Stepwise activation of hemimorphite surfaces with lead ions and its contribution to sulfidization flotation

[Display omitted] •Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise act...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 299; p. 121679
Main Authors Yi, Yahui, Li, Peixuan, Zhang, Ga, Feng, Qicheng, Han, Guang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2022
Subjects
Online AccessGet full text
ISSN1383-5866
1873-3794
DOI10.1016/j.seppur.2022.121679

Cover

Abstract [Display omitted] •Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise activation.•The surface hydrophobicity of hemimorphite was enhanced after stepwise activation. The surface activity of hemimorphite is poor; therefore, it is difficult to efficiently sulfidize the hemimorphite surface. Herein, stepwise addition of lead ions (Pb2+) was shown to be effective for increasing the content of active sites on the hemimorphite surface. The activation mechanism of hemimorphite by Pb2+ and its effect on flotation were investigated by microflotation experiments and surface analysis. The microflotation results indicated that stepwise activation with Pb2+ dramatically improved the flotation behavior of hemimorphite compared with single-stage activation. The results of time-of-flight secondary-ion mass spectrometry and X-ray photoelectron spectroscopy showed that stepwise activation with Pb2+ increased the activity of sulfidization products on the hemimorphite surface. This facilitated the generation of highly active lead sulfide species and created favorable conditions for subsequent interaction of xanthate with the mineral surface. The results of infrared spectroscopy and contact-angle analysis indicated that stepwise activation with Pb2+ enhanced the xanthate adsorption on hemimorphite surfaces, and a strongly hydrophobic surface was obtained. Accordingly, the flotation recovery of hemimorphite increased after stepwise activation with Pb2+, which provided a new idea and method for efficient recycling of zinc resources from complex and refractory zinc oxide ores.
AbstractList [Display omitted] •Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the surface sulfidization of hemimorphite.•The content of highly active lead sulfide species on hemimorphite surfaces was increased after stepwise activation.•The surface hydrophobicity of hemimorphite was enhanced after stepwise activation. The surface activity of hemimorphite is poor; therefore, it is difficult to efficiently sulfidize the hemimorphite surface. Herein, stepwise addition of lead ions (Pb2+) was shown to be effective for increasing the content of active sites on the hemimorphite surface. The activation mechanism of hemimorphite by Pb2+ and its effect on flotation were investigated by microflotation experiments and surface analysis. The microflotation results indicated that stepwise activation with Pb2+ dramatically improved the flotation behavior of hemimorphite compared with single-stage activation. The results of time-of-flight secondary-ion mass spectrometry and X-ray photoelectron spectroscopy showed that stepwise activation with Pb2+ increased the activity of sulfidization products on the hemimorphite surface. This facilitated the generation of highly active lead sulfide species and created favorable conditions for subsequent interaction of xanthate with the mineral surface. The results of infrared spectroscopy and contact-angle analysis indicated that stepwise activation with Pb2+ enhanced the xanthate adsorption on hemimorphite surfaces, and a strongly hydrophobic surface was obtained. Accordingly, the flotation recovery of hemimorphite increased after stepwise activation with Pb2+, which provided a new idea and method for efficient recycling of zinc resources from complex and refractory zinc oxide ores.
ArticleNumber 121679
Author Zhang, Ga
Han, Guang
Feng, Qicheng
Li, Peixuan
Yi, Yahui
Author_xml – sequence: 1
  givenname: Yahui
  surname: Yi
  fullname: Yi, Yahui
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 2
  givenname: Peixuan
  surname: Li
  fullname: Li, Peixuan
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 3
  givenname: Ga
  surname: Zhang
  fullname: Zhang, Ga
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 4
  givenname: Qicheng
  surname: Feng
  fullname: Feng, Qicheng
  email: fqckmust@163.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
– sequence: 5
  givenname: Guang
  surname: Han
  fullname: Han, Guang
  email: ghkmust@126.com
  organization: State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
BookMark eNqFkMtOwzAURC1UJNrCH7DwDyT40SQ2CyRU8ZKQWABry7FvVJc0jmy3FXw9acOKBazuLO4ZzcwMTTrfAUKXlOSU0PJqnUfo-23IGWEsp4yWlTxBUyoqnvFKLiaD5oJnhSjLMzSLcU0IrahgU_TxmqDfuwhYm-R2OjnfYd_gFWzcxod-5RLguA2NNhDx3qUVbkFbPLxFrLtBpIiN71Jw9fYIJz_8t42z7mt0a1qfjuocnTa6jXDxc-fo_f7ubfmYPb88PC1vnzPDeJkyqa1kQgpGalIBsWU1hIeKSmCm5oTWQ2VphW2A81o2tCQLLlhZiLqwhaaGz9H16GuCjzFAo4wbE6SgXasoUYfZ1FqNs6nDbGqcbYAXv-A-uI0On_9hNyMGQ7Gdg6CicdAZsC6AScp697fBN-52jlA
CitedBy_id crossref_primary_10_1016_j_surfin_2023_103310
crossref_primary_10_1016_j_colsurfa_2023_132932
crossref_primary_10_3390_met13071249
crossref_primary_10_3390_min14111105
crossref_primary_10_1016_j_gsme_2024_05_004
crossref_primary_10_1016_j_seppur_2023_125854
Cites_doi 10.1016/j.mineng.2018.12.028
10.1016/j.colsurfa.2022.129119
10.1016/j.mineng.2009.01.012
10.1016/j.cis.2013.02.003
10.1016/j.colsurfa.2018.02.058
10.1016/j.seppur.2022.121001
10.1016/j.apsusc.2018.02.132
10.1016/j.seppur.2021.118440
10.1016/j.powtec.2019.04.036
10.1016/j.molliq.2020.113506
10.1016/j.mineng.2016.02.002
10.1016/j.ijmst.2021.11.001
10.1016/j.mineng.2020.106373
10.1007/s12613-021-2379-y
10.1016/j.hydromet.2014.08.001
10.1016/S1003-6326(21)65748-5
10.1002/cssc.201403453
10.1016/j.apsusc.2019.04.038
10.1016/j.mineng.2017.06.010
10.1016/j.seppur.2021.119122
10.1016/j.mineng.2021.106809
10.1007/s12613-018-1634-3
10.1016/j.surfcoat.2014.12.054
10.1016/j.colsurfa.2014.04.029
10.1016/j.ijmst.2021.09.001
10.1016/j.apsusc.2019.143801
10.1002/app.26296
10.1016/S1003-6326(18)64649-7
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2022.121679
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2022_121679
S1383586622012357
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
ID FETCH-LOGICAL-c236t-9ad9289820b07e0d67138e719e2cb301b0169d8dfe33b9f1604382658b5d5a1c3
IEDL.DBID AIKHN
ISSN 1383-5866
IngestDate Tue Jul 01 00:33:03 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Fri Feb 23 02:36:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stepwise activation
Lead ions
Hemimorphite
Enhanced flotation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-9ad9289820b07e0d67138e719e2cb301b0169d8dfe33b9f1604382658b5d5a1c3
ParticipantIDs crossref_citationtrail_10_1016_j_seppur_2022_121679
crossref_primary_10_1016_j_seppur_2022_121679
elsevier_sciencedirect_doi_10_1016_j_seppur_2022_121679
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Han, Wen, Wang, Feng (b0090) 2021; 31
Shibli, Meena, Remya (b0010) 2015; 262
Zhang, Wen, Feng, Liu (b0080) 2021; 163
Wang, Zhang, Jing, Rao, Wu, Li, Cao (b0050) 2017; 5
Liu, Zhang, Song, Li, Liu (b0040) 2019; 352
Sahoo, Maiti, Ganguly, George, Bhowmick (b0020) 2007; 105
Zhang, Liang, Liu, Peng (b0015) 2014; 454
Zhao, Liu, Wen, Feng (b0110) 2019; 483
Wang, Wen, Han, Feng (b0075) 2021; 264
Zhang, Wen, Feng, Wang (b0120) 2022; 29
Jia, Feng, Zhang, Shi, Chang (b0065) 2017; 111
Han, Wen, Wang, Feng (b0095) 2021; 31
Li, Zhang, Zhao, Han, Feng (b0100) 2022; 291
Bottari, Kumalaputri, Krawczyk, Feringa, Heeres, Barta (b0005) 2015; 8
Zhu, Qin, Chen, Chai, Li, Liu, Zhang (b0035) 2018; 28
Wen, Zhang, Liu (b0055) 1994; 5
Jia, Feng, Zhang, Shi, Luo, Li (b0060) 2018; 25
S. Zhang, S. Wen, Y. Xian, L. Zhao, Q. Feng, S. Bai, G. Han. J. Lang. Wang. Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface. Appl. Surf. Sci. 498 (2019) 143801.
Jia, Feng, Zhang, Ji, Zhang, Yang (b0115) 2018; 442
Liu, Zhao, Liu, Yang, Duan (b0135) 2019; 134
Qin, Liu, Fan, Tan (b0150) 2018; 545
Ejtemaei, Gharabaghi, Irannajad (b0045) 2014; 206
Feng, Zhao, Zhao, Zhao, Han (b0105) 2022; 648
Zhao, Liu, Feng (b0085) 2020; 152
Huang, Zhang, Zhang, Wang, Zhou, Yu, Liu, Cheng, Liu, Guo, He, Ai, Fu (b0145) 2020; 313
Irannajad, Ejtemaei, Gharabaghi (b0030) 2009; 22
Abkhoshk, Jorjani, Al-Harahsheh, Rashchi, Naazeri (b0025) 2014; 149
Liu, Feng, Zhang, Ma, Meng, Chen (b0070) 2016; 89
Huang, Shuai, Wang, Liu, Zhang, Cheng, Hu, Yu, He, Fu (b0140) 2022; 282
Zhang, Huang, Wang, Liu, Cheng, Shuai, Hu, Guo, Yu, He, Fu (b0125) 2021; 31
Liu (10.1016/j.seppur.2022.121679_b0040) 2019; 352
Shibli (10.1016/j.seppur.2022.121679_b0010) 2015; 262
10.1016/j.seppur.2022.121679_b0130
Jia (10.1016/j.seppur.2022.121679_b0065) 2017; 111
Han (10.1016/j.seppur.2022.121679_b0095) 2021; 31
Zhao (10.1016/j.seppur.2022.121679_b0085) 2020; 152
Jia (10.1016/j.seppur.2022.121679_b0060) 2018; 25
Zhao (10.1016/j.seppur.2022.121679_b0110) 2019; 483
Abkhoshk (10.1016/j.seppur.2022.121679_b0025) 2014; 149
Jia (10.1016/j.seppur.2022.121679_b0115) 2018; 442
Sahoo (10.1016/j.seppur.2022.121679_b0020) 2007; 105
Han (10.1016/j.seppur.2022.121679_b0090) 2021; 31
Zhang (10.1016/j.seppur.2022.121679_b0120) 2022; 29
Zhu (10.1016/j.seppur.2022.121679_b0035) 2018; 28
Irannajad (10.1016/j.seppur.2022.121679_b0030) 2009; 22
Li (10.1016/j.seppur.2022.121679_b0100) 2022; 291
Huang (10.1016/j.seppur.2022.121679_b0140) 2022; 282
Bottari (10.1016/j.seppur.2022.121679_b0005) 2015; 8
Wang (10.1016/j.seppur.2022.121679_b0050) 2017; 5
Wen (10.1016/j.seppur.2022.121679_b0055) 1994; 5
Zhang (10.1016/j.seppur.2022.121679_b0015) 2014; 454
Wang (10.1016/j.seppur.2022.121679_b0075) 2021; 264
Liu (10.1016/j.seppur.2022.121679_b0070) 2016; 89
Feng (10.1016/j.seppur.2022.121679_b0105) 2022; 648
Huang (10.1016/j.seppur.2022.121679_b0145) 2020; 313
Zhang (10.1016/j.seppur.2022.121679_b0125) 2021; 31
Qin (10.1016/j.seppur.2022.121679_b0150) 2018; 545
Liu (10.1016/j.seppur.2022.121679_b0135) 2019; 134
Ejtemaei (10.1016/j.seppur.2022.121679_b0045) 2014; 206
Zhang (10.1016/j.seppur.2022.121679_b0080) 2021; 163
References_xml – volume: 8
  start-page: 1323
  year: 2015
  end-page: 1327
  ident: b0005
  article-title: Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural
  publication-title: ChemSusChem
– volume: 31
  start-page: 1145
  year: 2021
  end-page: 1152
  ident: b0125
  article-title: Flotation performance of a novel Gemini collector for kaolinite at low temperature
  publication-title: Int. J. Min. Sci. Technol.
– volume: 545
  start-page: 68
  year: 2018
  end-page: 77
  ident: b0150
  article-title: The hydrophobic mechanism of di(2-ethylhexyl) phosphoric acid to hemimorphite flotation
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 313
  year: 2020
  ident: b0145
  article-title: Evaluation of a novel morpholine-typed Gemini surfactant as the collector for the reverse flotation separation of halite from carnallite ore
  publication-title: J. Mol. Liq.
– volume: 206
  start-page: 68
  year: 2014
  end-page: 78
  ident: b0045
  article-title: A review of zinc oxide mineral beneficiation using flotation method
  publication-title: Adv. Colloid Interface Sci.
– volume: 152
  year: 2020
  ident: b0085
  article-title: Enhancement of salicylhydroxamic acid adsorption by Pb (II) modified hemimorphite surfaces and its effect on floatability
  publication-title: Miner. Eng.
– reference: S. Zhang, S. Wen, Y. Xian, L. Zhao, Q. Feng, S. Bai, G. Han. J. Lang. Wang. Lead ion modification and its enhancement for xanthate adsorption on smithsonite surface. Appl. Surf. Sci. 498 (2019) 143801.
– volume: 282
  year: 2022
  ident: b0140
  article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector
  publication-title: Sep. Purif. Technol.
– volume: 134
  start-page: 394
  year: 2019
  end-page: 401
  ident: b0135
  article-title: Synthesis and utilization of a Gemini surfactant as a collector for the flotation of hemimorphite from quartz
  publication-title: Miner. Eng.
– volume: 262
  start-page: 210
  year: 2015
  end-page: 215
  ident: b0010
  article-title: A review on recent approaches in the field of hot dip zinc galvanizing process
  publication-title: Surf. Coat. Technol.
– volume: 31
  start-page: 3564
  year: 2021
  end-page: 3578
  ident: b0090
  article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 442
  start-page: 92
  year: 2018
  end-page: 100
  ident: b0115
  article-title: The role of S(II) and Pb(II) in xanthate flotation of smithsonite: surface properties and mechanism
  publication-title: Appl. Surf. Sci.
– volume: 105
  start-page: 2407
  year: 2007
  end-page: 2415
  ident: b0020
  article-title: Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber
  publication-title: J. Appl. Polym. Sci.
– volume: 22
  start-page: 766
  year: 2009
  end-page: 771
  ident: b0030
  article-title: The effect of reagents on selective flotation of smithsonite–calcite–quartz
  publication-title: Miner. Eng.
– volume: 5
  start-page: 903
  year: 2017
  end-page: 910
  ident: b0050
  article-title: A review of forming process and flotation mechanism of hemimorphite
  publication-title: Chin. J. Process Eng.
– volume: 111
  start-page: 167
  year: 2017
  end-page: 173
  ident: b0065
  article-title: Understanding the roles of Na
  publication-title: Miner. Eng.
– volume: 28
  start-page: 163
  year: 2018
  end-page: 168
  ident: b0035
  article-title: Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 264
  year: 2021
  ident: b0075
  article-title: Adsorption characteristics of Pb(II) species on the sulfidized malachite surface and its response to flotation
  publication-title: Sep. Purif. Technol.
– volume: 25
  start-page: 849
  year: 2018
  end-page: 860
  ident: b0060
  article-title: Improved hemimorphite flotation using xanthate as a collector with S (II) and Pb (II) activation
  publication-title: Int. J. Miner., Metall. Mater.
– volume: 31
  start-page: 1117
  year: 2021
  end-page: 1128
  ident: b0095
  article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant
  publication-title: Int. J. Min. Sci. Technol.
– volume: 648
  year: 2022
  ident: b0105
  article-title: Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 352
  start-page: 11
  year: 2019
  end-page: 15
  ident: b0040
  article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2,4-tricarboxylic acid as a depressant
  publication-title: Powder Technol.
– volume: 163
  year: 2021
  ident: b0080
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
– volume: 291
  year: 2022
  ident: b0100
  article-title: Interaction mechanism of Fe
  publication-title: Sep. Purif. Technol.
– volume: 454
  start-page: 113
  year: 2014
  end-page: 118
  ident: b0015
  article-title: Preparation of superhydrophobic zinc coating for corrosion protection
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 5
  start-page: 112
  year: 1994
  end-page: 114
  ident: b0055
  article-title: The effects of inofganic thiol activators on amine flotation of hemimorphite
  publication-title: J. Kunming Inst. Technol.
– volume: 89
  start-page: 163
  year: 2016
  end-page: 167
  ident: b0070
  article-title: Effects of lead ions on the flotation of hemimorphite using sodium oleate
  publication-title: Miner. Eng.
– volume: 149
  start-page: 153
  year: 2014
  end-page: 167
  ident: b0025
  article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores
  publication-title: Hydrometallurgy
– volume: 483
  start-page: 849
  year: 2019
  end-page: 858
  ident: b0110
  article-title: Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption
  publication-title: Appl. Surf. Sci.
– volume: 29
  start-page: 1150
  year: 2022
  end-page: 1160
  ident: b0120
  article-title: Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation
  publication-title: Int. J. Miner., Metall. Mater.
– volume: 134
  start-page: 394
  year: 2019
  ident: 10.1016/j.seppur.2022.121679_b0135
  article-title: Synthesis and utilization of a Gemini surfactant as a collector for the flotation of hemimorphite from quartz
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.12.028
– volume: 648
  year: 2022
  ident: 10.1016/j.seppur.2022.121679_b0105
  article-title: Degradation mechanism of surface hydrophobicity by ferrous ions in the sulfidization flotation system of smithsonite
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2022.129119
– volume: 22
  start-page: 766
  year: 2009
  ident: 10.1016/j.seppur.2022.121679_b0030
  article-title: The effect of reagents on selective flotation of smithsonite–calcite–quartz
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2009.01.012
– volume: 206
  start-page: 68
  year: 2014
  ident: 10.1016/j.seppur.2022.121679_b0045
  article-title: A review of zinc oxide mineral beneficiation using flotation method
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.02.003
– volume: 545
  start-page: 68
  year: 2018
  ident: 10.1016/j.seppur.2022.121679_b0150
  article-title: The hydrophobic mechanism of di(2-ethylhexyl) phosphoric acid to hemimorphite flotation
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.02.058
– volume: 291
  year: 2022
  ident: 10.1016/j.seppur.2022.121679_b0100
  article-title: Interaction mechanism of Fe3+ with smithsonite surfaces and its response to flotation performance
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121001
– volume: 442
  start-page: 92
  year: 2018
  ident: 10.1016/j.seppur.2022.121679_b0115
  article-title: The role of S(II) and Pb(II) in xanthate flotation of smithsonite: surface properties and mechanism
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.132
– volume: 264
  year: 2021
  ident: 10.1016/j.seppur.2022.121679_b0075
  article-title: Adsorption characteristics of Pb(II) species on the sulfidized malachite surface and its response to flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118440
– volume: 352
  start-page: 11
  year: 2019
  ident: 10.1016/j.seppur.2022.121679_b0040
  article-title: Flotation separation of smithsonite from calcite using 2-phosphonobutane-1,2,4-tricarboxylic acid as a depressant
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2019.04.036
– volume: 313
  year: 2020
  ident: 10.1016/j.seppur.2022.121679_b0145
  article-title: Evaluation of a novel morpholine-typed Gemini surfactant as the collector for the reverse flotation separation of halite from carnallite ore
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.113506
– volume: 89
  start-page: 163
  year: 2016
  ident: 10.1016/j.seppur.2022.121679_b0070
  article-title: Effects of lead ions on the flotation of hemimorphite using sodium oleate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.02.002
– volume: 31
  start-page: 1117
  year: 2021
  ident: 10.1016/j.seppur.2022.121679_b0095
  article-title: Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.11.001
– volume: 152
  year: 2020
  ident: 10.1016/j.seppur.2022.121679_b0085
  article-title: Enhancement of salicylhydroxamic acid adsorption by Pb (II) modified hemimorphite surfaces and its effect on floatability
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106373
– volume: 29
  start-page: 1150
  year: 2022
  ident: 10.1016/j.seppur.2022.121679_b0120
  article-title: Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation
  publication-title: Int. J. Miner., Metall. Mater.
  doi: 10.1007/s12613-021-2379-y
– volume: 149
  start-page: 153
  year: 2014
  ident: 10.1016/j.seppur.2022.121679_b0025
  article-title: Review of the hydrometallurgical processing of non-sulfide zinc ores
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.08.001
– volume: 31
  start-page: 3564
  year: 2021
  ident: 10.1016/j.seppur.2022.121679_b0090
  article-title: Enhanced sulfidization flotation of cuprite by surface modification with hydrogen peroxide
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65748-5
– volume: 8
  start-page: 1323
  year: 2015
  ident: 10.1016/j.seppur.2022.121679_b0005
  article-title: Copper-zinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403453
– volume: 483
  start-page: 849
  year: 2019
  ident: 10.1016/j.seppur.2022.121679_b0110
  article-title: Surface modification of hemimorphite with lead ions and its effect on flotation and oleate adsorption
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.038
– volume: 111
  start-page: 167
  year: 2017
  ident: 10.1016/j.seppur.2022.121679_b0065
  article-title: Understanding the roles of Na2S and Pb(II) in the flotation of hemimorphite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.06.010
– volume: 282
  year: 2022
  ident: 10.1016/j.seppur.2022.121679_b0140
  article-title: Froth flotation separation of lepidolite ore using a new Gemini surfactant as the flotation collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119122
– volume: 163
  year: 2021
  ident: 10.1016/j.seppur.2022.121679_b0080
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106809
– volume: 5
  start-page: 903
  year: 2017
  ident: 10.1016/j.seppur.2022.121679_b0050
  article-title: A review of forming process and flotation mechanism of hemimorphite
  publication-title: Chin. J. Process Eng.
– volume: 25
  start-page: 849
  year: 2018
  ident: 10.1016/j.seppur.2022.121679_b0060
  article-title: Improved hemimorphite flotation using xanthate as a collector with S (II) and Pb (II) activation
  publication-title: Int. J. Miner., Metall. Mater.
  doi: 10.1007/s12613-018-1634-3
– volume: 262
  start-page: 210
  year: 2015
  ident: 10.1016/j.seppur.2022.121679_b0010
  article-title: A review on recent approaches in the field of hot dip zinc galvanizing process
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.12.054
– volume: 454
  start-page: 113
  year: 2014
  ident: 10.1016/j.seppur.2022.121679_b0015
  article-title: Preparation of superhydrophobic zinc coating for corrosion protection
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2014.04.029
– volume: 31
  start-page: 1145
  issue: 6
  year: 2021
  ident: 10.1016/j.seppur.2022.121679_b0125
  article-title: Flotation performance of a novel Gemini collector for kaolinite at low temperature
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2021.09.001
– ident: 10.1016/j.seppur.2022.121679_b0130
  doi: 10.1016/j.apsusc.2019.143801
– volume: 105
  start-page: 2407
  year: 2007
  ident: 10.1016/j.seppur.2022.121679_b0020
  article-title: Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.26296
– volume: 28
  start-page: 163
  year: 2018
  ident: 10.1016/j.seppur.2022.121679_b0035
  article-title: Selective flotation of smithsonite, quartz and calcite using alkyl diamine ether as collector
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(18)64649-7
– volume: 5
  start-page: 112
  year: 1994
  ident: 10.1016/j.seppur.2022.121679_b0055
  article-title: The effects of inofganic thiol activators on amine flotation of hemimorphite
  publication-title: J. Kunming Inst. Technol.
SSID ssj0017182
Score 2.430085
Snippet [Display omitted] •Stepwise activation with Pb2+ improved the floatability of hemimorphite.•Stepwise activation with Pb2+ was beneficial in promoting the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121679
SubjectTerms Enhanced flotation
Hemimorphite
Lead ions
Stepwise activation
Title Stepwise activation of hemimorphite surfaces with lead ions and its contribution to sulfidization flotation
URI https://dx.doi.org/10.1016/j.seppur.2022.121679
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgXOCAeIrnlAPXsPWRrDkiBBoguAASt2pZHGkw1ol14sZvx27TCSQEEpeqreIq-pLaTvzZAThBhxxvSiQq72SaRam0Br003cShNZntImcj397p_mN6_aSeluC8yYVhWmXQ_bVOr7R1eNMJaHamo1HnPqLFlcq0juMq4bO3DCtxYrRqwcrZ1U3_bhFMIPVbBT2pvWSBJoOuonnNcDqdc2HQOOZKC5o5XT9ZqC9W53ID1oO7KM7qHm3CEk62YO1LEcFteGGi1vtohoJzFOodVlF4wZUAXguCkZxKMZu_eSZfCd53FWMaWMHzTQwmdFPORMVYD0dfibKg9mM_ciFHU_hxUUfsd-Dx8uLhvC_DEQpyGCe6lGbgDC2pyMzbbg-7TtOaNMNeZDAeWvq3LRdjcZnzmCTW-EhXgUHySqxyahANk11oTYoJ7oFQJhtob2PCyKYe6bte-cxYTOlKXtg-JA1s-TDUF-djLsZ5QyR7zmuwcwY7r8HeB7mQmtb1Nf5o32tGJP82T3IyAb9KHvxb8hBW-YktVqSOoFW-zfGYXJHStmH59CNqhwn3CQbZ4NA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MFrhX10d3s0RIIKXISE24bSaYIiS2CJN3-7M_sgmBhNvGw2u9NN87U7M-18M2XsFgxQvMkTIK0RfuT4QiuwQjU8A1pFugGUjdztBe2B_zSUwwprlrkwRKssdH-u0zNtXTypF2jW55NJ_cXBxZWMgsB1s4TPcItt-9ILidd397nmeTiofLOQJ0oLEi_z5zKS1xLm8xWVBXVdqrMQEKPrJ_u0YXNaB2y_cBb5fd6fQ1aB2RHb2ygheMzeiKb1MVkCpwyFfH-VJ5ZTHYD3BEFEl5IvVwtL1CtOu658isPKabbx0Qxv0iXP-OrFwVc8TVB-aiemyNDkdprk8foTNmg99JttURygIMauF6RCjYzCBRUaed0IoWECXJFGEDoK3LHGP1tTKRYTGQuep5V1giwsiD6JlkaOnLF3yqqzZAZnjEsVjQKrXcRI-xbwu1baSGnw8Yo-WI15JWzxuKguTodcTOOSRvYa52DHBHacg11jYt1qnlfX-EM-LEck_jZLYjQAv7Y8_3fLG7bT7nc7ceex93zBdukN2S5HXrJquljBFTolqb7OJt0X7ybhmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stepwise+activation+of+hemimorphite+surfaces+with+lead+ions+and+its+contribution+to+sulfidization+flotation&rft.jtitle=Separation+and+purification+technology&rft.au=Yi%2C+Yahui&rft.au=Li%2C+Peixuan&rft.au=Zhang%2C+Ga&rft.au=Feng%2C+Qicheng&rft.date=2022-10-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=299&rft_id=info:doi/10.1016%2Fj.seppur.2022.121679&rft.externalDocID=S1383586622012357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon