VLBI position variability of AGNs is inversely correlated with their photometric variability

Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of thousands of extragalactic objects, is dependent on the individual positional stability of these objects. It has been recently shown that the pre...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 684; p. A93
Main Authors Lambert, S., Secrest, N. J.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of thousands of extragalactic objects, is dependent on the individual positional stability of these objects. It has been recently shown that the prevalence of offsets between the VLBI positions of ICRF objects and their Gaia optical positions, which limit the optical-radio reference frame tie, is inversely correlated with optical photometric variability, suggesting that photometrically variable objects may be more positionally stable. In this work, we determine the relationship between VLBI position stability of ICRF objects and optical-radio position offsets as well as optical photometric variability. Methods. We created multi-epoch geodetic VLBI solutions for a sample of 520 ICRF sources that have sufficient data to determine the variability in their VLBI positions over time. We compared this position variability with the fractional photometric variability provided by the Gaia extragalactic source catalog, the Gaia -ICRF optical-radio position offsets, the uncertainty-normalized position offsets, and optical BP-RP color as well as with possible confounders such as optical magnitude, VLBI /Gaia position error, and redshift. We determined the relationship between VLBI position stability and γ -ray detection by the Fermi Large Area Telescope (LAT), and we determined how the VLBI position and optical flux variabilities correlate with the spectral classification of our sample, considering flat spectrum radio quasars (FSRQs), quasi-stellar objects, BL Lacs, Seyfert, and gigahertz-peaked spectrum radio sources or compact-steep-spectrum radio sources. Results. We found that VLBI astrometric variability is (i) negatively correlated with optical flux variability, (ii) positively correlated with optical-radio offsets, (iii) negatively correlated with optical color index BP-RP, and (iv) negatively correlated with γ -ray detection. We also found that the most positionally stable sources are among the FSRQ and BL Lac classes. In other words, redder, photometrically variable sources have the most stable VLBI positions, the smallest optical-radio position offsets, and the highest rate of γ -ray detection, and these sources tend to be spectrally classified as blazars. Conclusions. Our results are consistent with the most positionally stable sources being blazars, a class of object in which the jet is oriented close to the line of sight and where relativistic beaming increases photometric variability and minimizes the projected offset between the optical and radio positions. Our study should therefore orient future geodetic VLBI observing programs preferentially toward sources with high photometric variability because these sources are predicted to have better VLBI position stabilities and smaller optical-radio position offsets, improving the stability of the celestial reference frame axes.
AbstractList Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of thousands of extragalactic objects, is dependent on the individual positional stability of these objects. It has been recently shown that the prevalence of offsets between the VLBI positions of ICRF objects and their Gaia optical positions, which limit the optical-radio reference frame tie, is inversely correlated with optical photometric variability, suggesting that photometrically variable objects may be more positionally stable. In this work, we determine the relationship between VLBI position stability of ICRF objects and optical-radio position offsets as well as optical photometric variability.Methods. We created multi-epoch geodetic VLBI solutions for a sample of 520 ICRF sources that have sufficient data to determine the variability in their VLBI positions over time. We compared this position variability with the fractional photometric variability provided by the Gaia extragalactic source catalog, the Gaia-ICRF optical-radio position offsets, the uncertainty-normalized position offsets, and optical BP-RP color as well as with possible confounders such as optical magnitude, VLBI/Gaia position error, and redshift. We determined the relationship between VLBI position stability and γ-ray detection by the Fermi Large Area Telescope (LAT), and we determined how the VLBI position and optical flux variabilities correlate with the spectral classification of our sample, considering flat spectrum radio quasars (FSRQs), quasi-stellar objects, BL Lacs, Seyfert, and gigahertz-peaked spectrum radio sources or compact-steep-spectrum radio sources.Results. We found that VLBI astrometric variability is (i) negatively correlated with optical flux variability, (ii) positively correlated with optical-radio offsets, (iii) negatively correlated with optical color index BP-RP, and (iv) negatively correlated with γ-ray detection. We also found that the most positionally stable sources are among the FSRQ and BL Lac classes. In other words, redder, photometrically variable sources have the most stable VLBI positions, the smallest optical-radio position offsets, and the highest rate of γ-ray detection, and these sources tend to be spectrally classified as blazars.Conclusions. Our results are consistent with the most positionally stable sources being blazars, a class of object in which the jet is oriented close to the line of sight and where relativistic beaming increases photometric variability and minimizes the projected offset between the optical and radio positions. Our study should therefore orient future geodetic VLBI observing programs preferentially toward sources with high photometric variability because these sources are predicted to have better VLBI position stabilities and smaller optical-radio position offsets, improving the stability of the celestial reference frame axes.
Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of thousands of extragalactic objects, is dependent on the individual positional stability of these objects. It has been recently shown that the prevalence of offsets between the VLBI positions of ICRF objects and their Gaia optical positions, which limit the optical-radio reference frame tie, is inversely correlated with optical photometric variability, suggesting that photometrically variable objects may be more positionally stable. In this work, we determine the relationship between VLBI position stability of ICRF objects and optical-radio position offsets as well as optical photometric variability. Methods. We created multi-epoch geodetic VLBI solutions for a sample of 520 ICRF sources that have sufficient data to determine the variability in their VLBI positions over time. We compared this position variability with the fractional photometric variability provided by the Gaia extragalactic source catalog, the Gaia -ICRF optical-radio position offsets, the uncertainty-normalized position offsets, and optical BP-RP color as well as with possible confounders such as optical magnitude, VLBI /Gaia position error, and redshift. We determined the relationship between VLBI position stability and γ -ray detection by the Fermi Large Area Telescope (LAT), and we determined how the VLBI position and optical flux variabilities correlate with the spectral classification of our sample, considering flat spectrum radio quasars (FSRQs), quasi-stellar objects, BL Lacs, Seyfert, and gigahertz-peaked spectrum radio sources or compact-steep-spectrum radio sources. Results. We found that VLBI astrometric variability is (i) negatively correlated with optical flux variability, (ii) positively correlated with optical-radio offsets, (iii) negatively correlated with optical color index BP-RP, and (iv) negatively correlated with γ -ray detection. We also found that the most positionally stable sources are among the FSRQ and BL Lac classes. In other words, redder, photometrically variable sources have the most stable VLBI positions, the smallest optical-radio position offsets, and the highest rate of γ -ray detection, and these sources tend to be spectrally classified as blazars. Conclusions. Our results are consistent with the most positionally stable sources being blazars, a class of object in which the jet is oriented close to the line of sight and where relativistic beaming increases photometric variability and minimizes the projected offset between the optical and radio positions. Our study should therefore orient future geodetic VLBI observing programs preferentially toward sources with high photometric variability because these sources are predicted to have better VLBI position stabilities and smaller optical-radio position offsets, improving the stability of the celestial reference frame axes.
Author Lambert, S.
Secrest, N. J.
Author_xml – sequence: 1
  givenname: S.
  surname: Lambert
  fullname: Lambert, S.
– sequence: 2
  givenname: N. J.
  surname: Secrest
  fullname: Secrest, N. J.
BackLink https://hal.science/hal-04539989$$DView record in HAL
BookMark eNpNkE1LAzEQhoNUsFZ_gZeAJw9r87mbHGvRtlD0op6EkO4mbMp2syZppf_eXSpFGBhmeHhneK7BqPWtAeAOo0eMOJ4ihFiW0xxPCSKUCcHIBRhjRkmGCpaPwPhMXIHrGLf9SLCgY_D1uX5awc5Hl5xv4UEHpzeucekIvYWzxWuErq_2YEI0zRGWPgTT6GQq-ONSDVNtXIBd7ZPfmRRc-T_iBlxa3URz-9cn4OPl-X2-zNZvi9V8ts5KQvOUSWoEtoxvJBK8KDjNJaM6L6zG2AhaalRZvtFVZQtaSVlwIa0lQmpONTGlphPwcMqtdaO64HY6HJXXTi1nazXsEONUSiEPuGfvT2wX_PfexKS2fh_a_j1FEcOMIdFfnwB6osrgYwzGnmMxUoNyNQhVg1B1Vk5_AW56dRI
Cites_doi 10.1051/0004-6361/201834363
10.1086/115419
10.1088/0004-6256/150/2/58
10.1093/mnrasl/slx001
10.1093/mnras/sty2807
10.3847/1538-4365/ac6751
10.1051/0004-6361/201323195
10.1146/annurev-astro-081817-051948
10.1093/mnras/stx806
10.3847/1538-4357/aaf650
10.1051/0004-6361/202140652
10.1051/0004-6361/202244035
10.1051/0004-6361/201833430
10.1051/0004-6361/201321320
10.1051/0004-6361/201630031
10.1086/670067
10.1007/s00159-017-0102-9
10.1093/mnras/stx1747
10.3847/1538-4357/ab1c61
10.1007/s00190-007-0136-2
10.1051/0004-6361/201629272
10.1051/0004-6361/202141915
10.1088/1538-3873/aae8ac
10.3847/1538-4357/ac7047
10.1051/0004-6361/202140377
10.1088/0004-637X/792/1/30
10.1051/0004-6361/201832916
10.1051/0004-6361/202243483
10.1051/0004-6361/201629534
10.1086/118648
10.1007/s00190-008-0265-2
10.1051/0004-6361/202038368
10.1007/s00190-016-0950-5
10.3847/2041-8213/ac8d5d
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
DOI 10.1051/0004-6361/202348842
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
1432-0756
ExternalDocumentID oai_HAL_hal_04539989v1
10_1051_0004_6361_202348842
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOTM
AAYXX
ABDNZ
ABPPZ
ABTAH
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
AEILP
AENEX
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
G8K
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNP
RNS
RSV
SDH
SJN
SOJ
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c236t-93e81f45b908577536943a67fa11e83ca0df5baddf73d997589ff289a53a2eca3
ISSN 0004-6361
IngestDate Fri Sep 06 12:39:09 EDT 2024
Fri Sep 13 04:14:47 EDT 2024
Thu Sep 12 17:38:49 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords quasars: general
catalogs
techniques: interferometric
reference systems
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-93e81f45b908577536943a67fa11e83ca0df5baddf73d997589ff289a53a2eca3
OpenAccessLink https://hal.science/hal-04539989
PQID 3041440894
PQPubID 1796397
ParticipantIDs hal_primary_oai_HAL_hal_04539989v1
proquest_journals_3041440894
crossref_primary_10_1051_0004_6361_202348842
PublicationCentury 2000
PublicationDate 20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 20240401
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Malkin (R22) 2009; 83
Gattano (R15) 2018; 618
Carnerero (R5) 2022; 674
Mignard (R25) 2016; 595
Nothnagel (R27) 2017; 91
Arias (R3) 1995; 303
Klioner (R13) 2022; 667
Makarov (R21) 2022; 933
Feissel (R8) 1998; 331
Wang (R38) 2019; 877
Feissel (R9) 2000; 359
Mignard (R26) 2018; 616
Petrov (R30) 2017; 467
Petrov (R32) 2019; 482
Secrest (R36) 2022; 939
Fey (R11) 2015; 150
Souchay (R37) 2022; 660
Angelakis (R2) 2019; 626
Masci (R24) 2019; 131
Gattano (R14) 2021; 648
Padovani (R28) 2017; 25
Blandford (R4) 2019; 57
Planck Collaboration XI (R33) 2014; 571
Charlot (R6) 1990; 99
Ghisellini (R16) 2017; 469
Lambert (R18) 2013; 553
Petrov (R29) 2017; 471
Prusti (R35) 2016; 595
Kovalev (R17) 2017; 598
Plavin (R34) 2019; 871
Abdollahi (R1) 2022; 260
Foreman-Mackey (R12) 2013; 125
Mainzer (R23) 2014; 792
Fey (R10) 1997; 114
MacMillan (R20) 2007; 81
Petrov (R31) 2018; 482
Charlot (R7) 2020; 644
Lambert (R19) 2021; 651
References_xml – volume: 626
  start-page: A60
  year: 2019
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/201834363
  contributor:
    fullname: Angelakis
– volume: 99
  start-page: 1309
  year: 1990
  ident: R6
  publication-title: AJ
  doi: 10.1086/115419
  contributor:
    fullname: Charlot
– volume: 150
  start-page: 58
  year: 2015
  ident: R11
  publication-title: AJ
  doi: 10.1088/0004-6256/150/2/58
  contributor:
    fullname: Fey
– volume: 467
  start-page: L71
  year: 2017
  ident: R30
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx001
  contributor:
    fullname: Petrov
– volume: 482
  start-page: 3023
  year: 2018
  ident: R31
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2807
  contributor:
    fullname: Petrov
– volume: 260
  start-page: 53
  year: 2022
  ident: R1
  publication-title: ApJS
  doi: 10.3847/1538-4365/ac6751
  contributor:
    fullname: Abdollahi
– volume: 571
  start-page: A11
  year: 2014
  ident: R33
  publication-title: A&A
  doi: 10.1051/0004-6361/201323195
  contributor:
    fullname: Planck Collaboration XI
– volume: 57
  start-page: 467
  year: 2019
  ident: R4
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-081817-051948
  contributor:
    fullname: Blandford
– volume: 469
  start-page: 255
  year: 2017
  ident: R16
  publication-title: MNRAS
  doi: 10.1093/mnras/stx806
  contributor:
    fullname: Ghisellini
– volume: 871
  start-page: 143
  year: 2019
  ident: R34
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf650
  contributor:
    fullname: Plavin
– volume: 651
  start-page: A64
  year: 2021
  ident: R19
  publication-title: A&A
  doi: 10.1051/0004-6361/202140652
  contributor:
    fullname: Lambert
– volume: 331
  start-page: L33
  year: 1998
  ident: R8
  publication-title: A&A
  contributor:
    fullname: Feissel
– volume: 674
  start-page: A24
  year: 2022
  ident: R5
  publication-title: A&A
  doi: 10.1051/0004-6361/202244035
  contributor:
    fullname: Carnerero
– volume: 618
  start-page: A80
  year: 2018
  ident: R15
  publication-title: A&A
  doi: 10.1051/0004-6361/201833430
  contributor:
    fullname: Gattano
– volume: 553
  start-page: A122
  year: 2013
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201321320
  contributor:
    fullname: Lambert
– volume: 598
  start-page: A1
  year: 2017
  ident: R17
  publication-title: A&A
  doi: 10.1051/0004-6361/201630031
  contributor:
    fullname: Kovalev
– volume: 125
  start-page: 306
  year: 2013
  ident: R12
  publication-title: PASP
  doi: 10.1086/670067
  contributor:
    fullname: Foreman-Mackey
– volume: 25
  start-page: 2
  year: 2017
  ident: R28
  publication-title: A&ARv
  doi: 10.1007/s00159-017-0102-9
  contributor:
    fullname: Padovani
– volume: 471
  start-page: 3775
  year: 2017
  ident: R29
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1747
  contributor:
    fullname: Petrov
– volume: 877
  start-page: 116
  year: 2019
  ident: R38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1c61
  contributor:
    fullname: Wang
– volume: 81
  start-page: 443
  year: 2007
  ident: R20
  publication-title: J. Geodesy
  doi: 10.1007/s00190-007-0136-2
  contributor:
    fullname: MacMillan
– volume: 595
  start-page: A1
  year: 2016
  ident: R35
  publication-title: A&A
  doi: 10.1051/0004-6361/201629272
  contributor:
    fullname: Prusti
– volume: 660
  start-page: A16
  year: 2022
  ident: R37
  publication-title: A&A
  doi: 10.1051/0004-6361/202141915
  contributor:
    fullname: Souchay
– volume: 131
  start-page: 018003
  year: 2019
  ident: R24
  publication-title: PASP
  doi: 10.1088/1538-3873/aae8ac
  contributor:
    fullname: Masci
– volume: 303
  start-page: 604
  year: 1995
  ident: R3
  publication-title: A&A
  contributor:
    fullname: Arias
– volume: 933
  start-page: 28
  year: 2022
  ident: R21
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac7047
  contributor:
    fullname: Makarov
– volume: 648
  start-page: A125
  year: 2021
  ident: R14
  publication-title: A&A
  doi: 10.1051/0004-6361/202140377
  contributor:
    fullname: Gattano
– volume: 482
  start-page: 3023
  year: 2019
  ident: R32
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2807
  contributor:
    fullname: Petrov
– volume: 792
  start-page: 30
  year: 2014
  ident: R23
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/1/30
  contributor:
    fullname: Mainzer
– volume: 616
  start-page: A14
  year: 2018
  ident: R26
  publication-title: A&A
  doi: 10.1051/0004-6361/201832916
  contributor:
    fullname: Mignard
– volume: 667
  start-page: A148
  year: 2022
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/202243483
  contributor:
    fullname: Klioner
– volume: 595
  start-page: A5
  year: 2016
  ident: R25
  publication-title: A&A
  doi: 10.1051/0004-6361/201629534
  contributor:
    fullname: Mignard
– volume: 114
  start-page: 2284
  year: 1997
  ident: R10
  publication-title: AJ
  doi: 10.1086/118648
  contributor:
    fullname: Fey
– volume: 83
  start-page: 547
  year: 2009
  ident: R22
  publication-title: J. Geodesy
  doi: 10.1007/s00190-008-0265-2
  contributor:
    fullname: Malkin
– volume: 644
  start-page: A159
  year: 2020
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361/202038368
  contributor:
    fullname: Charlot
– volume: 91
  start-page: 711
  year: 2017
  ident: R27
  publication-title: J. Geodesy
  doi: 10.1007/s00190-016-0950-5
  contributor:
    fullname: Nothnagel
– volume: 939
  start-page: L32
  year: 2022
  ident: R36
  publication-title: ApJ
  doi: 10.3847/2041-8213/ac8d5d
  contributor:
    fullname: Secrest
– volume: 359
  start-page: 1201
  year: 2000
  ident: R9
  publication-title: A&A
  contributor:
    fullname: Feissel
SSID ssj0002183
Score 2.4991763
Snippet Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of...
Aims. The stability of the International Celestial Reference Frame (ICRF), realized through geodetic very long baseline interferometry (VLBI) positions of...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage A93
SubjectTerms Astrophysics
BL Lacertae objects
Blazars
Color
Correlation
Cyclotron frequency
Ion cyclotron radiation
Offsets
Photometry
Physics
Position errors
Quasars
Radio sources (astronomy)
Red shift
Seyfert galaxies
Spectral classification
Stability
Variability
Very long base interferometry
Title VLBI position variability of AGNs is inversely correlated with their photometric variability
URI https://www.proquest.com/docview/3041440894/abstract/
https://hal.science/hal-04539989
Volume 684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgCIkXBAO0joEshHgpyZrYSePHwNjaUVWVtqE9IEWOY6uTtmaiYRI88Nu5s-s0hT0MpCpKnepS-buc7y6f7wh5q2RUJmkpA1lFMuAQuwVSZyowA6HTmEvs9YBsi2k6OuPH58n5mm5rd5c0Zah-3rqv5H9QhTHAFXfJ_gOyrVAYgHPAF46AMBzvhPGXyYdx39Ou-jcQ9rqq2_ateX40XWK78osFMi_05Y--wk4cl7LxjHP3kuB6Xjf1FTbWUl0RXa81X2LCvL5ytZokfnMZEZuydRWzOimFicQuI9a6n4RtCgf9U7fBZBr2j8NuuiHuslRsDuxg5q3OcsOu8iBlrqx6qJ0p5Qx5ra5suLe1qesH95fdBtPgiI5ODG5TAWcCjIsrvbVZJ3uUnxSzg8NiMp5-3rzaFswe5ZNiDniCwwoeWCZuIEB-EA9FgvH50fhXu1ijh-giJHdnX5gqifbbsf32v2w4L_fnSJ39YwW3bsnpE_J4FU_Q3CnHU3JPL7bJTgsYfUfzDlzb5OHMnT0jX1F7qNce2oGe1oai9tAL-HjtoWvtoag91GoP7WhPV8Rzcnb46fTjKFj12ghUzNImEExnkeFJKbDlAcSwqeBMpkMjo0hnTMlBZZISFkMzZJUQEGUKYyBYlwmTsVaSvSBbi3qhdwgdwuSpWEeR0oKXSsuMc6OlzCoQVsVxj7z3k1hcu5IqhaVCJBFSIXiBc160c94jbxBJ_8vb0e2RPY9DsXpAlwUbcKQuZILv3kXGS_JorfB7ZKv59l2_Ao-zKV9bnfkNfkt_aQ
link.rule.ids 230,315,786,790,891,27957,27958
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VLBI+position+variability+of+AGNs+is+inversely+correlated+with+their+photometric+variability&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Lambert%2C+S.&rft.au=Secrest%2C+N.+J.&rft.date=2024-04-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0756&rft.volume=684&rft_id=info:doi/10.1051%2F0004-6361%2F202348842&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04539989v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon