Effects of redox potential on chalcopyrite leaching: An overview
Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissoluti...
Saved in:
Published in | Minerals engineering Vol. 172; p. 107135 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0892-6875 1872-9444 |
DOI | 10.1016/j.mineng.2021.107135 |
Cover
Loading…
Abstract | Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissolution kinetics of chalcopyrite in hydrometallurgy are low due to its high lattice energy. Redox potential has a significant role as chalcopyrite dissolves, and the possibility of controlling redox potential to promote chalcopyrite leaching cannot be ignored. In this article, the impact of redox potential on chemical leaching and bioleaching of chalcopyrite, reported in previous publications, are summarized. The effects of ferrous ions, ferric ions and copper ions in chalcopyrite leaching system are discussed, and the leaching behavior of chalcopyrite is explained by the band theory. |
---|---|
AbstractList | Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process, biohydrometallurgy has environmental and economic advantages, and is thus considered to be a promising mineral-processing technology. However, the dissolution kinetics of chalcopyrite in hydrometallurgy are low due to its high lattice energy. Redox potential has a significant role as chalcopyrite dissolves, and the possibility of controlling redox potential to promote chalcopyrite leaching cannot be ignored. In this article, the impact of redox potential on chemical leaching and bioleaching of chalcopyrite, reported in previous publications, are summarized. The effects of ferrous ions, ferric ions and copper ions in chalcopyrite leaching system are discussed, and the leaching behavior of chalcopyrite is explained by the band theory. |
ArticleNumber | 107135 |
Author | Yang, Congren Tian, Zuyuan Wei, Qian Qin, Wenqing Li, Haodong |
Author_xml | – sequence: 1 givenname: Zuyuan surname: Tian fullname: Tian, Zuyuan organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 2 givenname: Haodong surname: Li fullname: Li, Haodong organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 3 givenname: Qian surname: Wei fullname: Wei, Qian organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 4 givenname: Wenqing surname: Qin fullname: Qin, Wenqing organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China – sequence: 5 givenname: Congren orcidid: 0000-0001-7040-2302 surname: Yang fullname: Yang, Congren email: yangcongren@csu.edu.cn organization: School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China |
BookMark | eNqFkM1KAzEYRYNUsFbfwEVeYGqSSTKZLsRS6g8U3Og6ZDJf2pRpUjKh2rd3Sl250NWFC-fCPddoFGIAhO4omVJC5f12uvMBwnrKCKNDVdFSXKAxVRUras75CI2JqlkhVSWu0HXfbwkholL1GD0unQObexwdTtDGL7yPGUL2psMxYLsxnY37Y_IZcAfGbnxYz_A84HiAdPDweYMunel6uP3JCfp4Wr4vXorV2_PrYr4qLCtlLurGKVFS2TSqAcG5lC1nvBYSGsIIYdwwSRXwugRROskc1IzYphWGcqsqUk7Q7LxrU-z7BE5bn032MeRkfKcp0ScXeqvPLvTJhT67GGD-C94nvzPp-B_2cMZgODacTbq3HoKF1qdBmm6j_3vgG9PRfD0 |
CitedBy_id | crossref_primary_10_1016_j_jiec_2021_11_055 crossref_primary_10_1016_j_mineng_2023_108409 crossref_primary_10_1007_s40831_025_01041_2 crossref_primary_10_53360_2788_7995_2024_3_15__47 crossref_primary_10_1016_j_hydromet_2023_106245 crossref_primary_10_1021_acsomega_3c07218 crossref_primary_10_1016_j_mineng_2022_107677 crossref_primary_10_1016_j_mineng_2024_109043 crossref_primary_10_1016_j_molliq_2024_125756 crossref_primary_10_1002_bit_28945 crossref_primary_10_3390_separations10070375 crossref_primary_10_1016_j_mineng_2024_108673 crossref_primary_10_1080_08827508_2024_2367423 crossref_primary_10_1016_j_mineng_2023_108530 crossref_primary_10_1002_ejic_202400704 crossref_primary_10_1016_S1003_6326_24_66519_2 crossref_primary_10_3390_pr12010013 crossref_primary_10_1016_j_chemosphere_2022_136972 crossref_primary_10_1016_S1003_6326_23_66231_4 crossref_primary_10_1039_D3NJ01998E crossref_primary_10_1016_j_apgeochem_2024_105984 crossref_primary_10_3390_mining4020020 crossref_primary_10_1007_s11837_025_07265_7 crossref_primary_10_1016_j_jece_2022_108516 crossref_primary_10_1016_S1003_6326_24_66657_4 crossref_primary_10_1080_08827508_2022_2155153 crossref_primary_10_3390_met11121969 crossref_primary_10_1016_j_mineng_2023_108417 crossref_primary_10_1177_25726641251316396 crossref_primary_10_1016_j_mineng_2022_107686 crossref_primary_10_54097_hset_v17i_2599 crossref_primary_10_1016_j_mineng_2024_108762 crossref_primary_10_1016_j_mineng_2024_109014 crossref_primary_10_1016_j_wasman_2023_08_026 crossref_primary_10_1016_j_mineng_2022_107594 crossref_primary_10_1016_j_jclepro_2025_145352 crossref_primary_10_1016_j_psep_2025_106797 crossref_primary_10_1016_j_gca_2023_11_008 crossref_primary_10_1016_j_arabjc_2023_104905 crossref_primary_10_1089_ees_2022_0186 |
Cites_doi | 10.1016/j.electacta.2013.04.051 10.1016/j.hydromet.2011.11.003 10.1016/0304-386X(88)90003-5 10.1016/0304-386X(95)00041-E 10.1016/j.mineng.2014.08.021 10.1016/j.minpro.2009.11.005 10.1016/j.hydromet.2007.11.005 10.2473/shigentosozai.120.600 10.1016/S0169-4332(02)01284-9 10.1016/S0304-386X(00)00173-0 10.1016/S0032-9592(02)00169-3 10.1016/j.mineng.2016.10.003 10.1016/j.hydromet.2015.10.014 10.1016/S0301-7516(00)00045-4 10.1016/j.biortech.2012.11.050 10.1016/j.hydromet.2010.03.003 10.4028/www.scientific.net/AMR.1130.338 10.1016/j.hydromet.2008.08.003 10.1128/aem.36.3.523-525.1978 10.1016/j.colsurfb.2012.01.022 10.1016/S1003-6326(14)63269-6 10.1107/S0567740873002943 10.32390/ksmer.2019.56.4.326 10.1007/s00253-012-4099-8 10.1002/bit.10184 10.1016/j.hydromet.2019.105192 10.1016/j.gca.2006.06.1555 10.1016/0301-7516(94)00040-7 10.1016/j.hydromet.2009.06.004 10.2473/shigentosozai.117.215 10.1016/S0304-386X(01)00206-7 10.1016/j.hydromet.2014.11.009 10.1016/j.mineng.2007.11.005 10.1016/j.mineng.2007.10.018 10.1016/S0304-386X(01)00228-6 10.1016/S0304-386X(00)00181-X 10.1016/j.hydromet.2006.05.001 10.1007/BF02667506 10.1016/0304-386X(90)90002-J 10.1128/AEM.65.1.319-321.1999 10.1016/j.hydromet.2013.09.013 10.1016/j.hydromet.2008.04.015 10.1021/acs.iecr.7b02051 10.1016/j.mineng.2017.03.013 10.1016/j.hydromet.2020.105299 10.1016/j.hydromet.2004.01.003 10.1016/S0167-577X(00)00199-3 10.1016/j.hydromet.2006.03.036 10.1016/S0304-386X(00)00155-9 10.1016/S1003-6326(15)63897-3 10.1016/0016-7037(95)00026-V 10.1016/j.hydromet.2012.07.013 10.1016/0892-6875(96)00089-1 10.1016/S0304-386X(97)00032-7 10.1016/j.biortech.2010.11.090 10.1016/S0304-386X(00)00089-X 10.1016/j.mineng.2019.03.014 10.1016/S1003-6326(15)64062-6 10.1016/S0960-8974(99)00016-9 10.1016/j.hydromet.2010.03.004 10.1016/j.hydromet.2011.01.011 10.1016/S1003-6326(13)62535-2 10.1016/j.cis.2013.03.004 10.1073/pnas.3.11.644 10.1016/j.hydromet.2006.03.039 10.1016/j.minpro.2017.04.002 10.1016/j.electacta.2012.07.119 10.1016/j.mineng.2016.09.008 10.1016/j.hydromet.2010.02.024 10.1016/j.mineng.2016.07.019 10.1007/BF02658429 10.1016/j.hydromet.2012.06.006 10.1016/j.minpro.2014.08.008 10.1016/S0892-6875(01)00208-4 10.1016/j.hydromet.2007.12.005 10.1016/j.hydromet.2013.12.003 10.1128/aem.58.1.85-92.1992 10.1179/1879139515Y.0000000007 10.1007/s11771-018-3922-5 10.1016/j.hydromet.2010.10.012 10.1016/S1003-6326(10)60495-5 10.1016/j.gca.2011.07.003 10.1016/j.minpro.2015.02.008 10.1007/s11771-020-4371-5 10.1071/CH9810013 10.1016/S1003-6326(15)63605-6 10.1016/S0304-386X(03)00175-0 10.1016/j.mineng.2014.08.011 10.1016/S0016-7037(99)00296-3 10.1016/S1003-6326(16)64369-8 10.1016/j.minpro.2008.06.002 10.1016/j.gca.2010.02.029 10.3390/min9100639 10.1016/j.minpro.2009.11.006 10.1016/j.mineng.2004.08.004 10.1016/S0304-386X(00)00115-8 10.1016/j.apsusc.2003.10.030 10.1016/j.scitotenv.2020.139485 10.1016/j.mineng.2009.03.001 10.1021/jp300713z 10.1016/j.hydromet.2008.05.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2021.107135 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2021_107135 S0892687521003642 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- RIG SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c236t-9bf85316bb8be54466d424956eb020024a2618e493e53f62fe920cbd5a14c8703 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:30 EDT 2025 Thu Apr 24 22:59:17 EDT 2025 Fri Feb 23 02:43:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Band theory Bioleaching Chalcopyrite Redox potential Chemical leaching |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-9bf85316bb8be54466d424956eb020024a2618e493e53f62fe920cbd5a14c8703 |
ORCID | 0000-0001-7040-2302 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mineng_2021_107135 crossref_primary_10_1016_j_mineng_2021_107135 elsevier_sciencedirect_doi_10_1016_j_mineng_2021_107135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Pradhan, Nathsarma, Rao, Sukla, Mishra (b0385) 2008; 21 Hiroyoshi, Miki, Hirajima, Tsunekawa (b0175) 2000; 57 Elsherief (b0090) 2002; 15 Yao, Wen, Gao, Wang (b0565) 2010; 41 Yoo (b0580) 2019; 56 Vilcáez, Suto, Inoue (b0495) 2008; 88 Nikiforov (b0350) 1999; 39 Liu, Diao, Yang, Qin, Wu (b0215) 2010; 20 Watling (b0510) 2006; 84 Lara, Viridiana Garcia-Meza, Gonzalez, Cruz (b0265) 2013; 97 Crundwell (b0045) 1988; 21 López-Juárez, Gutiérrez-Arenas, Rivera-Santillán (b0315) 2006; 83 Third, Cord-Ruwisch, Watling (b0455) 2000; 57 Yang, Liu, Chen (b0560) 2015; 70 Vilcáez, Inoue (b0485) 2009; 22 Yang, Jiao, Qin (b0545) 2018; 25 Acres, Harmer, Beattie (b0005) 2010; 94 Huang, Liao, Yang, Yu, Wu, Hong, Wang, Zhao, Gan, Jiao, Qin, Qiu (b0205) 2020; 27 Li, Kawashima, Kaplun, Absolon, Gerson (b0280) 2010; 74 Xia, Yang, He, Liang, Zhao, Zheng, Ma, Zhao, Nie, Qiu (b0530) 2010; 94 Liang, Xia, Yang, Nie, Qiu (b0290) 2012; 22 Hiroyoshi, Miki, Hirajima, Tsunekawa (b0180) 2001; 60 Kametani, Aoki (b0220) 1985; 16 Li, Kawashima, Li, Chandra, Gerson (b0285) 2013; 197-198 Hiroyoshi, Arai, Miki, Tsunekawa, Hirajima (b0155) 2002; 63 Yévenes, Miki, Nicol (bib632) 2010; 103 Crundwell (b0050) 2003; 71 Gu, Hu, Li (b0125) 2014; 24 Yang, Qin, Zhao, Wang, Wang (b0550) 2018; 57 Kartal, Xia, Ralph, Rickard, Renard, Li (b0235) 2020; 191 Nicol, Miki, Velásquez-Yévenes (b0340) 2010; 103 Schippers, Sand (b0445) 1999; 65 Yin, Kelsall, Vaughan, England (b0575) 1995; 59 Gericke, Govender, Pinches (b0105) 2010; 104 Panda, Sanjay, Sukla, Pradhan, Subbaiah, Mishra, Prasad, Ray (b0360) 2012; 125–126 Qin, Yang, Lai, Wang, Liu, Zhang (b0390) 2013; 129 Hu (b0200) 2014 Crundwell, Van Aswegen, Bryson, Biley, Craig, Marsicano, Keartland (b0060) 2015; 158 Song, Liu, Jiang (b0450) 2015; 1130 Zhou, Xie, Zhang, Zeng, Luo, Wang (b0620) 2010; 41 Zhao, Wang, Qin, Zheng, Tao, Gan, Qiu (b0600) 2015; 25 Klauber, Parker, Bronswijk, Watling (b0250) 2001; 62 Peng, Tang, Xia, Xia, Zhao, Nie, Zhu (b0370) 2012; 22 Rais, Gismelseed, Al-Rawas (b0405) 2000; 46 Yang, Luo, Wang, Yu, Gan, Wang, Liu, Qiu (b0535) 2020; 737 Okamoto, Nakayama, Kuroiwa, Hiroyoshi, Tsunekawa (b0355) 2004; 120 Yévenes, Nicol, Miki (bib631) 2010; 103 Córdoba, Muñoz, Blázquez, González, Ballester (b0040) 2008; 93 Khoshkhoo, Dopson, Engström, Sandström (b0240) 2017; 100 Edelbro, Sandstrom, Paul (b0085) 2003; 206 Liang, Xia, Yang, Nie, Zhao, Zheng, Ma, Zhao (b0295) 2011; 107 Ghahremaninezhad, Dixon, Asselin (b0110) 2013; 87 Sasaki, Nakamuta, Hirajima, Tuovinen (b0430) 2009; 95 Nicol, Lázaro (b0345) 2002; 63 Harmer, Thomas, Fornasiero, Gerson (b0135) 2006; 70 Holmes, Crundwell (b0190) 2000; 64 Watling (b0515) 2013; 140 Zhao, Zhang, Zhang, Qian, Sun, Yang, Zhang, Wang, Kim, Qiu (b0615) 2019; 136 Sand, Rohde, Sobotke, Zenneck (b0415) 1992; 58 Hiroyoshi, Kitagawa, Tsunekawa (b0165) 2008; 91 Torres, Ghorbani, Hernández, Justel, Aravena, Herreros (b0470) 2019; 9 Burdick, Ellis (b0025) 1917; 3 Liu, Xia, Nie, Ma, Zheng, Hong, Zhao, Wen (b0305) 2016; 98 Tributsch (b0475) 2001; 59 Havlík, Škrobian, Baláž, Kammel (b0140) 1995; 43 Santos, Arena, Benedetti, Bevilaqua (b0425) 2017; 42 Konishi, Tokushige, Asai, Suzuki (b0255) 2001; 59 Chen, Lan, Liao (b0030) 2013; 23 Zhao, Wang, Yang, Hu, Gan, Tao, Qin, Qiu (b0610) 2015; 151 Rawlings (b0410) 2005; 4 Khoshkhoo, Dopson, Shchukarev, Sandström (b0245) 2014; 144–145 Córdoba, Muñoz, Blázquez, González, Ballester (b0035) 2008; 93 Vilcáez, Yamada, Inoue (b0500) 2009; 96 Brierley (b0020) 1978; 36 Nicol, Lazaro (b0270) 2003 Dutrizac (b0080) 1990; 23 Third, Cord-Ruwisch, Watling (b0460) 2002; 78 He, Xia, Yang, Jiang, Xiao, Zheng, Ma, Zhao, Qiu (b0145) 2009; 99 Majuste, Ciminelli, Osseo-Asare, Dantas, Magalhaes-Paniago (b0320) 2012; 111 Zhao, Wang, Tao, Cao, Yang, Qin, Qiu (b0605) 2017; 162 Holmes, Crundwell (b0185) 1995; 39 Liu, Nie, Xia, Zhu, Yang, Zhao, Zheng, Zhao (b0300) 2015; 137 Yang (b0540) 2015 Zhu, Li, Jiao, Jiang, Sand, Xia, Liu, Qin, Qiu, Hu, Chai (b0625) 2012; 94 Yang, Harmer, Chen (b0555) 2014; 69 Li, Wang (b0275) 2004; 56 de Oliveira, de Lima, de Abreu, Duarte (b0070) 2012; 116 Tian, Li, Wei, Jiao, Qin, Yang (b0465) 2021; 31 Parker, Paul, Power, Parker, Paul, Power (b0365) 1981; 34 Gu, Guo (b0120) 2011; 42 Liu, Xia, Nie, Wen, Yang, Ma, Zheng, Zhao (b0310) 2016; 26 Zhao, Huang, Wang, Li, Liao, Wang, Qiu, Xiong, Qin, Qiu (b0595) 2017; 109 Sasaki, Takatsugi, Tuovinen (b0435) 2012; 127–128 Hirato, Majima, Awakura (b0150) 1987; 18 Wu, Yang, Qin, Jiao, Wang, Zhang (b0525) 2015; 25 Zhao, Hu, Li, Zhu, Qin, Qiu, Wang (b0590) 2015; 25 Wang, Li, Wang, Wang (b0195) 2018; 12 Petersen, Dixon (b0375) 2006; 83 Sandström, Shchukarev, Paul (b0420) 2005; 18 Hall, Stewart (b0400) 1973; 29 Cui, Feng, Huang, Chen, Yang (b0065) 2019; 35 Phuong Thao, Tsuji, Jeon, Park, Tabelin, Ito, Hiroyoshi (b0380) 2020; 194 Zeng, Qiu, Zhou, Chen (b0585) 2011; 105 Bevilaqua, Lahti-Tommila, Garcia, Puhakka, Tuovinen (b0010) 2014; 132 Bevilaqua, Leite, Garcia, Tuovinen (b0015) 2002; 38 Crundwell (b0055) 2015; 54 Hiroyoshi, Hirota, Hirajima, Tsunekawa (b0160) 1997; 47 Miki, Hiroyoshi, Hirajima, Tsunekawa (b0330) 2001; 117 Gu, Hu, Zhang, Xiong, Yang (b0130) 2013; 103 Vilcaez, Suto, Inoue (b0490) 2008; 21 Kaplun, Li, Kawashima, Gerson (b0230) 2011; 75 Gomez, Lzquez, Ballester, Gonzalez (b0115) 1996; 9 Mikhlin, Tomashevich, Asanov, Okotrub, Varnek, Vyalikh (b0325) 2004; 225 Hiroyoshi, Kuroiwa, Miki, Tsunekawa, Hirajima (b0170) 2004; 74 Zhu, Xia, Yang, Nie, Zheng, Ma, Zhang, Peng, Tang, Qiu (b0630) 2011; 102 Deng (b0075) 2004; 34 Wang, Gan, Zhao, Hu, Li, Qin, Qiu (b0505) 2016; 98 Yang (10.1016/j.mineng.2021.107135_b0560) 2015; 70 Parker (10.1016/j.mineng.2021.107135_b0365) 1981; 34 Khoshkhoo (10.1016/j.mineng.2021.107135_b0245) 2014; 144–145 Mikhlin (10.1016/j.mineng.2021.107135_b0325) 2004; 225 Wu (10.1016/j.mineng.2021.107135_b0525) 2015; 25 Nikiforov (10.1016/j.mineng.2021.107135_b0350) 1999; 39 Li (10.1016/j.mineng.2021.107135_b0280) 2010; 74 Gericke (10.1016/j.mineng.2021.107135_b0105) 2010; 104 Sandström (10.1016/j.mineng.2021.107135_b0420) 2005; 18 Wang (10.1016/j.mineng.2021.107135_b0195) 2018; 12 Schippers (10.1016/j.mineng.2021.107135_b0445) 1999; 65 Liu (10.1016/j.mineng.2021.107135_b0215) 2010; 20 Hall (10.1016/j.mineng.2021.107135_b0400) 1973; 29 Cui (10.1016/j.mineng.2021.107135_b0065) 2019; 35 Santos (10.1016/j.mineng.2021.107135_b0425) 2017; 42 Third (10.1016/j.mineng.2021.107135_b0460) 2002; 78 Yang (10.1016/j.mineng.2021.107135_b0555) 2014; 69 Gomez (10.1016/j.mineng.2021.107135_b0115) 1996; 9 Holmes (10.1016/j.mineng.2021.107135_b0190) 2000; 64 Córdoba (10.1016/j.mineng.2021.107135_b0035) 2008; 93 Crundwell (10.1016/j.mineng.2021.107135_b0045) 1988; 21 Gu (10.1016/j.mineng.2021.107135_b0120) 2011; 42 Watling (10.1016/j.mineng.2021.107135_b0510) 2006; 84 Wang (10.1016/j.mineng.2021.107135_b0505) 2016; 98 Liang (10.1016/j.mineng.2021.107135_b0295) 2011; 107 Vilcaez (10.1016/j.mineng.2021.107135_b0490) 2008; 21 Panda (10.1016/j.mineng.2021.107135_b0360) 2012; 125–126 Vilcáez (10.1016/j.mineng.2021.107135_b0485) 2009; 22 Zhao (10.1016/j.mineng.2021.107135_b0600) 2015; 25 Liu (10.1016/j.mineng.2021.107135_b0300) 2015; 137 Vilcáez (10.1016/j.mineng.2021.107135_b0495) 2008; 88 Li (10.1016/j.mineng.2021.107135_b0275) 2004; 56 Petersen (10.1016/j.mineng.2021.107135_b0375) 2006; 83 Kartal (10.1016/j.mineng.2021.107135_b0235) 2020; 191 Nicol (10.1016/j.mineng.2021.107135_b0345) 2002; 63 Zhao (10.1016/j.mineng.2021.107135_b0610) 2015; 151 López-Juárez (10.1016/j.mineng.2021.107135_b0315) 2006; 83 Yin (10.1016/j.mineng.2021.107135_b0575) 1995; 59 Córdoba (10.1016/j.mineng.2021.107135_b0040) 2008; 93 Gu (10.1016/j.mineng.2021.107135_b0130) 2013; 103 Kametani (10.1016/j.mineng.2021.107135_b0220) 1985; 16 Tian (10.1016/j.mineng.2021.107135_b0465) 2021; 31 Hiroyoshi (10.1016/j.mineng.2021.107135_b0180) 2001; 60 Dutrizac (10.1016/j.mineng.2021.107135_b0080) 1990; 23 Vilcáez (10.1016/j.mineng.2021.107135_b0500) 2009; 96 Zhu (10.1016/j.mineng.2021.107135_b0630) 2011; 102 Tributsch (10.1016/j.mineng.2021.107135_b0475) 2001; 59 Zhao (10.1016/j.mineng.2021.107135_b0605) 2017; 162 Bevilaqua (10.1016/j.mineng.2021.107135_b0010) 2014; 132 Yang (10.1016/j.mineng.2021.107135_b0540) 2015 Crundwell (10.1016/j.mineng.2021.107135_b0050) 2003; 71 Miki (10.1016/j.mineng.2021.107135_b0330) 2001; 117 Gu (10.1016/j.mineng.2021.107135_b0125) 2014; 24 Havlík (10.1016/j.mineng.2021.107135_b0140) 1995; 43 Crundwell (10.1016/j.mineng.2021.107135_b0060) 2015; 158 Holmes (10.1016/j.mineng.2021.107135_b0185) 1995; 39 Xia (10.1016/j.mineng.2021.107135_b0530) 2010; 94 Harmer (10.1016/j.mineng.2021.107135_b0135) 2006; 70 Konishi (10.1016/j.mineng.2021.107135_b0255) 2001; 59 Zhao (10.1016/j.mineng.2021.107135_b0595) 2017; 109 Elsherief (10.1016/j.mineng.2021.107135_b0090) 2002; 15 Ghahremaninezhad (10.1016/j.mineng.2021.107135_b0110) 2013; 87 He (10.1016/j.mineng.2021.107135_b0145) 2009; 99 Torres (10.1016/j.mineng.2021.107135_b0470) 2019; 9 Peng (10.1016/j.mineng.2021.107135_b0370) 2012; 22 Third (10.1016/j.mineng.2021.107135_b0455) 2000; 57 Yang (10.1016/j.mineng.2021.107135_b0535) 2020; 737 Edelbro (10.1016/j.mineng.2021.107135_b0085) 2003; 206 Rais (10.1016/j.mineng.2021.107135_b0405) 2000; 46 Liang (10.1016/j.mineng.2021.107135_b0290) 2012; 22 Pradhan (10.1016/j.mineng.2021.107135_b0385) 2008; 21 Zhao (10.1016/j.mineng.2021.107135_b0615) 2019; 136 Nicol (10.1016/j.mineng.2021.107135_b0340) 2010; 103 Hiroyoshi (10.1016/j.mineng.2021.107135_b0170) 2004; 74 Phuong Thao (10.1016/j.mineng.2021.107135_b0380) 2020; 194 Hiroyoshi (10.1016/j.mineng.2021.107135_b0155) 2002; 63 Klauber (10.1016/j.mineng.2021.107135_b0250) 2001; 62 Yao (10.1016/j.mineng.2021.107135_b0565) 2010; 41 Brierley (10.1016/j.mineng.2021.107135_b0020) 1978; 36 Chen (10.1016/j.mineng.2021.107135_b0030) 2013; 23 Huang (10.1016/j.mineng.2021.107135_b0205) 2020; 27 Zhou (10.1016/j.mineng.2021.107135_b0620) 2010; 41 Bevilaqua (10.1016/j.mineng.2021.107135_b0015) 2002; 38 Deng (10.1016/j.mineng.2021.107135_b0075) 2004; 34 de Oliveira (10.1016/j.mineng.2021.107135_b0070) 2012; 116 Sasaki (10.1016/j.mineng.2021.107135_b0430) 2009; 95 Li (10.1016/j.mineng.2021.107135_b0285) 2013; 197-198 Hiroyoshi (10.1016/j.mineng.2021.107135_b0175) 2000; 57 Hiroyoshi (10.1016/j.mineng.2021.107135_b0160) 1997; 47 Yang (10.1016/j.mineng.2021.107135_b0545) 2018; 25 Burdick (10.1016/j.mineng.2021.107135_b0025) 1917; 3 Khoshkhoo (10.1016/j.mineng.2021.107135_b0240) 2017; 100 Yoo (10.1016/j.mineng.2021.107135_b0580) 2019; 56 Zhu (10.1016/j.mineng.2021.107135_b0625) 2012; 94 Hirato (10.1016/j.mineng.2021.107135_b0150) 1987; 18 Nicol (10.1016/j.mineng.2021.107135_b0270) 2003 Zeng (10.1016/j.mineng.2021.107135_b0585) 2011; 105 Liu (10.1016/j.mineng.2021.107135_b0310) 2016; 26 Lara (10.1016/j.mineng.2021.107135_b0265) 2013; 97 Yévenes (10.1016/j.mineng.2021.107135_bib632) 2010; 103 Watling (10.1016/j.mineng.2021.107135_b0515) 2013; 140 Liu (10.1016/j.mineng.2021.107135_b0305) 2016; 98 Majuste (10.1016/j.mineng.2021.107135_b0320) 2012; 111 Rawlings (10.1016/j.mineng.2021.107135_b0410) 2005; 4 Hu (10.1016/j.mineng.2021.107135_b0200) 2014 Qin (10.1016/j.mineng.2021.107135_b0390) 2013; 129 Yévenes (10.1016/j.mineng.2021.107135_bib631) 2010; 103 Crundwell (10.1016/j.mineng.2021.107135_b0055) 2015; 54 Sand (10.1016/j.mineng.2021.107135_b0415) 1992; 58 Sasaki (10.1016/j.mineng.2021.107135_b0435) 2012; 127–128 Zhao (10.1016/j.mineng.2021.107135_b0590) 2015; 25 Acres (10.1016/j.mineng.2021.107135_b0005) 2010; 94 Kaplun (10.1016/j.mineng.2021.107135_b0230) 2011; 75 Song (10.1016/j.mineng.2021.107135_b0450) 2015; 1130 Hiroyoshi (10.1016/j.mineng.2021.107135_b0165) 2008; 91 Okamoto (10.1016/j.mineng.2021.107135_b0355) 2004; 120 Yang (10.1016/j.mineng.2021.107135_b0550) 2018; 57 |
References_xml | – volume: 197-198 start-page: 1 year: 2013 end-page: 32 ident: b0285 article-title: A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite publication-title: Adv. Colloid Interface Sci. – volume: 27 start-page: 1351 year: 2020 end-page: 1366 ident: b0205 article-title: Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: an overview publication-title: J. Cent. South Univ. – volume: 58 start-page: 85 year: 1992 end-page: 92 ident: b0415 article-title: Evaluation of leptospirillum ferrooxidans for leaching publication-title: Appl. Environ. Microbiol. – volume: 1130 start-page: 338 year: 2015 end-page: 341 ident: b0450 article-title: Bioleaching of chalcopyrite by thermophilic Archaea publication-title: Adv. Mater. Res – volume: 20 start-page: 346 year: 2010 end-page: 353 ident: b0215 article-title: Bioleaching of chalcopyrite concentrate using mixed thermophilic culture and succession of microbial community during leaching process publication-title: Chinese J. Trans. Nonferrous Met. – volume: 42 start-page: 2167 year: 2011 end-page: 2172 ident: b0120 article-title: Chalcopyrite dissolution behavior under microbe-mineral contact/uncontact model publication-title: J. Cent. South Univ. – volume: 194 start-page: 105299 year: 2020 ident: b0380 article-title: Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments publication-title: Hydrometallurgy – volume: 109 start-page: 153 year: 2017 end-page: 161 ident: b0595 article-title: Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite publication-title: Miner. Eng. – volume: 22 start-page: 2930 year: 2012 end-page: 2937 ident: b0370 article-title: Sulfur/iron oxidation activity of three typical bioleaching bacteria and sulfur speciation in bioleaching of chalcopyrite publication-title: Chinese J. Nonferrous Met. – volume: 87 start-page: 97 year: 2013 end-page: 112 ident: b0110 article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS publication-title: Electrochim. Acta – volume: 18 start-page: 31 year: 1987 end-page: 39 ident: b0150 article-title: The leaching of chalcopyrite with cupric chloride publication-title: Metall. Trans. B – volume: 103 start-page: 80 year: 2010 end-page: 85 ident: bib632 article-title: The dissolution of chalcopyrite in chloride solutions Part 2: Effect of various parameters on the rate publication-title: Hydrometallurgy – volume: 162 start-page: 81 year: 2017 end-page: 91 ident: b0605 article-title: Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C publication-title: Int. J. Miner. Process. – volume: 3 start-page: 644 year: 1917 end-page: 649 ident: b0025 article-title: The crystal structure of chalcopyrite determined by X rays publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 59 start-page: 177 year: 2001 end-page: 185 ident: b0475 article-title: Direct versus indirect bioleaching publication-title: Hydrometallurgy – volume: 83 start-page: 40 year: 2006 end-page: 49 ident: b0375 article-title: Competitive bioleaching of pyrite and chalcopyrite publication-title: Hydrometallurgy – volume: 57 start-page: 1733 year: 2018 end-page: 1744 ident: b0550 article-title: Mixed potential plays a key role in leaching of chalcopyrite: experimental and theoretical analysis publication-title: Ind. Eng. Chem. Res. – volume: 22 start-page: 951 year: 2009 end-page: 960 ident: b0485 article-title: Mathematical modeling of thermophilic bioleaching of chalcopyrite publication-title: Miner. Eng. – volume: 25 start-page: 2380 year: 2018 end-page: 2386 ident: b0545 article-title: Leaching of chalcopyrite: An emphasis on effect of copper and iron ions publication-title: J. Cent. South Univ. – volume: 91 start-page: 144 year: 2008 end-page: 149 ident: b0165 article-title: Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions publication-title: Hydrometallurgy – volume: 23 start-page: 824 year: 2013 end-page: 831 ident: b0030 article-title: Depression effect of pseudo glycolythiourea acid inflotation separation of copper-molybdenum publication-title: Trans. Nonferrous Met. Soc. China – volume: 62 start-page: 65 year: 2001 end-page: 94 ident: b0250 article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy publication-title: Int. J. Miner. Process. – volume: 18 start-page: 505 year: 2005 end-page: 515 ident: b0420 article-title: XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential publication-title: Miner. Eng. – volume: 191 year: 2020 ident: b0235 article-title: Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation publication-title: Hydrometallurgy – volume: 39 start-page: 353 year: 1995 end-page: 375 ident: b0185 article-title: Kinetic aspects of galvanic interactions between minerals during dissolution publication-title: Hydrometallurgy – volume: 88 start-page: 37 year: 2008 end-page: 44 ident: b0495 article-title: Bioleaching of chalcopyrite with thermophiles: temperature–pH–ORP dependence publication-title: Int. J. Miner. Process. – volume: 158 start-page: 119 year: 2015 end-page: 131 ident: b0060 article-title: The effect of visible light on the dissolution of natural chalcopyrite (CuFeS publication-title: Hydrometallurgy – volume: 59 start-page: 271 year: 2001 end-page: 282 ident: b0255 article-title: Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors publication-title: Hydrometallurgy – volume: 70 start-page: 99 year: 2015 end-page: 108 ident: b0560 article-title: XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and 48°C publication-title: Miner. Eng. – volume: 4 year: 2005 ident: b0410 article-title: Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates publication-title: Microb. Cell Fact. – volume: 29 start-page: 579 year: 1973 end-page: 585 ident: b0400 article-title: The crystal structure refinement of chalcopyrite, CuFeS publication-title: Acta Crystallogr., Sect. B – volume: 94 start-page: 43 year: 2010 end-page: 51 ident: b0005 article-title: Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite publication-title: Int. J. Miner. Process. – volume: 25 start-page: 2725 year: 2015 end-page: 2733 ident: b0600 article-title: Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria publication-title: Trans. Nonferrous Met. Soc. China – volume: 206 start-page: 300 year: 2003 end-page: 313 ident: b0085 article-title: Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite publication-title: Appl. Surf. Sci. – volume: 140 start-page: 163 year: 2013 end-page: 180 ident: b0515 article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options publication-title: Hydrometallurgy – volume: 103 start-page: 108113 year: 2010 ident: bib631 article-title: The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential publication-title: Hydrometallurgy – volume: 95 start-page: 153 year: 2009 end-page: 158 ident: b0430 article-title: Raman characterization of secondary minerals formed during chalcopyrite leaching with publication-title: Hydrometallurgy – volume: 78 start-page: 433 year: 2002 end-page: 441 ident: b0460 article-title: Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite publication-title: Biotechnol. Bioeng. – volume: 94 start-page: 52 year: 2010 end-page: 57 ident: b0530 article-title: Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile publication-title: Int. J. Miner. Process. – volume: 127–128 start-page: 116 year: 2012 end-page: 120 ident: b0435 article-title: Spectroscopic analysis of the bioleaching of chalcopyrite by publication-title: Hydrometallurgy – volume: 41 start-page: 1234 year: 2010 end-page: 1239 ident: b0565 article-title: Chalcopyrite bioleaching by moderate thermophilic bacteria and surface passivation publication-title: J. Cent. South Univ. – volume: 84 start-page: 81 year: 2006 end-page: 108 ident: b0510 article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides — a review publication-title: Hydrometallurgy – volume: 39 start-page: 1 year: 1999 end-page: 104 ident: b0350 article-title: Magnetically ordered multinary semiconductors publication-title: Prog. Cryst. Growth Charact. Mater. – volume: 97 start-page: 2711 year: 2013 end-page: 2724 ident: b0265 article-title: Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans publication-title: Appl. Microbiol. Biotechnol. – volume: 56 start-page: 35 year: 2004 end-page: 37 ident: b0275 article-title: Fundamental analysis of sulfide bioleaching process based on semiconductor electrochemistry publication-title: Nonferrous Metals – volume: 96 start-page: 62 year: 2009 end-page: 71 ident: b0500 article-title: Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures publication-title: Hydrometallurgy – volume: 34 start-page: 13 year: 1981 end-page: 34 ident: b0365 article-title: Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions publication-title: Aust. J. Chem. – volume: 104 start-page: 414 year: 2010 end-page: 419 ident: b0105 article-title: Tank bioleaching of low-grade chalcopyrite concentrates using redox control publication-title: Hydrometallurgy – volume: 120 start-page: 600 year: 2004 end-page: 606 ident: b0355 article-title: Catalytic effect of activated carbon and coal on chalcopyrite leaching in sulfuric acid solutions publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan) – volume: 31 start-page: 171 year: 2021 end-page: 180 ident: b0465 article-title: Effects of Cu publication-title: Chinese J. Nonferrous Met. – volume: 737 year: 2020 ident: b0535 article-title: The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution publication-title: Sci. Total Environ. – volume: 43 start-page: 61 year: 1995 end-page: 72 ident: b0140 article-title: Leaching of chalcopyrite concentrate with ferric chloride publication-title: Int. J. Miner. Process. – volume: 137 start-page: 1 year: 2015 end-page: 8 ident: b0300 article-title: Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile publication-title: Int. J. Miner. Process. – volume: 225 start-page: 395 year: 2004 end-page: 409 ident: b0325 article-title: Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS publication-title: Appl. Surf. Sci. – volume: 21 start-page: 355 year: 2008 end-page: 365 ident: b0385 article-title: Heap bioleaching of chalcopyrite: a review publication-title: Miner. Eng. – volume: 63 start-page: 15 year: 2002 end-page: 22 ident: b0345 article-title: The role of E publication-title: Hydrometallurgy – volume: 36 start-page: 523 year: 1978 end-page: 525 ident: b0020 article-title: Thermophilic iron-oxidizing bacteria found in copper leaching dumps publication-title: Appl. Environ. Microbiol. – volume: 102 start-page: 3877 year: 2011 end-page: 3882 ident: b0630 article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite publication-title: Bioresour. Technol. – volume: 26 start-page: 2485 year: 2016 end-page: 2494 ident: b0310 article-title: Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea publication-title: Trans. Nonferrous Met. Soc. China – volume: 57 start-page: 31 year: 2000 end-page: 38 ident: b0175 article-title: A model for ferrous-promoted chalcopyrite leaching publication-title: Hydrometallurgy – volume: 83 start-page: 63 year: 2006 end-page: 68 ident: b0315 article-title: Electrochemical behavior of massive chalcopyrite bioleached electrodes in presence of silver at 35 °C publication-title: Hydrometallurgy – year: 2015 ident: b0540 article-title: The Dissolution and Passivation Mechanism of Chalcopyrite Surface During Leaching – volume: 63 start-page: 257 year: 2002 end-page: 267 ident: b0155 article-title: A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions publication-title: Hydrometallurgy – volume: 12 start-page: 99 year: 2018 end-page: 103 ident: b0195 article-title: Fundamental study of different impurity ions on chalcopyrite leaching process publication-title: Metal Mine – volume: 23 start-page: 153 year: 1990 end-page: 176 ident: b0080 article-title: Elemental sulphur formation during the ferric chloride leaching of chalcopyrite publication-title: Hydrometallurgy – volume: 21 start-page: 1063 year: 2008 end-page: 1074 ident: b0490 article-title: Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite publication-title: Miner. Eng. – volume: 116 start-page: 6357 year: 2012 end-page: 6366 ident: b0070 article-title: Reconstruction of the chalcopyrite surfaces – a DFT study publication-title: J. Phys. Chem. C. – volume: 144–145 start-page: 7 year: 2014 end-page: 14 ident: b0245 article-title: Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate publication-title: Hydrometallurgy – volume: 25 start-page: 303 year: 2015 end-page: 313 ident: b0590 article-title: Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium publication-title: Trans. Nonferrous Met. Soc. China – volume: 25 start-page: 4110 year: 2015 end-page: 4118 ident: b0525 article-title: Sulfur composition on surface of chalcopyrite during its bioleaching at 50 °C publication-title: Trans. Nonferrous Met. Soc. China – volume: 38 start-page: 587 year: 2002 end-page: 592 ident: b0015 article-title: Oxidation of chalcopyrite by publication-title: Process Biochem. – volume: 98 start-page: 80 year: 2016 end-page: 89 ident: b0305 article-title: Bioleaching of chalcopyrite by publication-title: Miner. Eng. – volume: 46 start-page: 349 year: 2000 end-page: 353 ident: b0405 article-title: Magnetic properties of natural chalcopyrite at low temperature publication-title: Mater. Lett. – volume: 136 start-page: 140 year: 2019 end-page: 154 ident: b0615 article-title: The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview publication-title: Miner. Eng. – volume: 47 start-page: 37 year: 1997 end-page: 45 ident: b0160 article-title: A case of ferrous sulfate addition enhancing chalcopyrite leaching publication-title: Hydrometallurgy – volume: 41 start-page: 15 year: 2010 end-page: 20 ident: b0620 article-title: Bioleaching of chalcopyrite by moderately thermophilic mixed microorganisms in stirred tank bioreactor and community succession analysis publication-title: J. Cent. South Univ. – volume: 60 start-page: 185 year: 2001 end-page: 197 ident: b0180 article-title: Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions publication-title: Hydrometallurgy – volume: 111 start-page: 114 year: 2012 end-page: 123 ident: b0320 article-title: Electrochemical dissolution of chalcopyrite: Detection of bornite by synchrotron small angle X-ray diffraction and its correlation with the hindered dissolution process publication-title: Hydrometallurgy – volume: 94 start-page: 95 year: 2012 end-page: 100 ident: b0625 article-title: Adhesion forces between cells of publication-title: Colloid Surf. B - Biointerfaces – volume: 117 start-page: 215 year: 2001 end-page: 220 ident: b0330 article-title: Batch leaching behavior of chalcopyrite in acidic ferric sulfate solutions — relationship between solution redox potential and copper extraction publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan) – volume: 125–126 start-page: 157 year: 2012 end-page: 165 ident: b0360 article-title: Insights into heap bioleaching of low grade chalcopyrite ores — A pilot scale study publication-title: Hydrometallurgy – volume: 132 start-page: 1 year: 2014 end-page: 7 ident: b0010 article-title: Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C publication-title: Int. J. Miner. Process. – volume: 74 start-page: 103 year: 2004 end-page: 116 ident: b0170 article-title: Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions publication-title: Hydrometallurgy – year: 2014 ident: b0200 article-title: Effects of microorganisms on surface properties of chalcopyrite and the stepwise dissolution mechanism ofchalcopyrite during bioleaching – volume: 22 start-page: 265 year: 2012 end-page: 273 ident: b0290 article-title: Progress in sulfur speciation transformation during chalcopyrite bioleaching publication-title: Chinese J. Trans. Nonferrous Met. – volume: 9 start-page: 639 year: 2019 ident: b0470 article-title: Cupric and chloride ions: leaching of chalcopyrite concentrate with low chloride concentration media publication-title: Minerals – volume: 69 start-page: 185 year: 2014 end-page: 195 ident: b0555 article-title: Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles publication-title: Miner. Eng. – volume: 93 start-page: 81 year: 2008 end-page: 87 ident: b0040 article-title: Leaching of chalcopyrite with ferric ion. Part I: General aspects publication-title: Hydrometallurgy – volume: 103 start-page: 50 year: 2013 end-page: 57 ident: b0130 article-title: The stepwise dissolution of chalcopyrite bioleached by publication-title: Electrochim. Acta – volume: 16 start-page: 695 year: 1985 end-page: 705 ident: b0220 article-title: Effect of suspension potential on the oxidation rate of copper concentration in sulphuric acid conditions publication-title: Metall. Trans B. – volume: 21 start-page: 155 year: 1988 end-page: 190 ident: b0045 article-title: The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals publication-title: Hydrometallurgy – volume: 75 start-page: 5865 year: 2011 end-page: 5878 ident: b0230 article-title: Cu and Fe chalcopyrite leach activation energies and the effect of added Fe publication-title: Geochim. Cosmochim. Acta – volume: 98 start-page: 264 year: 2016 end-page: 278 ident: b0505 article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis publication-title: Miner. Eng. – volume: 59 start-page: 1091 year: 1995 end-page: 1100 ident: b0575 article-title: Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS publication-title: Geochim. Cosmochim. Acta – volume: 151 start-page: 141 year: 2015 end-page: 150 ident: b0610 article-title: Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions publication-title: Hydrometallurgy – volume: 54 start-page: 279 year: 2015 end-page: 288 ident: b0055 article-title: The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite publication-title: Can. Metall. Q. – volume: 99 start-page: 45 year: 2009 end-page: 50 ident: b0145 article-title: Sulfur speciation on the surface of chalcopyrite leached by publication-title: Hydrometallurgy – volume: 105 start-page: 259 year: 2011 end-page: 263 ident: b0585 article-title: Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C publication-title: Hydrometallurgy – volume: 34 start-page: 21 year: 2004 end-page: 24 ident: b0075 article-title: Current situation and prospect of sulfide ore bio-leaching by extreme thermophile publication-title: Yun Nan Metallurgy – volume: 56 start-page: 326 year: 2019 end-page: 333 ident: b0580 article-title: Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave publication-title: J. Korean Soc. Mineral Energy Resources Eng. – volume: 71 start-page: 75 year: 2003 end-page: 81 ident: b0050 article-title: How do bacteria interact with minerals? publication-title: Hydrometallurgy – volume: 64 start-page: 263 year: 2000 end-page: 274 ident: b0190 article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study publication-title: Geochim. Cosmochim. Acta – volume: 103 start-page: 86 year: 2010 end-page: 95 ident: b0340 article-title: The dissolution of chalcopyrite in chloride solutions Part 3. Mechanisms publication-title: Hydrometallurgy – volume: 57 start-page: 225 year: 2000 end-page: 233 ident: b0455 article-title: The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching publication-title: Hydrometallurgy – start-page: 383 year: 2003 end-page: 394 ident: b0270 article-title: The role of non-oxidative processes in the leaching of chalcopyrite publication-title: Copper 2003 – volume: 9 start-page: 985 year: 1996 end-page: 999 ident: b0115 article-title: Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria publication-title: Miner. Eng. – volume: 15 start-page: 215 year: 2002 end-page: 223 ident: b0090 article-title: The influence of cathodic reduction, Fe publication-title: Miner. Eng. – volume: 24 start-page: 1898 year: 2014 end-page: 1904 ident: b0125 article-title: Surface characterization of chalcopyrite interacting with publication-title: Trans. Nonferrous Met. Soc. China – volume: 129 start-page: 200 year: 2013 end-page: 208 ident: b0390 article-title: Bioleaching of chalcopyrite by moderately thermophilic microorganisms publication-title: Bioresour. Technol. – volume: 107 start-page: 13 year: 2011 end-page: 21 ident: b0295 article-title: Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy publication-title: Hydrometallurgy – volume: 65 start-page: 319 year: 1999 end-page: 321 ident: b0445 article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur publication-title: Appl. Environ. Microbiol. – volume: 70 start-page: 4392 year: 2006 end-page: 4402 ident: b0135 article-title: The evolution of surface layers formed during chalcopyrite leaching publication-title: Geochim. Cosmochim. Acta – volume: 42 start-page: 40 year: 2017 end-page: 50 ident: b0425 article-title: Effect of redox potential on chalcopyrite dissolution imposed by addition of ferrous ions publication-title: Eclética Química Journal – volume: 100 start-page: 9 year: 2017 end-page: 16 ident: b0240 article-title: New insights into the influence of redox potential on chalcopyrite leaching behaviour publication-title: Miner. Eng. – volume: 93 start-page: 106 year: 2008 end-page: 115 ident: b0035 article-title: Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria publication-title: Hydrometallurgy – volume: 74 start-page: 2881 year: 2010 end-page: 2893 ident: b0280 article-title: Chalcopyrite leaching: the rate controlling factors publication-title: Geochim. Cosmochim. Acta – volume: 35 start-page: 95 year: 2019 end-page: 102 ident: b0065 article-title: Directed domestication of copper tolerance for enhancing lowgrade chalcopyrite bioleaching by publication-title: Biotechnol. Bulle. – volume: 103 start-page: 50 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0130 article-title: The stepwise dissolution of chalcopyrite bioleached by Leptospirillum ferriphilum publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.04.051 – volume: 111 start-page: 114 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0320 article-title: Electrochemical dissolution of chalcopyrite: Detection of bornite by synchrotron small angle X-ray diffraction and its correlation with the hindered dissolution process publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.11.003 – volume: 21 start-page: 155 issue: 2 year: 1988 ident: 10.1016/j.mineng.2021.107135_b0045 article-title: The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals publication-title: Hydrometallurgy doi: 10.1016/0304-386X(88)90003-5 – volume: 35 start-page: 95 issue: 8 year: 2019 ident: 10.1016/j.mineng.2021.107135_b0065 article-title: Directed domestication of copper tolerance for enhancing lowgrade chalcopyrite bioleaching by Acidithiobacillus caldus publication-title: Biotechnol. Bulle. – volume: 39 start-page: 353 issue: 1 year: 1995 ident: 10.1016/j.mineng.2021.107135_b0185 article-title: Kinetic aspects of galvanic interactions between minerals during dissolution publication-title: Hydrometallurgy doi: 10.1016/0304-386X(95)00041-E – volume: 70 start-page: 99 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0560 article-title: XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and 48°C publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.08.021 – volume: 94 start-page: 52 issue: 1 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0530 article-title: Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2009.11.005 – volume: 93 start-page: 106 issue: 3 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0035 article-title: Leaching of chalcopyrite with ferric ion. Part IV: The role of redox potential in the presence of mesophilic and thermophilic bacteria publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.11.005 – volume: 120 start-page: 600 year: 2004 ident: 10.1016/j.mineng.2021.107135_b0355 article-title: Catalytic effect of activated carbon and coal on chalcopyrite leaching in sulfuric acid solutions publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan) doi: 10.2473/shigentosozai.120.600 – volume: 4 issue: 13 year: 2005 ident: 10.1016/j.mineng.2021.107135_b0410 article-title: Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates publication-title: Microb. Cell Fact. – volume: 206 start-page: 300 issue: PII S0169–4332(02), 01284–91-4 year: 2003 ident: 10.1016/j.mineng.2021.107135_b0085 article-title: Full potential calculations on the electron bandstructures of sphalerite, pyrite and chalcopyrite publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)01284-9 – volume: 59 start-page: 271 issue: 2–3 year: 2001 ident: 10.1016/j.mineng.2021.107135_b0255 article-title: Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00173-0 – volume: 38 start-page: 587 issue: PII S0032–9592(02), 00169–34 year: 2002 ident: 10.1016/j.mineng.2021.107135_b0015 article-title: Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks publication-title: Process Biochem. doi: 10.1016/S0032-9592(02)00169-3 – volume: 100 start-page: 9 year: 2017 ident: 10.1016/j.mineng.2021.107135_b0240 article-title: New insights into the influence of redox potential on chalcopyrite leaching behaviour publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.10.003 – volume: 158 start-page: 119 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0060 article-title: The effect of visible light on the dissolution of natural chalcopyrite (CuFeS2) in sulphuric acid solutions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.10.014 – volume: 62 start-page: 65 issue: 1 year: 2001 ident: 10.1016/j.mineng.2021.107135_b0250 article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(00)00045-4 – volume: 129 start-page: 200 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0390 article-title: Bioleaching of chalcopyrite by moderately thermophilic microorganisms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.050 – year: 2015 ident: 10.1016/j.mineng.2021.107135_b0540 – volume: 103 start-page: 86 issue: 1–4 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0340 article-title: The dissolution of chalcopyrite in chloride solutions Part 3. Mechanisms publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.03.003 – volume: 1130 start-page: 338 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0450 article-title: Bioleaching of chalcopyrite by thermophilic Archaea publication-title: Adv. Mater. Res doi: 10.4028/www.scientific.net/AMR.1130.338 – volume: 96 start-page: 62 issue: 1–2 year: 2009 ident: 10.1016/j.mineng.2021.107135_b0500 article-title: Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.08.003 – volume: 41 start-page: 15 issue: 1 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0620 article-title: Bioleaching of chalcopyrite by moderately thermophilic mixed microorganisms in stirred tank bioreactor and community succession analysis publication-title: J. Cent. South Univ. – volume: 36 start-page: 523 issue: 3 year: 1978 ident: 10.1016/j.mineng.2021.107135_b0020 article-title: Thermophilic iron-oxidizing bacteria found in copper leaching dumps publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.36.3.523-525.1978 – volume: 94 start-page: 95 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0625 article-title: Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite publication-title: Colloid Surf. B - Biointerfaces doi: 10.1016/j.colsurfb.2012.01.022 – volume: 12 start-page: 99 year: 2018 ident: 10.1016/j.mineng.2021.107135_b0195 article-title: Fundamental study of different impurity ions on chalcopyrite leaching process publication-title: Metal Mine – volume: 24 start-page: 1898 issue: 6 year: 2014 ident: 10.1016/j.mineng.2021.107135_b0125 article-title: Surface characterization of chalcopyrite interacting with Leptospirillum ferriphilum publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(14)63269-6 – volume: 42 start-page: 2167 issue: 8 year: 2011 ident: 10.1016/j.mineng.2021.107135_b0120 article-title: Chalcopyrite dissolution behavior under microbe-mineral contact/uncontact model publication-title: J. Cent. South Univ. – volume: 22 start-page: 2930 issue: 10 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0370 article-title: Sulfur/iron oxidation activity of three typical bioleaching bacteria and sulfur speciation in bioleaching of chalcopyrite publication-title: Chinese J. Nonferrous Met. – volume: 29 start-page: 579 issue: 3 year: 1973 ident: 10.1016/j.mineng.2021.107135_b0400 article-title: The crystal structure refinement of chalcopyrite, CuFeS2 publication-title: Acta Crystallogr., Sect. B doi: 10.1107/S0567740873002943 – volume: 56 start-page: 326 issue: 4 year: 2019 ident: 10.1016/j.mineng.2021.107135_b0580 article-title: Leaching of copper from chalcopyrite using 50 L pressure oxidation autoclave publication-title: J. Korean Soc. Mineral Energy Resources Eng. doi: 10.32390/ksmer.2019.56.4.326 – volume: 97 start-page: 2711 issue: 6 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0265 article-title: Influence of the surface speciation on biofilm attachment to chalcopyrite by Acidithiobacillus thiooxidans publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-4099-8 – volume: 78 start-page: 433 issue: 4 year: 2002 ident: 10.1016/j.mineng.2021.107135_b0460 article-title: Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10184 – start-page: 383 year: 2003 ident: 10.1016/j.mineng.2021.107135_b0270 article-title: The role of non-oxidative processes in the leaching of chalcopyrite – volume: 191 year: 2020 ident: 10.1016/j.mineng.2021.107135_b0235 article-title: Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2019.105192 – volume: 70 start-page: 4392 issue: 17 year: 2006 ident: 10.1016/j.mineng.2021.107135_b0135 article-title: The evolution of surface layers formed during chalcopyrite leaching publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.06.1555 – volume: 43 start-page: 61 issue: 1 year: 1995 ident: 10.1016/j.mineng.2021.107135_b0140 article-title: Leaching of chalcopyrite concentrate with ferric chloride publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(94)00040-7 – volume: 99 start-page: 45 issue: 1 year: 2009 ident: 10.1016/j.mineng.2021.107135_b0145 article-title: Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.06.004 – volume: 117 start-page: 215 year: 2001 ident: 10.1016/j.mineng.2021.107135_b0330 article-title: Batch leaching behavior of chalcopyrite in acidic ferric sulfate solutions — relationship between solution redox potential and copper extraction publication-title: Shigen-to-Sozai (Journal of Mining and Material Processing Institute of Japan) doi: 10.2473/shigentosozai.117.215 – volume: 63 start-page: 15 issue: 1 year: 2002 ident: 10.1016/j.mineng.2021.107135_b0345 article-title: The role of EH measurements in the interpretation of the kinetics and mechanisms of the oxidation and leaching of sulphide minerals publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(01)00206-7 – volume: 56 start-page: 35 issue: 3 year: 2004 ident: 10.1016/j.mineng.2021.107135_b0275 article-title: Fundamental analysis of sulfide bioleaching process based on semiconductor electrochemistry publication-title: Nonferrous Metals – volume: 151 start-page: 141 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0610 article-title: Effect of redox potential on bioleaching of chalcopyrite by moderately thermophilic bacteria: an emphasis on solution compositions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.11.009 – volume: 21 start-page: 1063 issue: 15 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0490 article-title: Response of thermophiles to the simultaneous addition of sulfur and ferric ion to enhance the bioleaching of chalcopyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2007.11.005 – volume: 21 start-page: 355 issue: 5 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0385 article-title: Heap bioleaching of chalcopyrite: a review publication-title: Miner. Eng. doi: 10.1016/j.mineng.2007.10.018 – volume: 63 start-page: 257 issue: 3 year: 2002 ident: 10.1016/j.mineng.2021.107135_b0155 article-title: A new reaction model for the catalytic effect of silver ions on chalcopyrite leaching in sulfuric acid solutions publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(01)00228-6 – volume: 59 start-page: 177 issue: 2 year: 2001 ident: 10.1016/j.mineng.2021.107135_b0475 article-title: Direct versus indirect bioleaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00181-X – volume: 84 start-page: 81 issue: 1–2 year: 2006 ident: 10.1016/j.mineng.2021.107135_b0510 article-title: The bioleaching of sulphide minerals with emphasis on copper sulphides — a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.05.001 – volume: 16 start-page: 695 issue: 4 year: 1985 ident: 10.1016/j.mineng.2021.107135_b0220 article-title: Effect of suspension potential on the oxidation rate of copper concentration in sulphuric acid conditions publication-title: Metall. Trans B. doi: 10.1007/BF02667506 – volume: 23 start-page: 153 issue: 2 year: 1990 ident: 10.1016/j.mineng.2021.107135_b0080 article-title: Elemental sulphur formation during the ferric chloride leaching of chalcopyrite publication-title: Hydrometallurgy doi: 10.1016/0304-386X(90)90002-J – volume: 65 start-page: 319 issue: 1 year: 1999 ident: 10.1016/j.mineng.2021.107135_b0445 article-title: Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.1.319-321.1999 – volume: 140 start-page: 163 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0515 article-title: Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.09.013 – volume: 93 start-page: 81 issue: 3–4 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0040 article-title: Leaching of chalcopyrite with ferric ion. Part I: General aspects publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.04.015 – year: 2014 ident: 10.1016/j.mineng.2021.107135_b0200 – volume: 57 start-page: 1733 issue: 5 year: 2018 ident: 10.1016/j.mineng.2021.107135_b0550 article-title: Mixed potential plays a key role in leaching of chalcopyrite: experimental and theoretical analysis publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b02051 – volume: 109 start-page: 153 year: 2017 ident: 10.1016/j.mineng.2021.107135_b0595 article-title: Comparison of bioleaching and dissolution process of p-type and n-type chalcopyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.03.013 – volume: 194 start-page: 105299 year: 2020 ident: 10.1016/j.mineng.2021.107135_b0380 article-title: Redox potential-dependent chalcopyrite leaching in acidic ferric chloride solutions: Leaching experiments publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2020.105299 – volume: 74 start-page: 103 issue: 1–2 year: 2004 ident: 10.1016/j.mineng.2021.107135_b0170 article-title: Synergistic effect of cupric and ferrous ions on active-passive behavior in anodic dissolution of chalcopyrite in sulfuric acid solutions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2004.01.003 – volume: 46 start-page: 349 issue: 6 year: 2000 ident: 10.1016/j.mineng.2021.107135_b0405 article-title: Magnetic properties of natural chalcopyrite at low temperature publication-title: Mater. Lett. doi: 10.1016/S0167-577X(00)00199-3 – volume: 83 start-page: 40 issue: 1–4 year: 2006 ident: 10.1016/j.mineng.2021.107135_b0375 article-title: Competitive bioleaching of pyrite and chalcopyrite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.036 – volume: 60 start-page: 185 issue: 3 year: 2001 ident: 10.1016/j.mineng.2021.107135_b0180 article-title: Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00155-9 – volume: 25 start-page: 2725 issue: 8 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0600 article-title: Surface species of chalcopyrite during bioleaching by moderately thermophilic bacteria publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(15)63897-3 – volume: 59 start-page: 1091 issue: 6 year: 1995 ident: 10.1016/j.mineng.2021.107135_b0575 article-title: Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2) publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(95)00026-V – volume: 127–128 start-page: 116 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0435 article-title: Spectroscopic analysis of the bioleaching of chalcopyrite by Acidithiobacillus caldus publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.07.013 – volume: 34 start-page: 21 issue: 1 year: 2004 ident: 10.1016/j.mineng.2021.107135_b0075 article-title: Current situation and prospect of sulfide ore bio-leaching by extreme thermophile publication-title: Yun Nan Metallurgy – volume: 9 start-page: 985 issue: 9 year: 1996 ident: 10.1016/j.mineng.2021.107135_b0115 article-title: Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria publication-title: Miner. Eng. doi: 10.1016/0892-6875(96)00089-1 – volume: 47 start-page: 37 issue: 1 year: 1997 ident: 10.1016/j.mineng.2021.107135_b0160 article-title: A case of ferrous sulfate addition enhancing chalcopyrite leaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(97)00032-7 – volume: 103 start-page: 108113 issue: 14 year: 2010 ident: 10.1016/j.mineng.2021.107135_bib631 article-title: The dissolution of chalcopyrite in chloride solutions Part 1. The effect of solution potential publication-title: Hydrometallurgy – volume: 102 start-page: 3877 issue: 4 year: 2011 ident: 10.1016/j.mineng.2021.107135_b0630 article-title: Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.090 – volume: 57 start-page: 31 issue: 1 year: 2000 ident: 10.1016/j.mineng.2021.107135_b0175 article-title: A model for ferrous-promoted chalcopyrite leaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00089-X – volume: 136 start-page: 140 year: 2019 ident: 10.1016/j.mineng.2021.107135_b0615 article-title: The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.03.014 – volume: 25 start-page: 4110 issue: 12 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0525 article-title: Sulfur composition on surface of chalcopyrite during its bioleaching at 50 °C publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(15)64062-6 – volume: 22 start-page: 265 issue: 1 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0290 article-title: Progress in sulfur speciation transformation during chalcopyrite bioleaching publication-title: Chinese J. Trans. Nonferrous Met. – volume: 39 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.mineng.2021.107135_b0350 article-title: Magnetically ordered multinary semiconductors publication-title: Prog. Cryst. Growth Charact. Mater. doi: 10.1016/S0960-8974(99)00016-9 – volume: 103 start-page: 80 issue: 1–4 year: 2010 ident: 10.1016/j.mineng.2021.107135_bib632 article-title: The dissolution of chalcopyrite in chloride solutions Part 2: Effect of various parameters on the rate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.03.004 – volume: 107 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.mineng.2021.107135_b0295 article-title: Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANES spectroscopy publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2011.01.011 – volume: 23 start-page: 824 issue: 03 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0030 article-title: Depression effect of pseudo glycolythiourea acid inflotation separation of copper-molybdenum publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(13)62535-2 – volume: 197-198 start-page: 1 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0285 article-title: A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2013.03.004 – volume: 3 start-page: 644 issue: 11 year: 1917 ident: 10.1016/j.mineng.2021.107135_b0025 article-title: The crystal structure of chalcopyrite determined by X rays publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.3.11.644 – volume: 83 start-page: 63 issue: 1 year: 2006 ident: 10.1016/j.mineng.2021.107135_b0315 article-title: Electrochemical behavior of massive chalcopyrite bioleached electrodes in presence of silver at 35 °C publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2006.03.039 – volume: 162 start-page: 81 year: 2017 ident: 10.1016/j.mineng.2021.107135_b0605 article-title: Roles of oxidants and reductants in bioleaching system of chalcopyrite at normal atmospheric pressure and 45 °C publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2017.04.002 – volume: 87 start-page: 97 year: 2013 ident: 10.1016/j.mineng.2021.107135_b0110 article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.119 – volume: 98 start-page: 264 year: 2016 ident: 10.1016/j.mineng.2021.107135_b0505 article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.09.008 – volume: 104 start-page: 414 issue: 3 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0105 article-title: Tank bioleaching of low-grade chalcopyrite concentrates using redox control publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.02.024 – volume: 98 start-page: 80 year: 2016 ident: 10.1016/j.mineng.2021.107135_b0305 article-title: Bioleaching of chalcopyrite by Acidianus manzaensis under different constant pH publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.07.019 – volume: 18 start-page: 31 issue: 1 year: 1987 ident: 10.1016/j.mineng.2021.107135_b0150 article-title: The leaching of chalcopyrite with cupric chloride publication-title: Metall. Trans. B doi: 10.1007/BF02658429 – volume: 125–126 start-page: 157 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0360 article-title: Insights into heap bioleaching of low grade chalcopyrite ores — A pilot scale study publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.06.006 – volume: 132 start-page: 1 year: 2014 ident: 10.1016/j.mineng.2021.107135_b0010 article-title: Bacterial and chemical leaching of chalcopyrite concentrates as affected by the redox potential and ferric/ferrous iron ratio at 22 °C publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2014.08.008 – volume: 15 start-page: 215 issue: 4 year: 2002 ident: 10.1016/j.mineng.2021.107135_b0090 article-title: The influence of cathodic reduction, Fe2+ and Cu2+ ions on the electrochemical dissolution of chalcopyrite in acidic solution publication-title: Miner. Eng. doi: 10.1016/S0892-6875(01)00208-4 – volume: 91 start-page: 144 issue: 1 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0165 article-title: Effect of solution composition on the optimum redox potential for chalcopyrite leaching in sulfuric acid solutions publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.12.005 – volume: 144–145 start-page: 7 year: 2014 ident: 10.1016/j.mineng.2021.107135_b0245 article-title: Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2013.12.003 – volume: 58 start-page: 85 issue: 1 year: 1992 ident: 10.1016/j.mineng.2021.107135_b0415 article-title: Evaluation of leptospirillum ferrooxidans for leaching publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.58.1.85-92.1992 – volume: 42 start-page: 40 issue: 1 year: 2017 ident: 10.1016/j.mineng.2021.107135_b0425 article-title: Effect of redox potential on chalcopyrite dissolution imposed by addition of ferrous ions publication-title: Eclética Química Journal – volume: 54 start-page: 279 issue: 3 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0055 article-title: The semiconductor mechanism of dissolution and the pseudo-passivation of chalcopyrite publication-title: Can. Metall. Q. doi: 10.1179/1879139515Y.0000000007 – volume: 25 start-page: 2380 issue: 10 year: 2018 ident: 10.1016/j.mineng.2021.107135_b0545 article-title: Leaching of chalcopyrite: An emphasis on effect of copper and iron ions publication-title: J. Cent. South Univ. doi: 10.1007/s11771-018-3922-5 – volume: 105 start-page: 259 issue: 3 year: 2011 ident: 10.1016/j.mineng.2021.107135_b0585 article-title: Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48°C publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2010.10.012 – volume: 31 start-page: 171 issue: 1 year: 2021 ident: 10.1016/j.mineng.2021.107135_b0465 article-title: Effects of Cu2+, Fe2+, and Fe3+ on bioleaching of chalcopyrite by moderate thermophilic mixed bacteria publication-title: Chinese J. Nonferrous Met. – volume: 20 start-page: 346 issue: 2 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0215 article-title: Bioleaching of chalcopyrite concentrate using mixed thermophilic culture and succession of microbial community during leaching process publication-title: Chinese J. Trans. Nonferrous Met. doi: 10.1016/S1003-6326(10)60495-5 – volume: 75 start-page: 5865 issue: 20 year: 2011 ident: 10.1016/j.mineng.2021.107135_b0230 article-title: Cu and Fe chalcopyrite leach activation energies and the effect of added Fe3+ publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2011.07.003 – volume: 41 start-page: 1234 issue: 4 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0565 article-title: Chalcopyrite bioleaching by moderate thermophilic bacteria and surface passivation publication-title: J. Cent. South Univ. – volume: 137 start-page: 1 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0300 article-title: Investigation of copper, iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2015.02.008 – volume: 27 start-page: 1351 issue: 5 year: 2020 ident: 10.1016/j.mineng.2021.107135_b0205 article-title: Role and maintenance of redox potential on chalcopyrite biohydrometallurgy: an overview publication-title: J. Cent. South Univ. doi: 10.1007/s11771-020-4371-5 – volume: 34 start-page: 13 issue: 1 year: 1981 ident: 10.1016/j.mineng.2021.107135_b0365 article-title: Electrochemical aspects of leaching copper from chalcopyrite in ferric and cupric salt solutions publication-title: Aust. J. Chem. doi: 10.1071/CH9810013 – volume: 25 start-page: 303 issue: 1 year: 2015 ident: 10.1016/j.mineng.2021.107135_b0590 article-title: Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(15)63605-6 – volume: 71 start-page: 75 issue: 1–2 year: 2003 ident: 10.1016/j.mineng.2021.107135_b0050 article-title: How do bacteria interact with minerals? publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(03)00175-0 – volume: 69 start-page: 185 year: 2014 ident: 10.1016/j.mineng.2021.107135_b0555 article-title: Synchrotron X-ray photoelectron spectroscopic study of the chalcopyrite leached by moderate thermophiles and mesophiles publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.08.011 – volume: 64 start-page: 263 issue: 2 year: 2000 ident: 10.1016/j.mineng.2021.107135_b0190 article-title: The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00296-3 – volume: 26 start-page: 2485 issue: 9 year: 2016 ident: 10.1016/j.mineng.2021.107135_b0310 article-title: Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(16)64369-8 – volume: 88 start-page: 37 issue: 1–2 year: 2008 ident: 10.1016/j.mineng.2021.107135_b0495 article-title: Bioleaching of chalcopyrite with thermophiles: temperature–pH–ORP dependence publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2008.06.002 – volume: 74 start-page: 2881 issue: 10 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0280 article-title: Chalcopyrite leaching: the rate controlling factors publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2010.02.029 – volume: 9 start-page: 639 issue: 10 year: 2019 ident: 10.1016/j.mineng.2021.107135_b0470 article-title: Cupric and chloride ions: leaching of chalcopyrite concentrate with low chloride concentration media publication-title: Minerals doi: 10.3390/min9100639 – volume: 94 start-page: 43 issue: 1 year: 2010 ident: 10.1016/j.mineng.2021.107135_b0005 article-title: Synchrotron XPS studies of solution exposed chalcopyrite, bornite, and heterogeneous chalcopyrite with bornite publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2009.11.006 – volume: 18 start-page: 505 issue: 5 year: 2005 ident: 10.1016/j.mineng.2021.107135_b0420 article-title: XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.08.004 – volume: 57 start-page: 225 issue: 3 year: 2000 ident: 10.1016/j.mineng.2021.107135_b0455 article-title: The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching publication-title: Hydrometallurgy doi: 10.1016/S0304-386X(00)00115-8 – volume: 225 start-page: 395 issue: 1 year: 2004 ident: 10.1016/j.mineng.2021.107135_b0325 article-title: Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2003.10.030 – volume: 737 year: 2020 ident: 10.1016/j.mineng.2021.107135_b0535 article-title: The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139485 – volume: 22 start-page: 951 issue: 11 year: 2009 ident: 10.1016/j.mineng.2021.107135_b0485 article-title: Mathematical modeling of thermophilic bioleaching of chalcopyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.03.001 – volume: 116 start-page: 6357 issue: 10 year: 2012 ident: 10.1016/j.mineng.2021.107135_b0070 article-title: Reconstruction of the chalcopyrite surfaces – a DFT study publication-title: J. Phys. Chem. C. doi: 10.1021/jp300713z – volume: 95 start-page: 153 issue: 1–2 year: 2009 ident: 10.1016/j.mineng.2021.107135_b0430 article-title: Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2008.05.009 |
SSID | ssj0005789 |
Score | 2.5028417 |
SecondaryResourceType | review_article |
Snippet | Chalcopyrite is a prime, plentiful and widely distributed form of copper-bearing mineral. Compared with the traditional pyrometallurgy process,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107135 |
SubjectTerms | Band theory Bioleaching Chalcopyrite Chemical leaching Redox potential |
Title | Effects of redox potential on chalcopyrite leaching: An overview |
URI | https://dx.doi.org/10.1016/j.mineng.2021.107135 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5eY3ez2Uc8uRRLVexFC70tSTbRSt1d6gp68beb2YdUEAWPGzKwfEnmwXwzg9CpsLciTR1GNE0VYcYIInRIiXGZLw2jUqRQ4Hw7CcZTdj3zZx00bGthgFbZ6P5ap1faulkZNGgOivl8cOdEnAbW3bZBCyTTQA8zFkL__LOPFZpHWI3Bg80EdrflcxXH69l6ctmDjRKpa5dgWt3P5mnF5Iy20GbjK-K4_p1t1NHZDtpY6SC4iy7q7sMvODcYWn--4SIvgQBk5fIMq0exUHnxvrSOJV40xMlzHGcYmJuQFdhD09Hl_XBMmqEIRFEvKAmXxlpYN5AyktqHbGzKYH50oKUDhAsmbEwUacY97XsmoEZz6iiZ-sJlyj5Obx91szzTBwhLoY1DU-4E9mSELznXIpQRD4WvuA00eshrsUhU0zEcBlcskpYa9pTUCCaAYFIj2EPkS6qoO2b8sT9sYU6-nXxilfqvkof_ljxC6_BVk_KOUbdcvuoT61yUsl_dnj5ai69uxpNP1i3OZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw9el6abTdL1ZCmW1j4uttBb2E12tVKTUCvov3emSXyAKHjd7ED4dnYe7DczhFwq0Io4dgQzPI6YsFYxZQLObFN42gquVYwFzqOx35uK25k3q5BOWQuDtMrC9uc2fW2ti5VGgWYjm88bd05Lch_CbUha8DEN7HANu1OBstfa_UFv_Mn0CNaT8HA_Q4Gygm5N83qCYC65h0SRN2EJB9b97KG-eJ3uDtkuwkXazv9ol1RMske2vjQR3CfXeQPiZ5pait0_X2mWrpADBHJpQqMHtYjS7G0JsSVdFNzJK9pOKJI38WHggEy7N5NOjxVzEVjEXX_FpLbgZJu-1i1tPHyQjQWOkPaNdpBzIRSkRS0jpGs81_rcGsmdSMeeaooI7qd7SKpJmpgjQrUy1uGxdHw4HOVpKY0KdEsGyosk5Bp14pZYhFHRNBxnVyzCkh32GOYIhohgmCNYJ-xDKsubZvyxPyhhDr8dfgh2_VfJ439LXpCN3mQ0DIf98eCEbOKXnKN3Sqqr5Ys5g1hjpc8LXXoH_lLRFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+redox+potential+on+chalcopyrite+leaching%3A+An+overview&rft.jtitle=Minerals+engineering&rft.au=Tian%2C+Zuyuan&rft.au=Li%2C+Haodong&rft.au=Wei%2C+Qian&rft.au=Qin%2C+Wenqing&rft.date=2021-10-01&rft.issn=0892-6875&rft.volume=172&rft.spage=107135&rft_id=info:doi/10.1016%2Fj.mineng.2021.107135&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mineng_2021_107135 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |