Towards mesh saliency in 6 degrees of freedom

In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, w...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 502; pp. 120 - 139
Main Authors Ding, Xiaoying, Chen, Zhenzhong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, we first analyze the inter-observer variation and the influence of viewing direction toward subject’s visual attention, then we provide investigations about the subject’s visual attention bias and head movement during observation. As traditional 3D mesh saliency detection algorithms do not taking the subject’s head movement into consideration, we further propose a 6DoF mesh saliency detection algorithm based on the uniqueness measure and the bias preference. To evaluate the proposed approach, we design an evaluation metric accordingly which takes the 6DoF information into consideration, and extend some state-of-the-art 3D saliency detection methods to make comparisons. The experimental results demonstrate the superior performance of our approach for 6DoF mesh saliency detection, in addition to providing benchmarks for the presented 6DoF mesh saliency database. The database and proposed method will be made publicly available for research purposes.
AbstractList In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, we first analyze the inter-observer variation and the influence of viewing direction toward subject’s visual attention, then we provide investigations about the subject’s visual attention bias and head movement during observation. As traditional 3D mesh saliency detection algorithms do not taking the subject’s head movement into consideration, we further propose a 6DoF mesh saliency detection algorithm based on the uniqueness measure and the bias preference. To evaluate the proposed approach, we design an evaluation metric accordingly which takes the 6DoF information into consideration, and extend some state-of-the-art 3D saliency detection methods to make comparisons. The experimental results demonstrate the superior performance of our approach for 6DoF mesh saliency detection, in addition to providing benchmarks for the presented 6DoF mesh saliency database. The database and proposed method will be made publicly available for research purposes.
Author Ding, Xiaoying
Chen, Zhenzhong
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Ding
  fullname: Ding, Xiaoying
  email: dingxiaoying@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Zhenzhong
  surname: Chen
  fullname: Chen, Zhenzhong
  email: zzchen@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRLsm9hxGJBQxZ9UiaXMlmNfg6smRnYA9e1JVSYGmM5ZviN9Z0FmQxyQkEvOSs64vNqWA37Y2JfAAEomS6bUCZlz1UChQMkZmbMWRAEVhzOyyHnLGG84tHNSbOKXSS7THvMbzWYXcLB7GgYqqcPXhJhp9NRPxcX-nJx6s8t48ZNL8nJ_t1k9Fuvnh6fV7bqwUMmxaLAzyjYgnHCysZ1rEbCrHXZCOvAGlUHRiMp5WQt00lvpeOu6CkTLBDPVktTHXZtizgm9fk-hN2mvOdMHZb3VR2V9UNZM6kl5wq5_YTaMZgxxGJMJu__gmyOMk9hnwKSzPZyBLiS0o3Yx_D3wDWqid10
CitedBy_id crossref_primary_10_1109_TMM_2023_3312924
crossref_primary_10_1016_j_cviu_2024_104129
crossref_primary_10_1016_j_jvcir_2024_104095
Cites_doi 10.1007/s11263-015-0822-0
10.1016/j.tics.2013.09.001
10.1007/s11263-010-0354-6
10.1007/s11263-019-01247-4
10.1109/MCG.2016.47
10.1145/383745.383748
10.1109/TIP.2016.2529506
10.1109/34.730558
10.1109/TPAMI.2019.2900649
10.1109/TPAMI.2019.2949562
10.1109/TVCG.2018.2793599
10.1109/TIP.2019.2918735
10.1109/TIP.2019.2930906
10.1145/2185520.2185525
10.1145/1658349.1658355
10.1016/j.gmod.2013.05.002
10.1145/1670671.1670676
10.1145/2530691
10.1111/cgf.13353
10.1145/1077399.1077406
10.1109/TIP.2014.2346028
10.1007/s00371-012-0746-4
10.1109/TPAMI.2021.3053577
10.1007/s00371-017-1416-3
10.1007/s11263-015-0853-6
10.1109/TPAMI.2016.2522437
10.1109/TIP.2013.2282897
10.1007/s11263-017-1062-2
10.1109/TIP.2015.2425544
10.1145/3272127.3275094
10.1016/j.jvcir.2017.02.005
10.1145/1518701.1518705
10.1109/TPAMI.2006.86
10.1109/TPAMI.2014.2345401
10.1007/s11263-013-0678-0
10.1109/TPAMI.2019.2956930
10.1126/science.171.3968.308
10.1145/1073204.1073244
10.3758/BRM.42.1.188
10.3758/s13428-012-0226-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.06.088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 139
ExternalDocumentID 10_1016_j_neucom_2022_06_088
S0925231222008207
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c236t-7eba8c725d5d67cbd9e2eb4deb56d2fae8ae5753df645ed6fc6d19db3259050a3
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:09:24 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Fri Feb 23 02:38:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 6DoF
Visual attention behavior
6DoF mesh saliency detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-7eba8c725d5d67cbd9e2eb4deb56d2fae8ae5753df645ed6fc6d19db3259050a3
PageCount 20
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_06_088
crossref_citationtrail_10_1016_j_neucom_2022_06_088
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_06_088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tasse, Kosinka, Dodgson (b0200) 2015
Lee, Varshney, Jacobs (b0180) 2005; 24
Leifman, Shtrom, Tal (b0040) 2016; 38
Zeng, Lu, Zhang, Feng, Borji (b0150) 2018
Li, Tian, Huang, Gao (b0125) 2010; 90
Cheng, Mitra, Huang, Torr, Hu (b0010) 2015; 37
Zhang, Shen, Li (b0020) 2014; 23
Wei, Wen, Zhu, Sun (b0140) 2012
Zheng, Chen, Yuan, Li, Ren (b0215) 2019
Le Meur, Baccino (b0265) 2013; 45
Nyström, Holmqvist (b0250) 2010; 42
Salvucci, Goldberg (b0080) 2000
Wang, Koch, Holmqvist, Alexa (b0085) 2018; 37
Thanou, Chou, Frossard (b0055) 2016; 25
W. Sun, Z. Chen, F. Wu, Visual scanpath prediction using IOR-ROI recurrent mixture density network, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2019.2956930.
Han, Yang, Zhang, Huang, Xu, De La Torre (b0030) 2021; 43
Rogers (b0275) 1997
Qin, Feng, Lu, Cottrell (b0120) 2018; 126
Chen, Chen (b0260) 2017; 45
Hadizadeh, Bajic (b0025) 2014; 23
Noton, Stark (b0075) 1971; 171
Karnath, Thier (b0240) 2006
Chen, Saparov, Pang, Funkhouser (b0225) 2012; 31
Azari, Cheng, Basu (b0060) 2012
Y. Liu, D. Zhang, Q. Zhang, J. Han, Part-object relational visual saliency, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2021.3053577.
Sitzmann, Serrano, Pavel, Agrawala, Gutierrez, Masia, Wetzstein (b0090) 2018; 24
Itti, Koch, Niebur (b0005) 1998; 20
Li, Tian, Huang (b0115) 2014; 107
Gottlieb, Oudeyer, Lopes, Baranes (b0235) 2013; 17
Song, Liu, Martin, Rosin (b0045) 2014; 33
Yun, Sim (b0210) 2016
Koch, Ullman (b0105) 1987; 4
He, Lau, Liu, Huang, Yang (b0130) 2015; 115
Song, Zhang, Zhao, Liu, Rosin (b0190) 2021
Howlett, Hamill, O’Sullivan (b0230) 2005; 2
Zhang, Han, Zhang, Xu (b0165) 2020; 42
Kim, Varshney, Jacobs, Guimbretière (b0065) 2010; 7
C. Fang, H. Tian, D. Zhang, Q. Zhang, J. Han, Densely nested top-down flows for salient object detection, arXiv:2102.09133.
Frintrop, Rome, Christensen (b0110) 2010; 7
Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (b0015) 2020; 128
Rusu, Blodow, Beetz (b0280) 2009
Liu, Han, Zhang, Shan (b0160) 2020; 29
Wu, Shen, Zhu, Liu (b0185) 2013; 75
A. Saxena, M. Sun, A.Y. Ng, Make3d: Depth perception from a single still image., in: Aaai, Vol. 3, 2008, pp. 1571–1576.
Yee, Pattanaik, Greenberg (b0175) 2001; 20
Souly, Shah (b0135) 2016; 117
Dutagaci, Cheung, Godil (b0220) 2012; 28
Ding, Lin, Chen, Zhang (b0285) 2019; 28
Abid, Silva, Callet (b0100) 2020
Wang, Lindlbauer, Lessig, Maertens, Alexa (b0095) 2016; 36
Guo, Wang, Xin (b0205) 2018; 34
Tavakoli, Ahmed, Borji, Laaksonen (b0245) 2017
Shtrom, Leifman, Tal (b0195) 2013
Le Meur, Le Callet, Barba, Thoreau (b0270) 2006; 28
Lavoue, Cordier, Seo, Larabi (b0050) 2018; 37
Kim, Kim, Sim, Kim (b0145) 2015; 24
G. Buscher, E. Cutrell, M. Morris, What do you see when you are surfing? Using eye tracking to predict salient regions of web pages, in: ACM special interest group on computer-human interaction, 2009.
10.1016/j.neucom.2022.06.088_b0070
Han (10.1016/j.neucom.2022.06.088_b0030) 2021; 43
Song (10.1016/j.neucom.2022.06.088_b0190) 2021
Thanou (10.1016/j.neucom.2022.06.088_b0055) 2016; 25
Chen (10.1016/j.neucom.2022.06.088_b0225) 2012; 31
Le Meur (10.1016/j.neucom.2022.06.088_b0265) 2013; 45
Frintrop (10.1016/j.neucom.2022.06.088_b0110) 2010; 7
Koch (10.1016/j.neucom.2022.06.088_b0105) 1987; 4
10.1016/j.neucom.2022.06.088_b0155
Le Meur (10.1016/j.neucom.2022.06.088_b0270) 2006; 28
10.1016/j.neucom.2022.06.088_b0035
Nyström (10.1016/j.neucom.2022.06.088_b0250) 2010; 42
Zhang (10.1016/j.neucom.2022.06.088_b0020) 2014; 23
Itti (10.1016/j.neucom.2022.06.088_b0005) 1998; 20
Tasse (10.1016/j.neucom.2022.06.088_b0200) 2015
Gottlieb (10.1016/j.neucom.2022.06.088_b0235) 2013; 17
Rusu (10.1016/j.neucom.2022.06.088_b0280) 2009
Wei (10.1016/j.neucom.2022.06.088_b0140) 2012
Rogers (10.1016/j.neucom.2022.06.088_b0275) 1997
Qin (10.1016/j.neucom.2022.06.088_b0120) 2018; 126
Guo (10.1016/j.neucom.2022.06.088_b0205) 2018; 34
Liu (10.1016/j.neucom.2022.06.088_b0015) 2020; 128
Chen (10.1016/j.neucom.2022.06.088_b0260) 2017; 45
Sitzmann (10.1016/j.neucom.2022.06.088_b0090) 2018; 24
Li (10.1016/j.neucom.2022.06.088_b0115) 2014; 107
10.1016/j.neucom.2022.06.088_b0170
Zeng (10.1016/j.neucom.2022.06.088_b0150) 2018
Yun (10.1016/j.neucom.2022.06.088_b0210) 2016
Zhang (10.1016/j.neucom.2022.06.088_b0165) 2020; 42
Ding (10.1016/j.neucom.2022.06.088_b0285) 2019; 28
Liu (10.1016/j.neucom.2022.06.088_b0160) 2020; 29
Lee (10.1016/j.neucom.2022.06.088_b0180) 2005; 24
Howlett (10.1016/j.neucom.2022.06.088_b0230) 2005; 2
He (10.1016/j.neucom.2022.06.088_b0130) 2015; 115
Abid (10.1016/j.neucom.2022.06.088_b0100) 2020
Cheng (10.1016/j.neucom.2022.06.088_b0010) 2015; 37
Azari (10.1016/j.neucom.2022.06.088_b0060) 2012
Yee (10.1016/j.neucom.2022.06.088_b0175) 2001; 20
10.1016/j.neucom.2022.06.088_b0255
Li (10.1016/j.neucom.2022.06.088_b0125) 2010; 90
Tavakoli (10.1016/j.neucom.2022.06.088_b0245) 2017
Zheng (10.1016/j.neucom.2022.06.088_b0215) 2019
Salvucci (10.1016/j.neucom.2022.06.088_b0080) 2000
Kim (10.1016/j.neucom.2022.06.088_b0145) 2015; 24
Karnath (10.1016/j.neucom.2022.06.088_b0240) 2006
Dutagaci (10.1016/j.neucom.2022.06.088_b0220) 2012; 28
Song (10.1016/j.neucom.2022.06.088_b0045) 2014; 33
Hadizadeh (10.1016/j.neucom.2022.06.088_b0025) 2014; 23
Leifman (10.1016/j.neucom.2022.06.088_b0040) 2016; 38
Souly (10.1016/j.neucom.2022.06.088_b0135) 2016; 117
Wang (10.1016/j.neucom.2022.06.088_b0085) 2018; 37
Shtrom (10.1016/j.neucom.2022.06.088_b0195) 2013
Wang (10.1016/j.neucom.2022.06.088_b0095) 2016; 36
Wu (10.1016/j.neucom.2022.06.088_b0185) 2013; 75
Lavoue (10.1016/j.neucom.2022.06.088_b0050) 2018; 37
Kim (10.1016/j.neucom.2022.06.088_b0065) 2010; 7
Noton (10.1016/j.neucom.2022.06.088_b0075) 1971; 171
References_xml – volume: 33
  start-page: 6
  year: 2014
  ident: b0045
  article-title: Mesh saliency via spectral processing
  publication-title: ACM Trans. Graph.
– volume: 28
  start-page: 5379
  year: 2019
  end-page: 5393
  ident: b0285
  article-title: Point cloud saliency detection by local and global feature fusion
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 2544
  year: 2016
  end-page: 2556
  ident: b0040
  article-title: Surface regions of interest for viewpoint selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 43
  start-page: 1423
  year: 2021
  end-page: 1437
  ident: b0030
  article-title: Weakly-supervised learning of category-specific 3d object shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2000
  ident: b0080
  article-title: Identifying fixations and saccades in eye-tracking protocols
  publication-title: ACM symposium on eye tracking research & applications
– volume: 28
  start-page: 802
  year: 2006
  end-page: 817
  ident: b0270
  article-title: A coherent computational approach to model bottom-up visual attention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 46
  year: 2016
  end-page: 55
  ident: b0095
  article-title: Measuring the visual salience of 3D printed objects
  publication-title: IEEE Comput. Graphics Appl.
– volume: 107
  start-page: 239
  year: 2014
  end-page: 253
  ident: b0115
  article-title: Visual saliency with statistical priors
  publication-title: Int. J. Comput. Vision
– volume: 20
  start-page: 39
  year: 2001
  end-page: 65
  ident: b0175
  article-title: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments
  publication-title: ACM Trans. Graphics
– reference: G. Buscher, E. Cutrell, M. Morris, What do you see when you are surfing? Using eye tracking to predict salient regions of web pages, in: ACM special interest group on computer-human interaction, 2009.
– reference: A. Saxena, M. Sun, A.Y. Ng, Make3d: Depth perception from a single still image., in: Aaai, Vol. 3, 2008, pp. 1571–1576.
– start-page: 8853
  year: 2021
  end-page: 8862
  ident: b0190
  article-title: Mesh saliency: An independent perceptual measure or a derivative of image saliency?
  publication-title: IEEE conference on computer vision and pattern recognition
– start-page: 6354
  year: 2017
  end-page: 6362
  ident: b0245
  article-title: Saliency revisited: Analysis of mouse movements versus fixations
  publication-title: IEEE conference on computer vision and pattern recognition
– volume: 37
  start-page: 191
  year: 2018
  end-page: 203
  ident: b0050
  article-title: Visual attention for rendered 3D shapes
  publication-title: Comput. Graph. Forum
– volume: 117
  start-page: 93
  year: 2016
  end-page: 110
  ident: b0135
  article-title: Visual saliency detection using group lasso regularization in videos of natural scenes
  publication-title: Int. J. Comput. Vision
– volume: 4
  start-page: 219
  year: 1987
  end-page: 227
  ident: b0105
  article-title: Shifts in selective visual attention: Towards the underlying neural circuitry
  publication-title: Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience
– year: 2006
  ident: b0240
  article-title: Neuropsychologie
– volume: 90
  start-page: 150
  year: 2010
  end-page: 165
  ident: b0125
  article-title: Probabilistic multi-task learning for visual saliency estimation in video
  publication-title: Int. J. Comput. Vision
– start-page: 1598
  year: 2019
  end-page: 1606
  ident: b0215
  article-title: Pointcloud saliency maps
  publication-title: IEEE international conference on computer vision
– reference: W. Sun, Z. Chen, F. Wu, Visual scanpath prediction using IOR-ROI recurrent mixture density network, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2019.2956930.
– volume: 75
  start-page: 255
  year: 2013
  end-page: 264
  ident: b0185
  article-title: Mesh saliency with global rarity
  publication-title: Graph. Models
– volume: 171
  start-page: 308
  year: 1971
  end-page: 311
  ident: b0075
  article-title: Scanpaths in eye movements during pattern perception
  publication-title: Science
– year: 2012
  ident: b0140
  article-title: Geodesic saliency using background priors
  publication-title: European conference on computer vision
– volume: 24
  start-page: 2552
  year: 2015
  end-page: 2564
  ident: b0145
  article-title: Spatiotemporal saliency detection for video sequences based on random walk with restart
  publication-title: IEEE Trans. Image Process.
– year: 2020
  ident: b0100
  article-title: Towards visual saliency computation on 3D graphical contents for interactive visualization
  publication-title: IEEE international conference on image processing
– volume: 17
  start-page: 585
  year: 2013
  end-page: 593
  ident: b0235
  article-title: Information-seeking, curiosity, and attention: Computational and neural mechanisms
  publication-title: Trends Cogn. Sci.
– volume: 7
  start-page: 13
  year: 2010
  ident: b0065
  article-title: Mesh saliency and human eye fixations
  publication-title: ACM Trans. Appl. Perception
– volume: 37
  start-page: 18
  year: 2018
  ident: b0085
  article-title: Tracking the gaze on objects in 3D: How do people really look at the bunny?
  publication-title: ACM Trans. Graph.
– volume: 24
  start-page: 659
  year: 2005
  end-page: 666
  ident: b0180
  article-title: Mesh saliency
  publication-title: ACM Trans. Graphics
– volume: 45
  start-page: 251
  year: 2013
  end-page: 266
  ident: b0265
  article-title: Methods for comparing scanpaths and saliency maps: strengths and weaknesses
  publication-title: Behav. Res. Methods
– volume: 37
  start-page: 569
  year: 2015
  end-page: 582
  ident: b0010
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 31
  start-page: 1
  year: 2012
  end-page: 12
  ident: b0225
  article-title: Schelling points on 3D surface meshes
  publication-title: ACM Trans. Graphics
– volume: 34
  start-page: 1325
  year: 2018
  end-page: 1338
  ident: b0205
  article-title: Point-wise saliency detection on 3D point clouds via covariance descriptors
  publication-title: Visual Comput.
– volume: 42
  start-page: 1755
  year: 2020
  end-page: 1769
  ident: b0165
  article-title: Synthesizing supervision for learning deep saliency network without human annotation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 128
  start-page: 261
  year: 2020
  end-page: 318
  ident: b0015
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vision
– volume: 25
  start-page: 1765
  year: 2016
  end-page: 1778
  ident: b0055
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
– year: 2009
  ident: b0280
  article-title: Fast point feature histograms (FPFH) for 3D registration
  publication-title: International conference on robotics and automation
– volume: 7
  start-page: 39
  year: 2010
  ident: b0110
  article-title: Computational visual attention systems and their cognitive foundations: A survey
  publication-title: ACM Trans. Appl. Perception
– volume: 23
  start-page: 4270
  year: 2014
  end-page: 4281
  ident: b0020
  article-title: VSI: A visual saliency-induced index for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 360
  year: 2020
  end-page: 374
  ident: b0160
  article-title: Deep salient object detection with contextual information guidance
  publication-title: IEEE Trans. Image Process.
– year: 2016
  ident: b0210
  article-title: Supervoxel-based saliency detection for large-scale colored 3D point clouds
  publication-title: IEEE international conference on image processing
– year: 2015
  ident: b0200
  article-title: Cluster-based point set saliency
  publication-title: IEEE international conference on computer vision
– volume: 42
  start-page: 188
  year: 2010
  end-page: 204
  ident: b0250
  article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data
  publication-title: Behav. Res. Methods
– year: 2018
  ident: b0150
  article-title: Learning to promote saliency detectors
  publication-title: IEEE conference on computer vision and pattern recognition
– volume: 28
  start-page: 901
  year: 2012
  end-page: 917
  ident: b0220
  article-title: Evaluation of 3D interest point detection techniques via human-generated ground truth
  publication-title: Visual Comput.
– volume: 126
  start-page: 751
  year: 2018
  end-page: 770
  ident: b0120
  article-title: Hierarchical cellular automata for visual saliency
  publication-title: Int. J. Comput. Vision
– volume: 24
  start-page: 1633
  year: 2018
  end-page: 1642
  ident: b0090
  article-title: Saliency in VR: How do people explore virtual environments?
  publication-title: IEEE Trans. Visual Comput. Graphics
– reference: Y. Liu, D. Zhang, Q. Zhang, J. Han, Part-object relational visual saliency, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2021.3053577.
– volume: 20
  start-page: 1254
  year: 1998
  end-page: 1259
  ident: b0005
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 115
  start-page: 330
  year: 2015
  end-page: 344
  ident: b0130
  article-title: SuperCNN: A superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vision
– volume: 45
  start-page: 147
  year: 2017
  end-page: 155
  ident: b0260
  article-title: Exploring visual attention using random walks based eye tracking protocols
  publication-title: J. Vis. Commun. Image Represent
– reference: C. Fang, H. Tian, D. Zhang, Q. Zhang, J. Han, Densely nested top-down flows for salient object detection, arXiv:2102.09133.
– year: 2013
  ident: b0195
  article-title: Saliency detection in large point sets
  publication-title: IEEE international conference on computer vision
– volume: 23
  start-page: 19
  year: 2014
  end-page: 33
  ident: b0025
  article-title: Saliency-aware video compression
  publication-title: IEEE Trans. Image Process.
– volume: 2
  start-page: 286
  year: 2005
  end-page: 308
  ident: b0230
  article-title: Predicting and evaluating saliency for simplified polygonal models
  publication-title: ACM Trans. Appl. Perception
– year: 2012
  ident: b0060
  article-title: A time series 3D hierarchy for real-time dynamic point cloud interaction, in
– year: 1997
  ident: b0275
  article-title: Procedural elements for computer graphics
– volume: 115
  start-page: 330
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2022.06.088_b0130
  article-title: SuperCNN: A superpixelwise convolutional neural network for salient object detection
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0822-0
– volume: 17
  start-page: 585
  issue: 11
  year: 2013
  ident: 10.1016/j.neucom.2022.06.088_b0235
  article-title: Information-seeking, curiosity, and attention: Computational and neural mechanisms
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.09.001
– volume: 90
  start-page: 150
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2022.06.088_b0125
  article-title: Probabilistic multi-task learning for visual saliency estimation in video
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-010-0354-6
– year: 2016
  ident: 10.1016/j.neucom.2022.06.088_b0210
  article-title: Supervoxel-based saliency detection for large-scale colored 3D point clouds
– year: 2000
  ident: 10.1016/j.neucom.2022.06.088_b0080
  article-title: Identifying fixations and saccades in eye-tracking protocols
– volume: 128
  start-page: 261
  issue: 2
  year: 2020
  ident: 10.1016/j.neucom.2022.06.088_b0015
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-019-01247-4
– volume: 36
  start-page: 46
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2022.06.088_b0095
  article-title: Measuring the visual salience of 3D printed objects
  publication-title: IEEE Comput. Graphics Appl.
  doi: 10.1109/MCG.2016.47
– volume: 20
  start-page: 39
  issue: 1
  year: 2001
  ident: 10.1016/j.neucom.2022.06.088_b0175
  article-title: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments
  publication-title: ACM Trans. Graphics
  doi: 10.1145/383745.383748
– volume: 25
  start-page: 1765
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2022.06.088_b0055
  article-title: Graph-based compression of dynamic 3D point cloud sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2529506
– year: 2020
  ident: 10.1016/j.neucom.2022.06.088_b0100
  article-title: Towards visual saliency computation on 3D graphical contents for interactive visualization
– year: 2013
  ident: 10.1016/j.neucom.2022.06.088_b0195
  article-title: Saliency detection in large point sets
– year: 1997
  ident: 10.1016/j.neucom.2022.06.088_b0275
– volume: 20
  start-page: 1254
  issue: 11
  year: 1998
  ident: 10.1016/j.neucom.2022.06.088_b0005
  article-title: A model of saliency-based visual attention for rapid scene analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.730558
– volume: 42
  start-page: 1755
  issue: 7
  year: 2020
  ident: 10.1016/j.neucom.2022.06.088_b0165
  article-title: Synthesizing supervision for learning deep saliency network without human annotation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2900649
– year: 2006
  ident: 10.1016/j.neucom.2022.06.088_b0240
– volume: 43
  start-page: 1423
  issue: 4
  year: 2021
  ident: 10.1016/j.neucom.2022.06.088_b0030
  article-title: Weakly-supervised learning of category-specific 3d object shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2949562
– ident: 10.1016/j.neucom.2022.06.088_b0035
– volume: 24
  start-page: 1633
  issue: 4
  year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0090
  article-title: Saliency in VR: How do people explore virtual environments?
  publication-title: IEEE Trans. Visual Comput. Graphics
  doi: 10.1109/TVCG.2018.2793599
– volume: 28
  start-page: 5379
  issue: 11
  year: 2019
  ident: 10.1016/j.neucom.2022.06.088_b0285
  article-title: Point cloud saliency detection by local and global feature fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2918735
– volume: 29
  start-page: 360
  year: 2020
  ident: 10.1016/j.neucom.2022.06.088_b0160
  article-title: Deep salient object detection with contextual information guidance
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2930906
– volume: 31
  start-page: 1
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2022.06.088_b0225
  article-title: Schelling points on 3D surface meshes
  publication-title: ACM Trans. Graphics
  doi: 10.1145/2185520.2185525
– volume: 7
  start-page: 39
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2022.06.088_b0110
  article-title: Computational visual attention systems and their cognitive foundations: A survey
  publication-title: ACM Trans. Appl. Perception
  doi: 10.1145/1658349.1658355
– volume: 75
  start-page: 255
  issue: 5
  year: 2013
  ident: 10.1016/j.neucom.2022.06.088_b0185
  article-title: Mesh saliency with global rarity
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2013.05.002
– volume: 7
  start-page: 13
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2022.06.088_b0065
  article-title: Mesh saliency and human eye fixations
  publication-title: ACM Trans. Appl. Perception
  doi: 10.1145/1670671.1670676
– volume: 33
  start-page: 6
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.06.088_b0045
  article-title: Mesh saliency via spectral processing
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2530691
– volume: 37
  start-page: 191
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0050
  article-title: Visual attention for rendered 3D shapes
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.13353
– year: 2009
  ident: 10.1016/j.neucom.2022.06.088_b0280
  article-title: Fast point feature histograms (FPFH) for 3D registration
– volume: 2
  start-page: 286
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2022.06.088_b0230
  article-title: Predicting and evaluating saliency for simplified polygonal models
  publication-title: ACM Trans. Appl. Perception
  doi: 10.1145/1077399.1077406
– volume: 23
  start-page: 4270
  issue: 10
  year: 2014
  ident: 10.1016/j.neucom.2022.06.088_b0020
  article-title: VSI: A visual saliency-induced index for perceptual image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2346028
– volume: 28
  start-page: 901
  issue: 9
  year: 2012
  ident: 10.1016/j.neucom.2022.06.088_b0220
  article-title: Evaluation of 3D interest point detection techniques via human-generated ground truth
  publication-title: Visual Comput.
  doi: 10.1007/s00371-012-0746-4
– ident: 10.1016/j.neucom.2022.06.088_b0155
  doi: 10.1109/TPAMI.2021.3053577
– start-page: 8853
  year: 2021
  ident: 10.1016/j.neucom.2022.06.088_b0190
  article-title: Mesh saliency: An independent perceptual measure or a derivative of image saliency?
– ident: 10.1016/j.neucom.2022.06.088_b0170
– volume: 34
  start-page: 1325
  issue: 10
  year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0205
  article-title: Point-wise saliency detection on 3D point clouds via covariance descriptors
  publication-title: Visual Comput.
  doi: 10.1007/s00371-017-1416-3
– volume: 117
  start-page: 93
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2022.06.088_b0135
  article-title: Visual saliency detection using group lasso regularization in videos of natural scenes
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0853-6
– year: 2015
  ident: 10.1016/j.neucom.2022.06.088_b0200
  article-title: Cluster-based point set saliency
– volume: 38
  start-page: 2544
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2022.06.088_b0040
  article-title: Surface regions of interest for viewpoint selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2522437
– volume: 23
  start-page: 19
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2022.06.088_b0025
  article-title: Saliency-aware video compression
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2282897
– year: 2012
  ident: 10.1016/j.neucom.2022.06.088_b0140
  article-title: Geodesic saliency using background priors
– volume: 126
  start-page: 751
  issue: 7
  year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0120
  article-title: Hierarchical cellular automata for visual saliency
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-017-1062-2
– volume: 24
  start-page: 2552
  issue: 8
  year: 2015
  ident: 10.1016/j.neucom.2022.06.088_b0145
  article-title: Spatiotemporal saliency detection for video sequences based on random walk with restart
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2425544
– volume: 37
  start-page: 18
  issue: 6
  year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0085
  article-title: Tracking the gaze on objects in 3D: How do people really look at the bunny?
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3272127.3275094
– volume: 45
  start-page: 147
  year: 2017
  ident: 10.1016/j.neucom.2022.06.088_b0260
  article-title: Exploring visual attention using random walks based eye tracking protocols
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2017.02.005
– ident: 10.1016/j.neucom.2022.06.088_b0255
  doi: 10.1145/1518701.1518705
– year: 2018
  ident: 10.1016/j.neucom.2022.06.088_b0150
  article-title: Learning to promote saliency detectors
– year: 2012
  ident: 10.1016/j.neucom.2022.06.088_b0060
– volume: 4
  start-page: 219
  issue: 4
  year: 1987
  ident: 10.1016/j.neucom.2022.06.088_b0105
  article-title: Shifts in selective visual attention: Towards the underlying neural circuitry
  publication-title: Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience
– start-page: 6354
  year: 2017
  ident: 10.1016/j.neucom.2022.06.088_b0245
  article-title: Saliency revisited: Analysis of mouse movements versus fixations
– volume: 28
  start-page: 802
  issue: 5
  year: 2006
  ident: 10.1016/j.neucom.2022.06.088_b0270
  article-title: A coherent computational approach to model bottom-up visual attention
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.86
– volume: 37
  start-page: 569
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2022.06.088_b0010
  article-title: Global contrast based salient region detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2345401
– volume: 107
  start-page: 239
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2022.06.088_b0115
  article-title: Visual saliency with statistical priors
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-013-0678-0
– ident: 10.1016/j.neucom.2022.06.088_b0070
  doi: 10.1109/TPAMI.2019.2956930
– volume: 171
  start-page: 308
  issue: 3968
  year: 1971
  ident: 10.1016/j.neucom.2022.06.088_b0075
  article-title: Scanpaths in eye movements during pattern perception
  publication-title: Science
  doi: 10.1126/science.171.3968.308
– volume: 24
  start-page: 659
  issue: 3
  year: 2005
  ident: 10.1016/j.neucom.2022.06.088_b0180
  article-title: Mesh saliency
  publication-title: ACM Trans. Graphics
  doi: 10.1145/1073204.1073244
– start-page: 1598
  year: 2019
  ident: 10.1016/j.neucom.2022.06.088_b0215
  article-title: Pointcloud saliency maps
– volume: 42
  start-page: 188
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2022.06.088_b0250
  article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data
  publication-title: Behav. Res. Methods
  doi: 10.3758/BRM.42.1.188
– volume: 45
  start-page: 251
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2022.06.088_b0265
  article-title: Methods for comparing scanpaths and saliency maps: strengths and weaknesses
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-012-0226-9
SSID ssj0017129
Score 2.3760927
Snippet In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120
SubjectTerms 6DoF
6DoF mesh saliency detection
Visual attention behavior
Title Towards mesh saliency in 6 degrees of freedom
URI https://dx.doi.org/10.1016/j.neucom.2022.06.088
Volume 502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHr2mSz2U2OpViqYi-20FvYxwQrNi22vfrbnc2jKIiC5JKEXcjObub7Br6ZIeQGObxKQx0zZSFhiPgJ0y7BUAXpaWAQoETgE4WfRnI4EQ_TeNoi_SYXxssqa99f-fTSW9dvurU1u8vZrPscpByjqBABrsQxn1EuhPKn_PZjK_MIVcirens8Zn50kz5XarwK2HjNCEcgK6t4lv1XfoCnL5AzOCT7NVekvepzjkgLimNy0PRhoPVveULYuNS-rugcVi90hcza51PSWUEldYABNazoIqc53rjF_JRMBnfj_pDVbRCY5ZFcMwVGJ1bx2MVOKmtcChyMcGBi6XiuIdGApCtyuRQxOJlb6cLUmQgjmyAOdHRGdopFAeeEmlxImwJeVgirpfZbZYWvaaOM1kGbRM3qM1vXCPetKt6yRgz2mlU2y7zNMq-JS5I2YdtZy6pGxh_jVWPY7NteZ-jGf5158e-Zl2TPP1XqsCuys37fwDXSibXplOelQ3Z794_D0SeRF8lv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_C6NtnsIzlKUaq2vdhCb2FfwYpNi22v_nZn8ygKoiC5hGQXsrPZ-b6Bb2YQugYOL5NQcSKNiwkgfkyUjSFUAXoaaAAoFvhE4f5AdEfscczHDdSpc2G8rLLy_aVPL7x19aRdWbM9n0zaz0FCIYoKAeAKHJMbaJPB8fVtDG4-1jqPUIa0LLhHOfHD6_y5QuSVu5UXjVBAsqKMZ9GA5Qd8-oI593topyKL-Lb8nn3UcPkB2q0bMeDqXB4iMizErws8dYsXvABq7RMq8STHAlsHEbVb4FmGM7ixs-kRGt3fDTtdUvVBIIZGYkmk0yo2knLLrZBG28RRp5l1mgtLM-Vi5YB1RTYTjDsrMiNsmFgdQWgT8EBFx6iZz3J3grDOmDCJg8swZpRQfq8M80VtpFYqaKGoXn1qqiLhvlfFW1qrwV7T0mapt1nqRXFx3EJkPWteFsn4Y7ysDZt-2-wU_PivM0__PfMKbXWH_V7aexg8naFt_6aUip2j5vJ95S6AWyz1ZfHvfAJghcr9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+mesh+saliency+in+6+degrees+of+freedom&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ding%2C+Xiaoying&rft.au=Chen%2C+Zhenzhong&rft.date=2022-09-01&rft.issn=0925-2312&rft.volume=502&rft.spage=120&rft.epage=139&rft_id=info:doi/10.1016%2Fj.neucom.2022.06.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_06_088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon