009
  end-page: 158
  ident: b0430
  article-title: Raman characterization of secondary minerals formed during chalcopyrite leaching with
  publication-title: Hydrometallurgy
– volume: 78
  start-page: 433
  year: 2002
  end-page: 441
  ident: b0460
  article-title: Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite
  publication-title: Biotechnol. Bioeng.
– volume: 94
  start-page: 52
  year: 2010
  end-page: 57
  ident: b0530
  article-title: Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile
  publication-title: Int. J. Miner. Process.
– volume: 127–128
  start-page: 116
  year: 2012
  end-page: 120
  ident: b0435
  article-title: Spectroscopic analysis of the bioleaching of chalcopyrite by
  publication-title: Hydrometallurgy
– volume: 41
  start-page: 1234
  year: 2010
  end-page: 1239
  ident: b0565
  article-title: Chalcopyrite bioleaching by moderate thermophilic bacteria and surface passivation
  publication-title: J. Cent. South Univ.
– volume: 84
  start-page: 81
  year: 2006
  end-page: 108
  ident: b0510
  article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides — a review
  publication-title: Hydrometallurgy
– volume: 39
  start-page: 1
  year: 1999
  end-page: 104
  ident: b0350
  article-title: Magnetically ordered multinary semiconductors
  publication-title: Prog. Cryst. Growth Charact. Mater.
– volume: 97
  start-page: 2711
  year: 2013
  end-page: 2724
  ident: b0265
  article-title: Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 56
  start-page: 35
  year: 2004
  end-page: 37
  ident: b0275
  article-title: Fundamental analysis of sulfide bioleaching process based on semiconductor electrochemistry
  publication-title: Nonferrous Metals
– volume: 96
  start-page: 62
  year: 2009
  end-page: 71
  ident: b0500
  article-title: Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures
  publication-title: Hydrometallurgy
– volume: 34
  start-page: 13
  year: 1981
  end-page: 34
  ident: b0365
  article-title: Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions
  publication-title: Aust. J. Chem.
– volume: 104
  start-page: 414
  year: 2010
  end-page: 419
  ident: b0105
  article-title: Tank bioleaching of low-grade chalcopyrite concentrates using redox control
  publication-title: Hydrometallurgy
– volume: 120
  start-page: 600
  year: 2004
  end-page: 606
  ident: b0355
  article-title: Catalytic effect of activated carbon and coal on chalcopyrite leaching in sulfuric acid solutions
  publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan)
– volume: 31
  start-page: 171
  year: 2021
  end-page: 180
  ident: b0465
  article-title: Effects of Cu
  publication-title: Chinese J. Nonferrous Met.
– volume: 737
  year: 2020
  ident: b0535
  article-title: The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 61
  year: 1995
  end-page: 72
  ident: b0140
  article-title: Leaching of chalcopyrite concentrate with ferric chloride
  publication-title: Int. J. Miner. Process.
– volume: 137
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0300
  article-title: Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile
  publication-title: Int. J. Miner. Process.
– volume: 225
  start-page: 395
  year: 2004
  end-page: 409
  ident: b0325
  article-title: Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS
  publication-title: Appl. Surf. Sci.
– volume: 21
  start-page: 355
  year: 2008
  end-page: 365
  ident: b0385
  article-title: Heap bioleaching of chalcopyrite: a review
  publication-title: Miner. Eng.
– volume: 63
  start-page: 15
  year: 2002
  end-page: 22
  ident: b0345
  article-title: The role of E
  publication-title: Hydrometallurgy
– volume: 36
  start-page: 523
  year: 1978
  end-page: 525
  ident: b0020
  article-title: Thermophilic iron-oxidizing bacteria found in copper leaching dumps
  publication-title: Appl. Environ. Microbiol.
– volume: 102
  start-page: 3877
  year: 2011
  end-page: 3882
  ident: b0630
  article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Bioresour. Technol.
– volume: 26
  start-page: 2485
  year: 2016
  end-page: 2494
  ident: b0310
  article-title: Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 57
  start-page: 31
  year: 2000
  end-page: 38
  ident: b0175
  article-title: A model for ferrous-promoted chalcopyrite leaching
  publication-title: Hydrometallurgy
– volume: 83
  start-page: 63
  year: 2006
  end-page: 68
  ident: b0315
  article-title: Electrochemical behavior of massive chalcopyrite bioleached electrodes in presence of silver at 35 °C
  publication-title: Hydrometallurgy
– year: 2015
  ident: b0540
  article-title: The Dissolution and Passivation Mechanism of Chalcopyrite Surface During Leaching
– volume: 63
  start-page: 257
  year: 2002
  end-page: 267
  ident: b0155
  article-title: A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions
  publication-title: Hydrometallurgy
– volume: 12
  start-page: 99
  year: 2018
  end-page: 103
  ident: b0195
  article-title: Fundamental study of different impurity ions on chalcopyrite leaching process
  publication-title: Metal Mine
– volume: 23
  start-page: 153
  year: 1990
  end-page: 176
  ident: b0080
  article-title: Elemental sulphur formation during the ferric chloride leaching of chalcopyrite
  publication-title: Hydrometallurgy
– volume: 21
  start-page: 1063
  year: 2008
  end-page: 1074
  ident: b0490
  article-title: Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite
  publication-title: Miner. Eng.
– volume: 116
  start-page: 6357
  year: 2012
  end-page: 6366
  ident: b0070
  article-title: Reconstruction of the chalcopyrite surfaces – a DFT study
  publication-title: J. Phys. Chem. C.
– volume: 144–145
  start-page: 7
  year: 2014
  end-page: 14
  ident: b0245
  article-title: Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
  publication-title: Hydrometallurgy
– volume: 25
  start-page: 303
  year: 2015
  end-page: 313
  ident: b0590
  article-title: Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 25
  start-page: 4110
  year: 2015
  end-page: 4118
  ident: b0525
  article-title: Sulfur composition on surface of chalcopyrite during its bioleaching at 50 °C
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 38
  start-page: 587
  year: 2002
  end-page: 592
  ident: b0015
  article-title: Oxidation of chalcopyrite by
  publication-title: Process Biochem.
– volume: 98
  start-page: 80
  year: 2016
  end-page: 89
  ident: b0305
  article-title: Bioleaching of chalcopyrite by
  publication-title: Miner. Eng.
– volume: 46
  start-page: 349
  year: 2000
  end-page: 353
  ident: b0405
  article-title: Magnetic properties of natural chalcopyrite at low temperature
  publication-title: Mater. Lett.
– volume: 136
  start-page: 140
  year: 2019
  end-page: 154
  ident: b0615
  article-title: The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview
  publication-title: Miner. Eng.
– volume: 47
  start-page: 37
  year: 1997
  end-page: 45
  ident: b0160
  article-title: A case of ferrous sulfate addition enhancing chalcopyrite leaching
  publication-title: Hydrometallurgy
– volume: 41
  start-page: 15
  year: 2010
  end-page: 20
  ident: b0620
  article-title: Bioleaching of chalcopyrite by moderately thermophilic mixed microorganisms in stirred tank bioreactor and community succession analysis
  publication-title: J. Cent. South Univ.
– volume: 60
  start-page: 185
  year: 2001
  end-page: 197
  ident: b0180
  article-title: Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions
  publication-title: Hydrometallurgy
– volume: 111
  start-page: 114
  year: 2012
  end-page: 123
  ident: b0320
  article-title: Electrochemical dissolution of chalcopyrite: Detection of bornite by synchrotron small angle X-ray diffraction and its correlation with the hindered dissolution process
  publication-title: Hydrometallurgy
– volume: 94
  start-page: 95
  year: 2012
  end-page: 100
  ident: b0625
  article-title: Adhesion forces between cells of
  publication-title: Colloid Surf. B - Biointerfaces
– volume: 117
  start-page: 215
  year: 2001
  end-page: 220
  ident: b0330
  article-title: Batch leaching behavior of chalcopyrite in acidic ferric sulfate solutions — relationship between solution redox potential and copper extraction
  publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan)
– volume: 125–126
  start-page: 157
  year: 2012
  end-page: 165
  ident: b0360
  article-title: Insights into heap bioleaching of low grade chalcopyrite ores — A pilot scale study
  publication-title: Hydrometallurgy
– volume: 132
  start-page: 1
  year: 2014
  end-page: 7
  ident: b0010
  article-title: Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C
  publication-title: Int. J. Miner. Process.
– volume: 74
  start-page: 103
  year: 2004
  end-page: 116
  ident: b0170
  article-title: Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions
  publication-title: Hydrometallurgy
– year: 2014
  ident: b0200
  article-title: Effects of microorganisms on surface properties of chalcopyrite and the stepwise dissolution mechanism ofchalcopyrite during bioleaching
– volume: 22
  start-page: 265
  year: 2012
  end-page: 273
  ident: b0290
  article-title: Progress in sulfur speciation transformation during chalcopyrite bioleaching
  publication-title: Chinese J. Trans. Nonferrous Met.
– volume: 9
  start-page: 639
  year: 2019
  ident: b0470
  article-title: Cupric and chloride ions: leaching of chalcopyrite concentrate with low chloride concentration media
  publication-title: Minerals
– volume: 69
  start-page: 185
  year: 2014
  end-page: 195
  ident: b0555
  article-title: Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles
  publication-title: Miner. Eng.
– volume: 93
  start-page: 81
  year: 2008
  end-page: 87
  ident: b0040
  article-title: Leaching of chalcopyrite with ferric ion. Part I: General aspects
  publication-title: Hydrometallurgy
– volume: 103
  start-page: 50
  year: 2013
  end-page: 57
  ident: b0130
  article-title: The stepwise dissolution of chalcopyrite bioleached by
  publication-title: Electrochim. Acta
– volume: 16
  start-page: 695
  year: 1985
  end-page: 705
  ident: b0220
  article-title: Effect of suspension potential on the oxidation rate of copper concentration in sulphuric acid conditions
  publication-title: Metall. Trans B.
– volume: 21
  start-page: 155
  year: 1988
  end-page: 190
  ident: b0045
  article-title: The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals
  publication-title: Hydrometallurgy
– volume: 75
  start-page: 5865
  year: 2011
  end-page: 5878
  ident: b0230
  article-title: Cu and Fe chalcopyrite leach activation energies and the effect of added Fe
  publication-title: Geochim. Cosmochim. Acta
– volume: 98
  start-page: 264
  year: 2016
  end-page: 278
  ident: b0505
  article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis
  publication-title: Miner. Eng.
– volume: 59
  start-page: 1091
  year: 1995
  end-page: 1100
  ident: b0575
  article-title: Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS
  publication-title: Geochim. Cosmochim. Acta
– volume: 151
  start-page: 141
  year: 2015
  end-page: 150
  ident: b0610
  article-title: Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions
  publication-title: Hydrometallurgy
– volume: 54
  start-page: 279
  year: 2015
  end-page: 288
  ident: b0055
  article-title: The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite
  publication-title: Can. Metall. Q.
– volume: 99
  start-page: 45
  year: 2009
  end-page: 50
  ident: b0145
  article-title: Sulfur speciation on the surface of chalcopyrite leached by
  publication-title: Hydrometallurgy
– volume: 105
  start-page: 259
  year: 2011
  end-page: 263
  ident: b0585
  article-title: Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C
  publication-title: Hydrometallurgy
– volume: 34
  start-page: 21
  year: 2004
  end-page: 24
  ident: b0075
  article-title: Current situation and prospect of sulfide ore bio-leaching by extreme thermophile
  publication-title: Yun Nan Metallurgy
– volume: 56
  start-page: 326
  year: 2019
  end-page: 333
  ident: b0580
  article-title: Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave
  publication-title: J. Korean Soc. Mineral Energy Resources Eng.
– volume: 71
  start-page: 75
  year: 2003
  end-page: 81
  ident: b0050
  article-title: How do bacteria interact with minerals?
  publication-title: Hydrometallurgy
– volume: 64
  start-page: 263
  year: 2000
  end-page: 274
  ident: b0190
  article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study
  publication-title: Geochim. Cosmochim. Acta
– volume: 103
  start-page: 86
  year: 2010
  end-page: 95
  ident: b0340
  article-title: The dissolution of chalcopyrite in chloride solutions Part 3. Mechanisms
  publication-title: Hydrometallurgy
– volume: 57
  start-page: 225
  year: 2000
  end-page: 233
  ident: b0455
  article-title: The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching
  publication-title: Hydrometallurgy
– start-page: 383
  year: 2003
  end-page: 394
  ident: b0270
  article-title: The role of non-oxidative processes in the leaching of chalcopyrite
  publication-title: Copper 2003
– volume: 9
  start-page: 985
  year: 1996
  end-page: 999
  ident: b0115
  article-title: Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria
  publication-title: Miner. Eng.
– volume: 15
  start-page: 215
  year: 2002
  end-page: 223
  ident: b0090
  article-title: The influence of cathodic reduction, Fe
  publication-title: Miner. Eng.
– volume: 24
  start-page: 1898
  year: 2014
  end-page: 1904
  ident: b0125
  article-title: Surface characterization of chalcopyrite interacting with
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 129
  start-page: 200
  year: 2013
  end-page: 208
  ident: b0390
  article-title: Bioleaching of chalcopyrite by moderately thermophilic microorganisms
  publication-title: Bioresour. Technol.
– volume: 107
  start-page: 13
  year: 2011
  end-page: 21
  ident: b0295
  article-title: Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy
  publication-title: Hydrometallurgy
– volume: 65
  start-page: 319
  year: 1999
  end-page: 321
  ident: b0445
  article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur
  publication-title: Appl. Environ. Microbiol.
– volume: 70
  start-page: 4392
  year: 2006
  end-page: 4402
  ident: b0135
  article-title: The evolution of surface layers formed during chalcopyrite leaching
  publication-title: Geochim. Cosmochim. Acta
– volume: 42
  start-page: 40
  year: 2017
  end-page: 50
  ident: b0425
  article-title: Effect of redox potential on chalcopyrite dissolution imposed by addition of ferrous ions
  publication-title: Eclética Química Journal
– volume: 100
  start-page: 9
  year: 2017
  end-page: 16
  ident: b0240
  article-title: New insights into the influence of redox potential on chalcopyrite leaching behaviour
  publication-title: Miner. Eng.
– volume: 93
  start-page: 106
  year: 2008
  end-page: 115
  ident: b0035
  article-title: Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria
  publication-title: Hydrometallurgy
– volume: 74
  start-page: 2881
  year: 2010
  end-page: 2893
  ident: b0280
  article-title: Chalcopyrite leaching: the rate controlling factors
  publication-title: Geochim. Cosmochim. Acta
– volume: 35
  start-page: 95
  year: 2019
  end-page: 102
  ident: b0065
  article-title: Directed domestication of copper tolerance for enhancing lowgrade chalcopyrite bioleaching by
  publication-title: Biotechnol. Bulle.
– volume: 103
  start-page: 50
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0130
  article-title: The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.04.051
– volume: 111
  start-page: 114
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0320
  article-title: Electrochemical dissolution of chalcopyrite: Detection of bornite by synchrotron small angle X-ray diffraction and its correlation with the hindered dissolution process
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.11.003
– volume: 21
  start-page: 155
  issue: 2
  year: 1988
  ident: 10.1016/j.mineng.2021.107135_b0045
  article-title: The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(88)90003-5
– volume: 35
  start-page: 95
  issue: 8
  year: 2019
  ident: 10.1016/j.mineng.2021.107135_b0065
  article-title: Directed domestication of copper tolerance for enhancing lowgrade chalcopyrite bioleaching by Acidithiobacillus caldus
  publication-title: Biotechnol. Bulle.
– volume: 39
  start-page: 353
  issue: 1
  year: 1995
  ident: 10.1016/j.mineng.2021.107135_b0185
  article-title: Kinetic aspects of galvanic interactions between minerals during dissolution
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(95)00041-E
– volume: 70
  start-page: 99
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0560
  article-title: XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and 48°C
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.08.021
– volume: 94
  start-page: 52
  issue: 1
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0530
  article-title: Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2009.11.005
– volume: 93
  start-page: 106
  issue: 3
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0035
  article-title: Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2007.11.005
– volume: 120
  start-page: 600
  year: 2004
  ident: 10.1016/j.mineng.2021.107135_b0355
  article-title: Catalytic effect of activated carbon and coal on chalcopyrite leaching in sulfuric acid solutions
  publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan)
  doi: 10.2473/shigentosozai.120.600
– volume: 4
  issue: 13
  year: 2005
  ident: 10.1016/j.mineng.2021.107135_b0410
  article-title: Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates
  publication-title: Microb. Cell Fact.
– volume: 206
  start-page: 300
  issue: PII S0169–4332(02), 01284–91-4
  year: 2003
  ident: 10.1016/j.mineng.2021.107135_b0085
  article-title: Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)01284-9
– volume: 59
  start-page: 271
  issue: 2–3
  year: 2001
  ident: 10.1016/j.mineng.2021.107135_b0255
  article-title: Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00173-0
– volume: 38
  start-page: 587
  issue: PII S0032–9592(02), 00169–34
  year: 2002
  ident: 10.1016/j.mineng.2021.107135_b0015
  article-title: Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(02)00169-3
– volume: 100
  start-page: 9
  year: 2017
  ident: 10.1016/j.mineng.2021.107135_b0240
  article-title: New insights into the influence of redox potential on chalcopyrite leaching behaviour
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.10.003
– volume: 158
  start-page: 119
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0060
  article-title: The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sulphuric acid solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.10.014
– volume: 62
  start-page: 65
  issue: 1
  year: 2001
  ident: 10.1016/j.mineng.2021.107135_b0250
  article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(00)00045-4
– volume: 129
  start-page: 200
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0390
  article-title: Bioleaching of chalcopyrite by moderately thermophilic microorganisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.050
– year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0540
– volume: 103
  start-page: 86
  issue: 1–4
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0340
  article-title: The dissolution of chalcopyrite in chloride solutions Part 3. Mechanisms
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.03.003
– volume: 1130
  start-page: 338
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0450
  article-title: Bioleaching of chalcopyrite by thermophilic Archaea
  publication-title: Adv. Mater. Res
  doi: 10.4028/www.scientific.net/AMR.1130.338
– volume: 96
  start-page: 62
  issue: 1–2
  year: 2009
  ident: 10.1016/j.mineng.2021.107135_b0500
  article-title: Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.08.003
– volume: 41
  start-page: 15
  issue: 1
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0620
  article-title: Bioleaching of chalcopyrite by moderately thermophilic mixed microorganisms in stirred tank bioreactor and community succession analysis
  publication-title: J. Cent. South Univ.
– volume: 36
  start-page: 523
  issue: 3
  year: 1978
  ident: 10.1016/j.mineng.2021.107135_b0020
  article-title: Thermophilic iron-oxidizing bacteria found in copper leaching dumps
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.36.3.523-525.1978
– volume: 94
  start-page: 95
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0625
  article-title: Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite
  publication-title: Colloid Surf. B - Biointerfaces
  doi: 10.1016/j.colsurfb.2012.01.022
– volume: 12
  start-page: 99
  year: 2018
  ident: 10.1016/j.mineng.2021.107135_b0195
  article-title: Fundamental study of different impurity ions on chalcopyrite leaching process
  publication-title: Metal Mine
– volume: 24
  start-page: 1898
  issue: 6
  year: 2014
  ident: 10.1016/j.mineng.2021.107135_b0125
  article-title: Surface characterization of chalcopyrite interacting with Leptospirillum ferriphilum
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(14)63269-6
– volume: 42
  start-page: 2167
  issue: 8
  year: 2011
  ident: 10.1016/j.mineng.2021.107135_b0120
  article-title: Chalcopyrite dissolution behavior under microbe-mineral contact/uncontact model
  publication-title: J. Cent. South Univ.
– volume: 22
  start-page: 2930
  issue: 10
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0370
  article-title: Sulfur/iron oxidation activity of three typical bioleaching bacteria and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Chinese J. Nonferrous Met.
– volume: 29
  start-page: 579
  issue: 3
  year: 1973
  ident: 10.1016/j.mineng.2021.107135_b0400
  article-title: The crystal structure refinement of chalcopyrite, CuFeS2
  publication-title: Acta Crystallogr., Sect. B
  doi: 10.1107/S0567740873002943
– volume: 56
  start-page: 326
  issue: 4
  year: 2019
  ident: 10.1016/j.mineng.2021.107135_b0580
  article-title: Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave
  publication-title: J. Korean Soc. Mineral Energy Resources Eng.
  doi: 10.32390/ksmer.2019.56.4.326
– volume: 97
  start-page: 2711
  issue: 6
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0265
  article-title: Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4099-8
– volume: 78
  start-page: 433
  issue: 4
  year: 2002
  ident: 10.1016/j.mineng.2021.107135_b0460
  article-title: Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10184
– start-page: 383
  year: 2003
  ident: 10.1016/j.mineng.2021.107135_b0270
  article-title: The role of non-oxidative processes in the leaching of chalcopyrite
– volume: 191
  year: 2020
  ident: 10.1016/j.mineng.2021.107135_b0235
  article-title: Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2019.105192
– volume: 70
  start-page: 4392
  issue: 17
  year: 2006
  ident: 10.1016/j.mineng.2021.107135_b0135
  article-title: The evolution of surface layers formed during chalcopyrite leaching
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.06.1555
– volume: 43
  start-page: 61
  issue: 1
  year: 1995
  ident: 10.1016/j.mineng.2021.107135_b0140
  article-title: Leaching of chalcopyrite concentrate with ferric chloride
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(94)00040-7
– volume: 99
  start-page: 45
  issue: 1
  year: 2009
  ident: 10.1016/j.mineng.2021.107135_b0145
  article-title: Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.06.004
– volume: 117
  start-page: 215
  year: 2001
  ident: 10.1016/j.mineng.2021.107135_b0330
  article-title: Batch leaching behavior of chalcopyrite in acidic ferric sulfate solutions — relationship between solution redox potential and copper extraction
  publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan)
  doi: 10.2473/shigentosozai.117.215
– volume: 63
  start-page: 15
  issue: 1
  year: 2002
  ident: 10.1016/j.mineng.2021.107135_b0345
  article-title: The role of EH measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulphide minerals
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(01)00206-7
– volume: 56
  start-page: 35
  issue: 3
  year: 2004
  ident: 10.1016/j.mineng.2021.107135_b0275
  article-title: Fundamental analysis of sulfide bioleaching process based on semiconductor electrochemistry
  publication-title: Nonferrous Metals
– volume: 151
  start-page: 141
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0610
  article-title: Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.11.009
– volume: 21
  start-page: 1063
  issue: 15
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0490
  article-title: Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.11.005
– volume: 21
  start-page: 355
  issue: 5
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0385
  article-title: Heap bioleaching of chalcopyrite: a review
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2007.10.018
– volume: 63
  start-page: 257
  issue: 3
  year: 2002
  ident: 10.1016/j.mineng.2021.107135_b0155
  article-title: A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(01)00228-6
– volume: 59
  start-page: 177
  issue: 2
  year: 2001
  ident: 10.1016/j.mineng.2021.107135_b0475
  article-title: Direct versus indirect bioleaching
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00181-X
– volume: 84
  start-page: 81
  issue: 1–2
  year: 2006
  ident: 10.1016/j.mineng.2021.107135_b0510
  article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides — a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.05.001
– volume: 16
  start-page: 695
  issue: 4
  year: 1985
  ident: 10.1016/j.mineng.2021.107135_b0220
  article-title: Effect of suspension potential on the oxidation rate of copper concentration in sulphuric acid conditions
  publication-title: Metall. Trans B.
  doi: 10.1007/BF02667506
– volume: 23
  start-page: 153
  issue: 2
  year: 1990
  ident: 10.1016/j.mineng.2021.107135_b0080
  article-title: Elemental sulphur formation during the ferric chloride leaching of chalcopyrite
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(90)90002-J
– volume: 65
  start-page: 319
  issue: 1
  year: 1999
  ident: 10.1016/j.mineng.2021.107135_b0445
  article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.1.319-321.1999
– volume: 140
  start-page: 163
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0515
  article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.09.013
– volume: 93
  start-page: 81
  issue: 3–4
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0040
  article-title: Leaching of chalcopyrite with ferric ion. Part I: General aspects
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.04.015
– year: 2014
  ident: 10.1016/j.mineng.2021.107135_b0200
– volume: 57
  start-page: 1733
  issue: 5
  year: 2018
  ident: 10.1016/j.mineng.2021.107135_b0550
  article-title: Mixed potential plays a key role in leaching of chalcopyrite: experimental and theoretical analysis
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b02051
– volume: 109
  start-page: 153
  year: 2017
  ident: 10.1016/j.mineng.2021.107135_b0595
  article-title: Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.03.013
– volume: 194
  start-page: 105299
  year: 2020
  ident: 10.1016/j.mineng.2021.107135_b0380
  article-title: Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2020.105299
– volume: 74
  start-page: 103
  issue: 1–2
  year: 2004
  ident: 10.1016/j.mineng.2021.107135_b0170
  article-title: Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2004.01.003
– volume: 46
  start-page: 349
  issue: 6
  year: 2000
  ident: 10.1016/j.mineng.2021.107135_b0405
  article-title: Magnetic properties of natural chalcopyrite at low temperature
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(00)00199-3
– volume: 83
  start-page: 40
  issue: 1–4
  year: 2006
  ident: 10.1016/j.mineng.2021.107135_b0375
  article-title: Competitive bioleaching of pyrite and chalcopyrite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.036
– volume: 60
  start-page: 185
  issue: 3
  year: 2001
  ident: 10.1016/j.mineng.2021.107135_b0180
  article-title: Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00155-9
– volume: 25
  start-page: 2725
  issue: 8
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0600
  article-title: Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(15)63897-3
– volume: 59
  start-page: 1091
  issue: 6
  year: 1995
  ident: 10.1016/j.mineng.2021.107135_b0575
  article-title: Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2)
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(95)00026-V
– volume: 127–128
  start-page: 116
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0435
  article-title: Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.07.013
– volume: 34
  start-page: 21
  issue: 1
  year: 2004
  ident: 10.1016/j.mineng.2021.107135_b0075
  article-title: Current situation and prospect of sulfide ore bio-leaching by extreme thermophile
  publication-title: Yun Nan Metallurgy
– volume: 9
  start-page: 985
  issue: 9
  year: 1996
  ident: 10.1016/j.mineng.2021.107135_b0115
  article-title: Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(96)00089-1
– volume: 47
  start-page: 37
  issue: 1
  year: 1997
  ident: 10.1016/j.mineng.2021.107135_b0160
  article-title: A case of ferrous sulfate addition enhancing chalcopyrite leaching
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(97)00032-7
– volume: 103
  start-page: 108113
  issue: 14
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_bib631
  article-title: The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential
  publication-title: Hydrometallurgy
– volume: 102
  start-page: 3877
  issue: 4
  year: 2011
  ident: 10.1016/j.mineng.2021.107135_b0630
  article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.090
– volume: 57
  start-page: 31
  issue: 1
  year: 2000
  ident: 10.1016/j.mineng.2021.107135_b0175
  article-title: A model for ferrous-promoted chalcopyrite leaching
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00089-X
– volume: 136
  start-page: 140
  year: 2019
  ident: 10.1016/j.mineng.2021.107135_b0615
  article-title: The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.03.014
– volume: 25
  start-page: 4110
  issue: 12
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0525
  article-title: Sulfur composition on surface of chalcopyrite during its bioleaching at 50 °C
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(15)64062-6
– volume: 22
  start-page: 265
  issue: 1
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0290
  article-title: Progress in sulfur speciation transformation during chalcopyrite bioleaching
  publication-title: Chinese J. Trans. Nonferrous Met.
– volume: 39
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.mineng.2021.107135_b0350
  article-title: Magnetically ordered multinary semiconductors
  publication-title: Prog. Cryst. Growth Charact. Mater.
  doi: 10.1016/S0960-8974(99)00016-9
– volume: 103
  start-page: 80
  issue: 1–4
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_bib632
  article-title: The dissolution of chalcopyrite in chloride solutions Part 2: Effect of various parameters on the rate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.03.004
– volume: 107
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.mineng.2021.107135_b0295
  article-title: Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2011.01.011
– volume: 23
  start-page: 824
  issue: 03
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0030
  article-title: Depression effect of pseudo glycolythiourea acid inflotation separation of copper-molybdenum
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(13)62535-2
– volume: 197-198
  start-page: 1
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0285
  article-title: A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.03.004
– volume: 3
  start-page: 644
  issue: 11
  year: 1917
  ident: 10.1016/j.mineng.2021.107135_b0025
  article-title: The crystal structure of chalcopyrite determined by X rays
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.3.11.644
– volume: 83
  start-page: 63
  issue: 1
  year: 2006
  ident: 10.1016/j.mineng.2021.107135_b0315
  article-title: Electrochemical behavior of massive chalcopyrite bioleached electrodes in presence of silver at 35 °C
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2006.03.039
– volume: 162
  start-page: 81
  year: 2017
  ident: 10.1016/j.mineng.2021.107135_b0605
  article-title: Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2017.04.002
– volume: 87
  start-page: 97
  year: 2013
  ident: 10.1016/j.mineng.2021.107135_b0110
  article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.119
– volume: 98
  start-page: 264
  year: 2016
  ident: 10.1016/j.mineng.2021.107135_b0505
  article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.09.008
– volume: 104
  start-page: 414
  issue: 3
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0105
  article-title: Tank bioleaching of low-grade chalcopyrite concentrates using redox control
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.02.024
– volume: 98
  start-page: 80
  year: 2016
  ident: 10.1016/j.mineng.2021.107135_b0305
  article-title: Bioleaching of chalcopyrite by Acidianus manzaensis under different constant pH
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.07.019
– volume: 18
  start-page: 31
  issue: 1
  year: 1987
  ident: 10.1016/j.mineng.2021.107135_b0150
  article-title: The leaching of chalcopyrite with cupric chloride
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02658429
– volume: 125–126
  start-page: 157
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0360
  article-title: Insights into heap bioleaching of low grade chalcopyrite ores — A pilot scale study
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.06.006
– volume: 132
  start-page: 1
  year: 2014
  ident: 10.1016/j.mineng.2021.107135_b0010
  article-title: Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2014.08.008
– volume: 15
  start-page: 215
  issue: 4
  year: 2002
  ident: 10.1016/j.mineng.2021.107135_b0090
  article-title: The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(01)00208-4
– volume: 91
  start-page: 144
  issue: 1
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0165
  article-title: Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2007.12.005
– volume: 144–145
  start-page: 7
  year: 2014
  ident: 10.1016/j.mineng.2021.107135_b0245
  article-title: Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2013.12.003
– volume: 58
  start-page: 85
  issue: 1
  year: 1992
  ident: 10.1016/j.mineng.2021.107135_b0415
  article-title: Evaluation of leptospirillum ferrooxidans for leaching
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.58.1.85-92.1992
– volume: 42
  start-page: 40
  issue: 1
  year: 2017
  ident: 10.1016/j.mineng.2021.107135_b0425
  article-title: Effect of redox potential on chalcopyrite dissolution imposed by addition of ferrous ions
  publication-title: Eclética Química Journal
– volume: 54
  start-page: 279
  issue: 3
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0055
  article-title: The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite
  publication-title: Can. Metall. Q.
  doi: 10.1179/1879139515Y.0000000007
– volume: 25
  start-page: 2380
  issue: 10
  year: 2018
  ident: 10.1016/j.mineng.2021.107135_b0545
  article-title: Leaching of chalcopyrite: An emphasis on effect of copper and iron ions
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-018-3922-5
– volume: 105
  start-page: 259
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2021.107135_b0585
  article-title: Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2010.10.012
– volume: 31
  start-page: 171
  issue: 1
  year: 2021
  ident: 10.1016/j.mineng.2021.107135_b0465
  article-title: Effects of Cu2+, Fe2+, and Fe3+ on bioleaching of chalcopyrite by moderate thermophilic mixed bacteria
  publication-title: Chinese J. Nonferrous Met.
– volume: 20
  start-page: 346
  issue: 2
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0215
  article-title: Bioleaching of chalcopyrite concentrate using mixed thermophilic culture and succession of microbial community during leaching process
  publication-title: Chinese J. Trans. Nonferrous Met.
  doi: 10.1016/S1003-6326(10)60495-5
– volume: 75
  start-page: 5865
  issue: 20
  year: 2011
  ident: 10.1016/j.mineng.2021.107135_b0230
  article-title: Cu and Fe chalcopyrite leach activation energies and the effect of added Fe3+
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2011.07.003
– volume: 41
  start-page: 1234
  issue: 4
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0565
  article-title: Chalcopyrite bioleaching by moderate thermophilic bacteria and surface passivation
  publication-title: J. Cent. South Univ.
– volume: 137
  start-page: 1
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0300
  article-title: Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2015.02.008
– volume: 27
  start-page: 1351
  issue: 5
  year: 2020
  ident: 10.1016/j.mineng.2021.107135_b0205
  article-title: Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: an overview
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-020-4371-5
– volume: 34
  start-page: 13
  issue: 1
  year: 1981
  ident: 10.1016/j.mineng.2021.107135_b0365
  article-title: Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9810013
– volume: 25
  start-page: 303
  issue: 1
  year: 2015
  ident: 10.1016/j.mineng.2021.107135_b0590
  article-title: Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(15)63605-6
– volume: 71
  start-page: 75
  issue: 1–2
  year: 2003
  ident: 10.1016/j.mineng.2021.107135_b0050
  article-title: How do bacteria interact with minerals?
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(03)00175-0
– volume: 69
  start-page: 185
  year: 2014
  ident: 10.1016/j.mineng.2021.107135_b0555
  article-title: Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.08.011
– volume: 64
  start-page: 263
  issue: 2
  year: 2000
  ident: 10.1016/j.mineng.2021.107135_b0190
  article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00296-3
– volume: 26
  start-page: 2485
  issue: 9
  year: 2016
  ident: 10.1016/j.mineng.2021.107135_b0310
  article-title: Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(16)64369-8
– volume: 88
  start-page: 37
  issue: 1–2
  year: 2008
  ident: 10.1016/j.mineng.2021.107135_b0495
  article-title: Bioleaching of chalcopyrite with thermophiles: temperature–pH–ORP dependence
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2008.06.002
– volume: 74
  start-page: 2881
  issue: 10
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0280
  article-title: Chalcopyrite leaching: the rate controlling factors
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2010.02.029
– volume: 9
  start-page: 639
  issue: 10
  year: 2019
  ident: 10.1016/j.mineng.2021.107135_b0470
  article-title: Cupric and chloride ions: leaching of chalcopyrite concentrate with low chloride concentration media
  publication-title: Minerals
  doi: 10.3390/min9100639
– volume: 94
  start-page: 43
  issue: 1
  year: 2010
  ident: 10.1016/j.mineng.2021.107135_b0005
  article-title: Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2009.11.006
– volume: 18
  start-page: 505
  issue: 5
  year: 2005
  ident: 10.1016/j.mineng.2021.107135_b0420
  article-title: XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.08.004
– volume: 57
  start-page: 225
  issue: 3
  year: 2000
  ident: 10.1016/j.mineng.2021.107135_b0455
  article-title: The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching
  publication-title: Hydrometallurgy
  doi: 10.1016/S0304-386X(00)00115-8
– volume: 225
  start-page: 395
  issue: 1
  year: 2004
  ident: 10.1016/j.mineng.2021.107135_b0325
  article-title: Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2003.10.030
– volume: 737
  year: 2020
  ident: 10.1016/j.mineng.2021.107135_b0535
  article-title: The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139485
– volume: 22
  start-page: 951
  issue: 11
  year: 2009
  ident: 10.1016/j.mineng.2021.107135_b0485
  article-title: Mathematical modeling of thermophilic bioleaching of chalcopyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.03.001
– volume: 116
  start-page: 6357
  issue: 10
  year: 2012
  ident: 10.1016/j.mineng.2021.107135_b0070
  article-title: Reconstruction of the chalcopyrite surfaces – a DFT study
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp300713z
– volume: 95
  start-page: 153
  issue: 1–2
  year: 2009
  ident: 10.1016/j.mineng.2021.107135_b0430
  article-title: Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2008.05.009
SSID ssj0005789
Score 2.5028417
SecondaryResourceType review_article
Snippet Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107135
SubjectTerms Band theory
Bioleaching
Chalcopyrite
Chemical leaching
Redox potential
Title Effects of redox potential on chalcopyrite leaching: An overview
URI https://dx.doi.org/10.1016/j.mineng.2021.107135
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY3ez2Uc8uRRLVexFC70tSTbRSt1d6gp68beb2YdUEAWPGzKwfEnmwXwzg9CpsLciTR1GNE0VYcYIInRIiXGZLw2jUqRQ4Hw7CcZTdj3zZx00bGthgFbZ6P5ap1faulkZNGgOivl8cOdEnAbW3bZBCyTTQA8zFkL__LOPFZpHWI3Bg80EdrflcxXH69l6ctmDjRKpa5dgWt3P5mnF5Iy20GbjK-K4_p1t1NHZDtpY6SC4iy7q7sMvODcYWn--4SIvgQBk5fIMq0exUHnxvrSOJV40xMlzHGcYmJuQFdhD09Hl_XBMmqEIRFEvKAmXxlpYN5AyktqHbGzKYH50oKUDhAsmbEwUacY97XsmoEZz6iiZ-sJlyj5Obx91szzTBwhLoY1DU-4E9mSELznXIpQRD4WvuA00eshrsUhU0zEcBlcskpYa9pTUCCaAYFIj2EPkS6qoO2b8sT9sYU6-nXxilfqvkof_ljxC6_BVk_KOUbdcvuoT61yUsl_dnj5ai69uxpNP1i3OZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw9el6abTdL1ZCmW1j4uttBb2E12tVKTUCvov3emSXyAKHjd7ED4dnYe7DczhFwq0Io4dgQzPI6YsFYxZQLObFN42gquVYwFzqOx35uK25k3q5BOWQuDtMrC9uc2fW2ti5VGgWYjm88bd05Lch_CbUha8DEN7HANu1OBstfa_UFv_Mn0CNaT8HA_Q4Gygm5N83qCYC65h0SRN2EJB9b97KG-eJ3uDtkuwkXazv9ol1RMske2vjQR3CfXeQPiZ5pait0_X2mWrpADBHJpQqMHtYjS7G0JsSVdFNzJK9pOKJI38WHggEy7N5NOjxVzEVjEXX_FpLbgZJu-1i1tPHyQjQWOkPaNdpBzIRSkRS0jpGs81_rcGsmdSMeeaooI7qd7SKpJmpgjQrUy1uGxdHw4HOVpKY0KdEsGyosk5Bp14pZYhFHRNBxnVyzCkh32GOYIhohgmCNYJ-xDKsubZvyxPyhhDr8dfgh2_VfJ439LXpCN3mQ0DIf98eCEbOKXnKN3Sqqr5Ys5g1hjpc8LXXoH_lLRFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+redox+potential+on+chalcopyrite+leaching%3A+An+overview&rft.jtitle=Minerals+engineering&rft.au=Tian%2C+Zuyuan&rft.au=Li%2C+Haodong&rft.au=Wei%2C+Qian&rft.au=Qin%2C+Wenqing&rft.date=2021-10-01&rft.issn=0892-6875&rft.volume=172&rft.spage=107135&rft_id=info:doi/10.1016%2Fj.mineng.2021.107135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2021_107135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon