Stepwise activation of hemimorphite surfaces with lead ions and its contribution to sulfidization flotation
[Display omitted] •Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise act...
Saved in:
Published in | Separation and purification technology Vol. 299; p. 121679 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2022.121679 |
Cover
Abstract | [Display omitted]
•Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise activation.•The surface hydrophobicity of hemimorphite was enhanced after stepwise activation.
The surface activity of hemimorphite is poor; therefore, it is difficult to efficiently sulfidize the hemimorphite surface. Herein, stepwise addition of lead ions (Pb2+) was shown to be effective for increasing the content of active sites on the hemimorphite surface. The activation mechanism of hemimorphite by Pb2+ and its effect on flotation were investigated by microflotation experiments and surface analysis. The microflotation results indicated that stepwise activation with Pb2+ dramatically improved the flotation behavior of hemimorphite compared with single-stage activation. The results of time-of-flight secondary-ion mass spectrometry and X-ray photoelectron spectroscopy showed that stepwise activation with Pb2+ increased the activity of sulfidization products on the hemimorphite surface. This facilitated the generation of highly active lead sulfide species and created favorable conditions for subsequent interaction of xanthate with the mineral surface. The results of infrared spectroscopy and contact-angle analysis indicated that stepwise activation with Pb2+ enhanced the xanthate adsorption on hemimorphite surfaces, and a strongly hydrophobic surface was obtained. Accordingly, the flotation recovery of hemimorphite increased after stepwise activation with Pb2+, which provided a new idea and method for efficient recycling of zinc resources from complex and refractory zinc oxide ores. |
---|---|
AbstractList | [Display omitted]
•Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise activation.•The surface hydrophobicity of hemimorphite was enhanced after stepwise activation.
The surface activity of hemimorphite is poor; therefore, it is difficult to efficiently sulfidize the hemimorphite surface. Herein, stepwise addition of lead ions (Pb2+) was shown to be effective for increasing the content of active sites on the hemimorphite surface. The activation mechanism of hemimorphite by Pb2+ and its effect on flotation were investigated by microflotation experiments and surface analysis. The microflotation results indicated that stepwise activation with Pb2+ dramatically improved the flotation behavior of hemimorphite compared with single-stage activation. The results of time-of-flight secondary-ion mass spectrometry and X-ray photoelectron spectroscopy showed that stepwise activation with Pb2+ increased the activity of sulfidization products on the hemimorphite surface. This facilitated the generation of highly active lead sulfide species and created favorable conditions for subsequent interaction of xanthate with the mineral surface. The results of infrared spectroscopy and contact-angle analysis indicated that stepwise activation with Pb2+ enhanced the xanthate adsorption on hemimorphite surfaces, and a strongly hydrophobic surface was obtained. Accordingly, the flotation recovery of hemimorphite increased after stepwise activation with Pb2+, which provided a new idea and method for efficient recycling of zinc resources from complex and refractory zinc oxide ores. |
ArticleNumber | 121679 |
Author | Zhang, Ga Han, Guang Feng, Qicheng Li, Peixuan Yi, Yahui |
Author_xml | – sequence: 1 givenname: Yahui surname: Yi fullname: Yi, Yahui organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 2 givenname: Peixuan surname: Li fullname: Li, Peixuan organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 3 givenname: Ga surname: Zhang fullname: Zhang, Ga organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 4 givenname: Qicheng surname: Feng fullname: Feng, Qicheng email: fqckmust@163.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China – sequence: 5 givenname: Guang surname: Han fullname: Han, Guang email: ghkmust@126.com organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China |
BookMark | eNqFkMtOwzAURC1UJNrCH7DwDyT40SQ2CyRU8ZKQWABry7FvVJc0jmy3FXw9acOKBazuLO4ZzcwMTTrfAUKXlOSU0PJqnUfo-23IGWEsp4yWlTxBUyoqnvFKLiaD5oJnhSjLMzSLcU0IrahgU_TxmqDfuwhYm-R2OjnfYd_gFWzcxod-5RLguA2NNhDx3qUVbkFbPLxFrLtBpIiN71Jw9fYIJz_8t42z7mt0a1qfjuocnTa6jXDxc-fo_f7ubfmYPb88PC1vnzPDeJkyqa1kQgpGalIBsWU1hIeKSmCm5oTWQ2VphW2A81o2tCQLLlhZiLqwhaaGz9H16GuCjzFAo4wbE6SgXasoUYfZ1FqNs6nDbGqcbYAXv-A-uI0On_9hNyMGQ7Gdg6CicdAZsC6AScp697fBN-52jlA |
CitedBy_id | crossref_primary_10_1016_j_surfin_2023_103310 crossref_primary_10_1016_j_colsurfa_2023_132932 crossref_primary_10_3390_met13071249 crossref_primary_10_3390_min14111105 crossref_primary_10_1016_j_gsme_2024_05_004 crossref_primary_10_1016_j_seppur_2023_125854 |
Cites_doi | 10.1016/j.mineng.2018.12.028 10.1016/j.colsurfa.2022.129119 10.1016/j.mineng.2009.01.012 10.1016/j.cis.2013.02.003 10.1016/j.colsurfa.2018.02.058 10.1016/j.seppur.2022.121001 10.1016/j.apsusc.2018.02.132 10.1016/j.seppur.2021.118440 10.1016/j.powtec.2019.04.036 10.1016/j.molliq.2020.113506 10.1016/j.mineng.2016.02.002 10.1016/j.ijmst.2021.11.001 10.1016/j.mineng.2020.106373 10.1007/s12613-021-2379-y 10.1016/j.hydromet.2014.08.001 10.1016/S1003-6326(21)65748-5 10.1002/cssc.201403453 10.1016/j.apsusc.2019.04.038 10.1016/j.mineng.2017.06.010 10.1016/j.seppur.2021.119122 10.1016/j.mineng.2021.106809 10.1007/s12613-018-1634-3 10.1016/j.surfcoat.2014.12.054 10.1016/j.colsurfa.2014.04.029 10.1016/j.ijmst.2021.09.001 10.1016/j.apsusc.2019.143801 10.1002/app.26296 10.1016/S1003-6326(18)64649-7 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2022.121679 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2022_121679 S1383586622012357 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c236t-9ad9289820b07e0d67138e719e2cb301b0169d8dfe33b9f1604382658b5d5a1c3 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Tue Jul 01 00:33:03 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Fri Feb 23 02:36:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stepwise activation Lead ions Hemimorphite Enhanced flotation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-9ad9289820b07e0d67138e719e2cb301b0169d8dfe33b9f1604382658b5d5a1c3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2022_121679 crossref_primary_10_1016_j_seppur_2022_121679 elsevier_sciencedirect_doi_10_1016_j_seppur_2022_121679 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Han, Wen, Wang, Feng (b0090) 2021; 31 Shibli, Meena, Remya (b0010) 2015; 262 Zhang, Wen, Feng, Liu (b0080) 2021; 163 Wang, Zhang, Jing, Rao, Wu, Li, Cao (b0050) 2017; 5 Liu, Zhang, Song, Li, Liu (b0040) 2019; 352 Sahoo, Maiti, Ganguly, George, Bhowmick (b0020) 2007; 105 Zhang, Liang, Liu, Peng (b0015) 2014; 454 Zhao, Liu, Wen, Feng (b0110) 2019; 483 Wang, Wen, Han, Feng (b0075) 2021; 264 Zhang, Wen, Feng, Wang (b0120) 2022; 29 Jia, Feng, Zhang, Shi, Chang (b0065) 2017; 111 Han, Wen, Wang, Feng (b0095) 2021; 31 Li, Zhang, Zhao, Han, Feng (b0100) 2022; 291 Bottari, Kumalaputri, Krawczyk, Feringa, Heeres, Barta (b0005) 2015; 8 Zhu, Qin, Chen, Chai, Li, Liu, Zhang (b0035) 2018; 28 Wen, Zhang, Liu (b0055) 1994; 5 Jia, Feng, Zhang, Shi, Luo, Li (b0060) 2018; 25 S. Zhang, S. Wen, Y. Xian, L. Zhao, Q. Feng, S. Bai, G. Han. J. Lang. Wang. Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface. Appl. Surf. Sci. 498 (2019) 143801. Jia, Feng, Zhang, Ji, Zhang, Yang (b0115) 2018; 442 Liu, Zhao, Liu, Yang, Duan (b0135) 2019; 134 Qin, Liu, Fan, Tan (b0150) 2018; 545 Ejtemaei, Gharabaghi, Irannajad (b0045) 2014; 206 Feng, Zhao, Zhao, Zhao, Han (b0105) 2022; 648 Zhao, Liu, Feng (b0085) 2020; 152 Huang, Zhang, Zhang, Wang, Zhou, Yu, Liu, Cheng, Liu, Guo, He, Ai, Fu (b0145) 2020; 313 Irannajad, Ejtemaei, Gharabaghi (b0030) 2009; 22 Abkhoshk, Jorjani, Al-Harahsheh, Rashchi, Naazeri (b0025) 2014; 149 Liu, Feng, Zhang, Ma, Meng, Chen (b0070) 2016; 89 Huang, Shuai, Wang, Liu, Zhang, Cheng, Hu, Yu, He, Fu (b0140) 2022; 282 Zhang, Huang, Wang, Liu, Cheng, Shuai, Hu, Guo, Yu, He, Fu (b0125) 2021; 31 Liu (10.1016/j.seppur.2022.121679_b0040) 2019; 352 Shibli (10.1016/j.seppur.2022.121679_b0010) 2015; 262 10.1016/j.seppur.2022.121679_b0130 Jia (10.1016/j.seppur.2022.121679_b0065) 2017; 111 Han (10.1016/j.seppur.2022.121679_b0095) 2021; 31 Zhao (10.1016/j.seppur.2022.121679_b0085) 2020; 152 Jia (10.1016/j.seppur.2022.121679_b0060) 2018; 25 Zhao (10.1016/j.seppur.2022.121679_b0110) 2019; 483 Abkhoshk (10.1016/j.seppur.2022.121679_b0025) 2014; 149 Jia (10.1016/j.seppur.2022.121679_b0115) 2018; 442 Sahoo (10.1016/j.seppur.2022.121679_b0020) 2007; 105 Han (10.1016/j.seppur.2022.121679_b0090) 2021; 31 Zhang (10.1016/j.seppur.2022.121679_b0120) 2022; 29 Zhu (10.1016/j.seppur.2022.121679_b0035) 2018; 28 Irannajad (10.1016/j.seppur.2022.121679_b0030) 2009; 22 Li (10.1016/j.seppur.2022.121679_b0100) 2022; 291 Huang (10.1016/j.seppur.2022.121679_b0140) 2022; 282 Bottari (10.1016/j.seppur.2022.121679_b0005) 2015; 8 Wang (10.1016/j.seppur.2022.121679_b0050) 2017; 5 Wen (10.1016/j.seppur.2022.121679_b0055) 1994; 5 Zhang (10.1016/j.seppur.2022.121679_b0015) 2014; 454 Wang (10.1016/j.seppur.2022.121679_b0075) 2021; 264 Liu (10.1016/j.seppur.2022.121679_b0070) 2016; 89 Feng (10.1016/j.seppur.2022.121679_b0105) 2022; 648 Huang (10.1016/j.seppur.2022.121679_b0145) 2020; 313 Zhang (10.1016/j.seppur.2022.121679_b0125) 2021; 31 Qin (10.1016/j.seppur.2022.121679_b0150) 2018; 545 Liu (10.1016/j.seppur.2022.121679_b0135) 2019; 134 Ejtemaei (10.1016/j.seppur.2022.121679_b0045) 2014; 206 Zhang (10.1016/j.seppur.2022.121679_b0080) 2021; 163 |
References_xml | – volume: 8 start-page: 1323 year: 2015 end-page: 1327 ident: b0005 article-title: Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural publication-title: ChemSusChem – volume: 31 start-page: 1145 year: 2021 end-page: 1152 ident: b0125 article-title: Flotation performance of a novel Gemini collector for kaolinite at low temperature publication-title: Int. J. Min. Sci. Technol. – volume: 545 start-page: 68 year: 2018 end-page: 77 ident: b0150 article-title: The hydrophobic mechanism of di(2-ethylhexyl) phosphoric acid to hemimorphite flotation publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 313 year: 2020 ident: b0145 article-title: Evaluation of a novel morpholine-typed Gemini surfactant as the collector for the reverse flotation separation of halite from carnallite ore publication-title: J. Mol. Liq. – volume: 206 start-page: 68 year: 2014 end-page: 78 ident: b0045 article-title: A review of zinc oxide mineral beneficiation using flotation method publication-title: Adv. Colloid Interface Sci. – volume: 152 year: 2020 ident: b0085 article-title: Enhancement of salicylhydroxamic acid adsorption by Pb (II) modified hemimorphite surfaces and its effect on floatability publication-title: Miner. Eng. – reference: S. Zhang, S. Wen, Y. Xian, L. Zhao, Q. Feng, S. Bai, G. Han. J. Lang. Wang. Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface. Appl. Surf. Sci. 498 (2019) 143801. – volume: 282 year: 2022 ident: b0140 article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector publication-title: Sep. Purif. Technol. – volume: 134 start-page: 394 year: 2019 end-page: 401 ident: b0135 article-title: Synthesis and utilization of a Gemini surfactant as a collector for the flotation of hemimorphite from quartz publication-title: Miner. Eng. – volume: 262 start-page: 210 year: 2015 end-page: 215 ident: b0010 article-title: A review on recent approaches in the field of hot dip zinc galvanizing process publication-title: Surf. Coat. Technol. – volume: 31 start-page: 3564 year: 2021 end-page: 3578 ident: b0090 article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide publication-title: Trans. Nonferrous Met. Soc. China – volume: 442 start-page: 92 year: 2018 end-page: 100 ident: b0115 article-title: The role of S(II) and Pb(II) in xanthate flotation of smithsonite: surface properties and mechanism publication-title: Appl. Surf. Sci. – volume: 105 start-page: 2407 year: 2007 end-page: 2415 ident: b0020 article-title: Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber publication-title: J. Appl. Polym. Sci. – volume: 22 start-page: 766 year: 2009 end-page: 771 ident: b0030 article-title: The effect of reagents on selective flotation of smithsonite–calcite–quartz publication-title: Miner. Eng. – volume: 5 start-page: 903 year: 2017 end-page: 910 ident: b0050 article-title: A review of forming process and flotation mechanism of hemimorphite publication-title: Chin. J. Process Eng. – volume: 111 start-page: 167 year: 2017 end-page: 173 ident: b0065 article-title: Understanding the roles of Na publication-title: Miner. Eng. – volume: 28 start-page: 163 year: 2018 end-page: 168 ident: b0035 article-title: Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector publication-title: Trans. Nonferrous Met. Soc. China – volume: 264 year: 2021 ident: b0075 article-title: Adsorption characteristics of Pb(II) species on the sulfidized malachite surface and its response to flotation publication-title: Sep. Purif. Technol. – volume: 25 start-page: 849 year: 2018 end-page: 860 ident: b0060 article-title: Improved hemimorphite flotation using xanthate as a collector with S (II) and Pb (II) activation publication-title: Int. J. Miner., Metall. Mater. – volume: 31 start-page: 1117 year: 2021 end-page: 1128 ident: b0095 article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant publication-title: Int. J. Min. Sci. Technol. – volume: 648 year: 2022 ident: b0105 article-title: Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 352 start-page: 11 year: 2019 end-page: 15 ident: b0040 article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2,4-tricarboxylic acid as a depressant publication-title: Powder Technol. – volume: 163 year: 2021 ident: b0080 article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector publication-title: Miner. Eng. – volume: 291 year: 2022 ident: b0100 article-title: Interaction mechanism of Fe publication-title: Sep. Purif. Technol. – volume: 454 start-page: 113 year: 2014 end-page: 118 ident: b0015 article-title: Preparation of superhydrophobic zinc coating for corrosion protection publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 5 start-page: 112 year: 1994 end-page: 114 ident: b0055 article-title: The effects of inofganic thiol activators on amine flotation of hemimorphite publication-title: J. Kunming Inst. Technol. – volume: 89 start-page: 163 year: 2016 end-page: 167 ident: b0070 article-title: Effects of lead ions on the flotation of hemimorphite using sodium oleate publication-title: Miner. Eng. – volume: 149 start-page: 153 year: 2014 end-page: 167 ident: b0025 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy – volume: 483 start-page: 849 year: 2019 end-page: 858 ident: b0110 article-title: Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption publication-title: Appl. Surf. Sci. – volume: 29 start-page: 1150 year: 2022 end-page: 1160 ident: b0120 article-title: Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation publication-title: Int. J. Miner., Metall. Mater. – volume: 134 start-page: 394 year: 2019 ident: 10.1016/j.seppur.2022.121679_b0135 article-title: Synthesis and utilization of a Gemini surfactant as a collector for the flotation of hemimorphite from quartz publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.12.028 – volume: 648 year: 2022 ident: 10.1016/j.seppur.2022.121679_b0105 article-title: Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2022.129119 – volume: 22 start-page: 766 year: 2009 ident: 10.1016/j.seppur.2022.121679_b0030 article-title: The effect of reagents on selective flotation of smithsonite–calcite–quartz publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.01.012 – volume: 206 start-page: 68 year: 2014 ident: 10.1016/j.seppur.2022.121679_b0045 article-title: A review of zinc oxide mineral beneficiation using flotation method publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2013.02.003 – volume: 545 start-page: 68 year: 2018 ident: 10.1016/j.seppur.2022.121679_b0150 article-title: The hydrophobic mechanism of di(2-ethylhexyl) phosphoric acid to hemimorphite flotation publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.02.058 – volume: 291 year: 2022 ident: 10.1016/j.seppur.2022.121679_b0100 article-title: Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121001 – volume: 442 start-page: 92 year: 2018 ident: 10.1016/j.seppur.2022.121679_b0115 article-title: The role of S(II) and Pb(II) in xanthate flotation of smithsonite: surface properties and mechanism publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.132 – volume: 264 year: 2021 ident: 10.1016/j.seppur.2022.121679_b0075 article-title: Adsorption characteristics of Pb(II) species on the sulfidized malachite surface and its response to flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118440 – volume: 352 start-page: 11 year: 2019 ident: 10.1016/j.seppur.2022.121679_b0040 article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2,4-tricarboxylic acid as a depressant publication-title: Powder Technol. doi: 10.1016/j.powtec.2019.04.036 – volume: 313 year: 2020 ident: 10.1016/j.seppur.2022.121679_b0145 article-title: Evaluation of a novel morpholine-typed Gemini surfactant as the collector for the reverse flotation separation of halite from carnallite ore publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113506 – volume: 89 start-page: 163 year: 2016 ident: 10.1016/j.seppur.2022.121679_b0070 article-title: Effects of lead ions on the flotation of hemimorphite using sodium oleate publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.02.002 – volume: 31 start-page: 1117 year: 2021 ident: 10.1016/j.seppur.2022.121679_b0095 article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.11.001 – volume: 152 year: 2020 ident: 10.1016/j.seppur.2022.121679_b0085 article-title: Enhancement of salicylhydroxamic acid adsorption by Pb (II) modified hemimorphite surfaces and its effect on floatability publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106373 – volume: 29 start-page: 1150 year: 2022 ident: 10.1016/j.seppur.2022.121679_b0120 article-title: Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation publication-title: Int. J. Miner., Metall. Mater. doi: 10.1007/s12613-021-2379-y – volume: 149 start-page: 153 year: 2014 ident: 10.1016/j.seppur.2022.121679_b0025 article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.08.001 – volume: 31 start-page: 3564 year: 2021 ident: 10.1016/j.seppur.2022.121679_b0090 article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65748-5 – volume: 8 start-page: 1323 year: 2015 ident: 10.1016/j.seppur.2022.121679_b0005 article-title: Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural publication-title: ChemSusChem doi: 10.1002/cssc.201403453 – volume: 483 start-page: 849 year: 2019 ident: 10.1016/j.seppur.2022.121679_b0110 article-title: Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.038 – volume: 111 start-page: 167 year: 2017 ident: 10.1016/j.seppur.2022.121679_b0065 article-title: Understanding the roles of Na2S and Pb(II) in the flotation of hemimorphite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.06.010 – volume: 282 year: 2022 ident: 10.1016/j.seppur.2022.121679_b0140 article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119122 – volume: 163 year: 2021 ident: 10.1016/j.seppur.2022.121679_b0080 article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106809 – volume: 5 start-page: 903 year: 2017 ident: 10.1016/j.seppur.2022.121679_b0050 article-title: A review of forming process and flotation mechanism of hemimorphite publication-title: Chin. J. Process Eng. – volume: 25 start-page: 849 year: 2018 ident: 10.1016/j.seppur.2022.121679_b0060 article-title: Improved hemimorphite flotation using xanthate as a collector with S (II) and Pb (II) activation publication-title: Int. J. Miner., Metall. Mater. doi: 10.1007/s12613-018-1634-3 – volume: 262 start-page: 210 year: 2015 ident: 10.1016/j.seppur.2022.121679_b0010 article-title: A review on recent approaches in the field of hot dip zinc galvanizing process publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.12.054 – volume: 454 start-page: 113 year: 2014 ident: 10.1016/j.seppur.2022.121679_b0015 article-title: Preparation of superhydrophobic zinc coating for corrosion protection publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.04.029 – volume: 31 start-page: 1145 issue: 6 year: 2021 ident: 10.1016/j.seppur.2022.121679_b0125 article-title: Flotation performance of a novel Gemini collector for kaolinite at low temperature publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2021.09.001 – ident: 10.1016/j.seppur.2022.121679_b0130 doi: 10.1016/j.apsusc.2019.143801 – volume: 105 start-page: 2407 year: 2007 ident: 10.1016/j.seppur.2022.121679_b0020 article-title: Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.26296 – volume: 28 start-page: 163 year: 2018 ident: 10.1016/j.seppur.2022.121679_b0035 article-title: Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(18)64649-7 – volume: 5 start-page: 112 year: 1994 ident: 10.1016/j.seppur.2022.121679_b0055 article-title: The effects of inofganic thiol activators on amine flotation of hemimorphite publication-title: J. Kunming Inst. Technol. |
SSID | ssj0017182 |
Score | 2.430085 |
Snippet | [Display omitted]
•Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121679 |
SubjectTerms | Enhanced flotation Hemimorphite Lead ions Stepwise activation |
Title | Stepwise activation of hemimorphite surfaces with lead ions and its contribution to sulfidization flotation |
URI | https://dx.doi.org/10.1016/j.seppur.2022.121679 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrnlAPXsPWRrDkiBBoguAASt2pZHGkw1ol14sZvx27TCSQEEpeqreIq-pLaTvzZAThBhxxvSiQq72SaRam0Br003cShNZntImcj397p_mN6_aSeluC8yYVhWmXQ_bVOr7R1eNMJaHamo1HnPqLFlcq0juMq4bO3DCtxYrRqwcrZ1U3_bhFMIPVbBT2pvWSBJoOuonnNcDqdc2HQOOZKC5o5XT9ZqC9W53ID1oO7KM7qHm3CEk62YO1LEcFteGGi1vtohoJzFOodVlF4wZUAXguCkZxKMZu_eSZfCd53FWMaWMHzTQwmdFPORMVYD0dfibKg9mM_ciFHU_hxUUfsd-Dx8uLhvC_DEQpyGCe6lGbgDC2pyMzbbg-7TtOaNMNeZDAeWvq3LRdjcZnzmCTW-EhXgUHySqxyahANk11oTYoJ7oFQJhtob2PCyKYe6bte-cxYTOlKXtg-JA1s-TDUF-djLsZ5QyR7zmuwcwY7r8HeB7mQmtb1Nf5o32tGJP82T3IyAb9KHvxb8hBW-YktVqSOoFW-zfGYXJHStmH59CNqhwn3CQbZ4NA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MFrhX10d3s0RIIKXISE24bSaYIiS2CJN3-7M_sgmBhNvGw2u9NN87U7M-18M2XsFgxQvMkTIK0RfuT4QiuwQjU8A1pFugGUjdztBe2B_zSUwwprlrkwRKssdH-u0zNtXTypF2jW55NJ_cXBxZWMgsB1s4TPcItt-9ILidd397nmeTiofLOQJ0oLEi_z5zKS1xLm8xWVBXVdqrMQEKPrJ_u0YXNaB2y_cBb5fd6fQ1aB2RHb2ygheMzeiKb1MVkCpwyFfH-VJ5ZTHYD3BEFEl5IvVwtL1CtOu658isPKabbx0Qxv0iXP-OrFwVc8TVB-aiemyNDkdprk8foTNmg99JttURygIMauF6RCjYzCBRUaed0IoWECXJFGEDoK3LHGP1tTKRYTGQuep5V1giwsiD6JlkaOnLF3yqqzZAZnjEsVjQKrXcRI-xbwu1baSGnw8Yo-WI15JWzxuKguTodcTOOSRvYa52DHBHacg11jYt1qnlfX-EM-LEck_jZLYjQAv7Y8_3fLG7bT7nc7ceex93zBdukN2S5HXrJquljBFTolqb7OJt0X7ybhmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stepwise+activation+of+hemimorphite+surfaces+with+lead+ions+and+its+contribution+to+sulfidization+flotation&rft.jtitle=Separation+and+purification+technology&rft.au=Yi%2C+Yahui&rft.au=Li%2C+Peixuan&rft.au=Zhang%2C+Ga&rft.au=Feng%2C+Qicheng&rft.date=2022-10-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=299&rft_id=info:doi/10.1016%2Fj.seppur.2022.121679&rft.externalDocID=S1383586622012357 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |