Towards mesh saliency in 6 degrees of freedom
In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, w...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 502; pp. 120 - 139 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, we first analyze the inter-observer variation and the influence of viewing direction toward subject’s visual attention, then we provide investigations about the subject’s visual attention bias and head movement during observation. As traditional 3D mesh saliency detection algorithms do not taking the subject’s head movement into consideration, we further propose a 6DoF mesh saliency detection algorithm based on the uniqueness measure and the bias preference. To evaluate the proposed approach, we design an evaluation metric accordingly which takes the 6DoF information into consideration, and extend some state-of-the-art 3D saliency detection methods to make comparisons. The experimental results demonstrate the superior performance of our approach for 6DoF mesh saliency detection, in addition to providing benchmarks for the presented 6DoF mesh saliency database. The database and proposed method will be made publicly available for research purposes. |
---|---|
AbstractList | In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional databases, subjects in the experiment are allowed to move freely to view 3D meshes in the virtual reality environment. Based on the database, we first analyze the inter-observer variation and the influence of viewing direction toward subject’s visual attention, then we provide investigations about the subject’s visual attention bias and head movement during observation. As traditional 3D mesh saliency detection algorithms do not taking the subject’s head movement into consideration, we further propose a 6DoF mesh saliency detection algorithm based on the uniqueness measure and the bias preference. To evaluate the proposed approach, we design an evaluation metric accordingly which takes the 6DoF information into consideration, and extend some state-of-the-art 3D saliency detection methods to make comparisons. The experimental results demonstrate the superior performance of our approach for 6DoF mesh saliency detection, in addition to providing benchmarks for the presented 6DoF mesh saliency database. The database and proposed method will be made publicly available for research purposes. |
Author | Ding, Xiaoying Chen, Zhenzhong |
Author_xml | – sequence: 1 givenname: Xiaoying surname: Ding fullname: Ding, Xiaoying email: dingxiaoying@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 2 givenname: Zhenzhong surname: Chen fullname: Chen, Zhenzhong email: zzchen@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China |
BookMark | eNqFkL1OwzAUhS1UJNrCGzD4BRLsm9hxGJBQxZ9UiaXMlmNfg6smRnYA9e1JVSYGmM5ZviN9Z0FmQxyQkEvOSs64vNqWA37Y2JfAAEomS6bUCZlz1UChQMkZmbMWRAEVhzOyyHnLGG84tHNSbOKXSS7THvMbzWYXcLB7GgYqqcPXhJhp9NRPxcX-nJx6s8t48ZNL8nJ_t1k9Fuvnh6fV7bqwUMmxaLAzyjYgnHCysZ1rEbCrHXZCOvAGlUHRiMp5WQt00lvpeOu6CkTLBDPVktTHXZtizgm9fk-hN2mvOdMHZb3VR2V9UNZM6kl5wq5_YTaMZgxxGJMJu__gmyOMk9hnwKSzPZyBLiS0o3Yx_D3wDWqid10 |
CitedBy_id | crossref_primary_10_1109_TMM_2023_3312924 crossref_primary_10_1016_j_cviu_2024_104129 crossref_primary_10_1016_j_jvcir_2024_104095 |
Cites_doi | 10.1007/s11263-015-0822-0 10.1016/j.tics.2013.09.001 10.1007/s11263-010-0354-6 10.1007/s11263-019-01247-4 10.1109/MCG.2016.47 10.1145/383745.383748 10.1109/TIP.2016.2529506 10.1109/34.730558 10.1109/TPAMI.2019.2900649 10.1109/TPAMI.2019.2949562 10.1109/TVCG.2018.2793599 10.1109/TIP.2019.2918735 10.1109/TIP.2019.2930906 10.1145/2185520.2185525 10.1145/1658349.1658355 10.1016/j.gmod.2013.05.002 10.1145/1670671.1670676 10.1145/2530691 10.1111/cgf.13353 10.1145/1077399.1077406 10.1109/TIP.2014.2346028 10.1007/s00371-012-0746-4 10.1109/TPAMI.2021.3053577 10.1007/s00371-017-1416-3 10.1007/s11263-015-0853-6 10.1109/TPAMI.2016.2522437 10.1109/TIP.2013.2282897 10.1007/s11263-017-1062-2 10.1109/TIP.2015.2425544 10.1145/3272127.3275094 10.1016/j.jvcir.2017.02.005 10.1145/1518701.1518705 10.1109/TPAMI.2006.86 10.1109/TPAMI.2014.2345401 10.1007/s11263-013-0678-0 10.1109/TPAMI.2019.2956930 10.1126/science.171.3968.308 10.1145/1073204.1073244 10.3758/BRM.42.1.188 10.3758/s13428-012-0226-9 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2022.06.088 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 139 |
ExternalDocumentID | 10_1016_j_neucom_2022_06_088 S0925231222008207 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c236t-7eba8c725d5d67cbd9e2eb4deb56d2fae8ae5753df645ed6fc6d19db3259050a3 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 23:09:24 EDT 2025 Tue Jul 01 04:24:49 EDT 2025 Fri Feb 23 02:38:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 6DoF Visual attention behavior 6DoF mesh saliency detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-7eba8c725d5d67cbd9e2eb4deb56d2fae8ae5753df645ed6fc6d19db3259050a3 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2022_06_088 crossref_citationtrail_10_1016_j_neucom_2022_06_088 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_06_088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tasse, Kosinka, Dodgson (b0200) 2015 Lee, Varshney, Jacobs (b0180) 2005; 24 Leifman, Shtrom, Tal (b0040) 2016; 38 Zeng, Lu, Zhang, Feng, Borji (b0150) 2018 Li, Tian, Huang, Gao (b0125) 2010; 90 Cheng, Mitra, Huang, Torr, Hu (b0010) 2015; 37 Zhang, Shen, Li (b0020) 2014; 23 Wei, Wen, Zhu, Sun (b0140) 2012 Zheng, Chen, Yuan, Li, Ren (b0215) 2019 Le Meur, Baccino (b0265) 2013; 45 Nyström, Holmqvist (b0250) 2010; 42 Salvucci, Goldberg (b0080) 2000 Wang, Koch, Holmqvist, Alexa (b0085) 2018; 37 Thanou, Chou, Frossard (b0055) 2016; 25 W. Sun, Z. Chen, F. Wu, Visual scanpath prediction using IOR-ROI recurrent mixture density network, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2019.2956930. Han, Yang, Zhang, Huang, Xu, De La Torre (b0030) 2021; 43 Rogers (b0275) 1997 Qin, Feng, Lu, Cottrell (b0120) 2018; 126 Chen, Chen (b0260) 2017; 45 Hadizadeh, Bajic (b0025) 2014; 23 Noton, Stark (b0075) 1971; 171 Karnath, Thier (b0240) 2006 Chen, Saparov, Pang, Funkhouser (b0225) 2012; 31 Azari, Cheng, Basu (b0060) 2012 Y. Liu, D. Zhang, Q. Zhang, J. Han, Part-object relational visual saliency, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2021.3053577. Sitzmann, Serrano, Pavel, Agrawala, Gutierrez, Masia, Wetzstein (b0090) 2018; 24 Itti, Koch, Niebur (b0005) 1998; 20 Li, Tian, Huang (b0115) 2014; 107 Gottlieb, Oudeyer, Lopes, Baranes (b0235) 2013; 17 Song, Liu, Martin, Rosin (b0045) 2014; 33 Yun, Sim (b0210) 2016 Koch, Ullman (b0105) 1987; 4 He, Lau, Liu, Huang, Yang (b0130) 2015; 115 Song, Zhang, Zhao, Liu, Rosin (b0190) 2021 Howlett, Hamill, O’Sullivan (b0230) 2005; 2 Zhang, Han, Zhang, Xu (b0165) 2020; 42 Kim, Varshney, Jacobs, Guimbretière (b0065) 2010; 7 C. Fang, H. Tian, D. Zhang, Q. Zhang, J. Han, Densely nested top-down flows for salient object detection, arXiv:2102.09133. Frintrop, Rome, Christensen (b0110) 2010; 7 Liu, Ouyang, Wang, Fieguth, Chen, Liu, Pietikäinen (b0015) 2020; 128 Rusu, Blodow, Beetz (b0280) 2009 Liu, Han, Zhang, Shan (b0160) 2020; 29 Wu, Shen, Zhu, Liu (b0185) 2013; 75 A. Saxena, M. Sun, A.Y. Ng, Make3d: Depth perception from a single still image., in: Aaai, Vol. 3, 2008, pp. 1571–1576. Yee, Pattanaik, Greenberg (b0175) 2001; 20 Souly, Shah (b0135) 2016; 117 Dutagaci, Cheung, Godil (b0220) 2012; 28 Ding, Lin, Chen, Zhang (b0285) 2019; 28 Abid, Silva, Callet (b0100) 2020 Wang, Lindlbauer, Lessig, Maertens, Alexa (b0095) 2016; 36 Guo, Wang, Xin (b0205) 2018; 34 Tavakoli, Ahmed, Borji, Laaksonen (b0245) 2017 Shtrom, Leifman, Tal (b0195) 2013 Le Meur, Le Callet, Barba, Thoreau (b0270) 2006; 28 Lavoue, Cordier, Seo, Larabi (b0050) 2018; 37 Kim, Kim, Sim, Kim (b0145) 2015; 24 G. Buscher, E. Cutrell, M. Morris, What do you see when you are surfing? Using eye tracking to predict salient regions of web pages, in: ACM special interest group on computer-human interaction, 2009. 10.1016/j.neucom.2022.06.088_b0070 Han (10.1016/j.neucom.2022.06.088_b0030) 2021; 43 Song (10.1016/j.neucom.2022.06.088_b0190) 2021 Thanou (10.1016/j.neucom.2022.06.088_b0055) 2016; 25 Chen (10.1016/j.neucom.2022.06.088_b0225) 2012; 31 Le Meur (10.1016/j.neucom.2022.06.088_b0265) 2013; 45 Frintrop (10.1016/j.neucom.2022.06.088_b0110) 2010; 7 Koch (10.1016/j.neucom.2022.06.088_b0105) 1987; 4 10.1016/j.neucom.2022.06.088_b0155 Le Meur (10.1016/j.neucom.2022.06.088_b0270) 2006; 28 10.1016/j.neucom.2022.06.088_b0035 Nyström (10.1016/j.neucom.2022.06.088_b0250) 2010; 42 Zhang (10.1016/j.neucom.2022.06.088_b0020) 2014; 23 Itti (10.1016/j.neucom.2022.06.088_b0005) 1998; 20 Tasse (10.1016/j.neucom.2022.06.088_b0200) 2015 Gottlieb (10.1016/j.neucom.2022.06.088_b0235) 2013; 17 Rusu (10.1016/j.neucom.2022.06.088_b0280) 2009 Wei (10.1016/j.neucom.2022.06.088_b0140) 2012 Rogers (10.1016/j.neucom.2022.06.088_b0275) 1997 Qin (10.1016/j.neucom.2022.06.088_b0120) 2018; 126 Guo (10.1016/j.neucom.2022.06.088_b0205) 2018; 34 Liu (10.1016/j.neucom.2022.06.088_b0015) 2020; 128 Chen (10.1016/j.neucom.2022.06.088_b0260) 2017; 45 Sitzmann (10.1016/j.neucom.2022.06.088_b0090) 2018; 24 Li (10.1016/j.neucom.2022.06.088_b0115) 2014; 107 10.1016/j.neucom.2022.06.088_b0170 Zeng (10.1016/j.neucom.2022.06.088_b0150) 2018 Yun (10.1016/j.neucom.2022.06.088_b0210) 2016 Zhang (10.1016/j.neucom.2022.06.088_b0165) 2020; 42 Ding (10.1016/j.neucom.2022.06.088_b0285) 2019; 28 Liu (10.1016/j.neucom.2022.06.088_b0160) 2020; 29 Lee (10.1016/j.neucom.2022.06.088_b0180) 2005; 24 Howlett (10.1016/j.neucom.2022.06.088_b0230) 2005; 2 He (10.1016/j.neucom.2022.06.088_b0130) 2015; 115 Abid (10.1016/j.neucom.2022.06.088_b0100) 2020 Cheng (10.1016/j.neucom.2022.06.088_b0010) 2015; 37 Azari (10.1016/j.neucom.2022.06.088_b0060) 2012 Yee (10.1016/j.neucom.2022.06.088_b0175) 2001; 20 10.1016/j.neucom.2022.06.088_b0255 Li (10.1016/j.neucom.2022.06.088_b0125) 2010; 90 Tavakoli (10.1016/j.neucom.2022.06.088_b0245) 2017 Zheng (10.1016/j.neucom.2022.06.088_b0215) 2019 Salvucci (10.1016/j.neucom.2022.06.088_b0080) 2000 Kim (10.1016/j.neucom.2022.06.088_b0145) 2015; 24 Karnath (10.1016/j.neucom.2022.06.088_b0240) 2006 Dutagaci (10.1016/j.neucom.2022.06.088_b0220) 2012; 28 Song (10.1016/j.neucom.2022.06.088_b0045) 2014; 33 Hadizadeh (10.1016/j.neucom.2022.06.088_b0025) 2014; 23 Leifman (10.1016/j.neucom.2022.06.088_b0040) 2016; 38 Souly (10.1016/j.neucom.2022.06.088_b0135) 2016; 117 Wang (10.1016/j.neucom.2022.06.088_b0085) 2018; 37 Shtrom (10.1016/j.neucom.2022.06.088_b0195) 2013 Wang (10.1016/j.neucom.2022.06.088_b0095) 2016; 36 Wu (10.1016/j.neucom.2022.06.088_b0185) 2013; 75 Lavoue (10.1016/j.neucom.2022.06.088_b0050) 2018; 37 Kim (10.1016/j.neucom.2022.06.088_b0065) 2010; 7 Noton (10.1016/j.neucom.2022.06.088_b0075) 1971; 171 |
References_xml | – volume: 33 start-page: 6 year: 2014 ident: b0045 article-title: Mesh saliency via spectral processing publication-title: ACM Trans. Graph. – volume: 28 start-page: 5379 year: 2019 end-page: 5393 ident: b0285 article-title: Point cloud saliency detection by local and global feature fusion publication-title: IEEE Trans. Image Process. – volume: 38 start-page: 2544 year: 2016 end-page: 2556 ident: b0040 article-title: Surface regions of interest for viewpoint selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 43 start-page: 1423 year: 2021 end-page: 1437 ident: b0030 article-title: Weakly-supervised learning of category-specific 3d object shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2000 ident: b0080 article-title: Identifying fixations and saccades in eye-tracking protocols publication-title: ACM symposium on eye tracking research & applications – volume: 28 start-page: 802 year: 2006 end-page: 817 ident: b0270 article-title: A coherent computational approach to model bottom-up visual attention publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 36 start-page: 46 year: 2016 end-page: 55 ident: b0095 article-title: Measuring the visual salience of 3D printed objects publication-title: IEEE Comput. Graphics Appl. – volume: 107 start-page: 239 year: 2014 end-page: 253 ident: b0115 article-title: Visual saliency with statistical priors publication-title: Int. J. Comput. Vision – volume: 20 start-page: 39 year: 2001 end-page: 65 ident: b0175 article-title: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments publication-title: ACM Trans. Graphics – reference: G. Buscher, E. Cutrell, M. Morris, What do you see when you are surfing? Using eye tracking to predict salient regions of web pages, in: ACM special interest group on computer-human interaction, 2009. – reference: A. Saxena, M. Sun, A.Y. Ng, Make3d: Depth perception from a single still image., in: Aaai, Vol. 3, 2008, pp. 1571–1576. – start-page: 8853 year: 2021 end-page: 8862 ident: b0190 article-title: Mesh saliency: An independent perceptual measure or a derivative of image saliency? publication-title: IEEE conference on computer vision and pattern recognition – start-page: 6354 year: 2017 end-page: 6362 ident: b0245 article-title: Saliency revisited: Analysis of mouse movements versus fixations publication-title: IEEE conference on computer vision and pattern recognition – volume: 37 start-page: 191 year: 2018 end-page: 203 ident: b0050 article-title: Visual attention for rendered 3D shapes publication-title: Comput. Graph. Forum – volume: 117 start-page: 93 year: 2016 end-page: 110 ident: b0135 article-title: Visual saliency detection using group lasso regularization in videos of natural scenes publication-title: Int. J. Comput. Vision – volume: 4 start-page: 219 year: 1987 end-page: 227 ident: b0105 article-title: Shifts in selective visual attention: Towards the underlying neural circuitry publication-title: Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience – year: 2006 ident: b0240 article-title: Neuropsychologie – volume: 90 start-page: 150 year: 2010 end-page: 165 ident: b0125 article-title: Probabilistic multi-task learning for visual saliency estimation in video publication-title: Int. J. Comput. Vision – start-page: 1598 year: 2019 end-page: 1606 ident: b0215 article-title: Pointcloud saliency maps publication-title: IEEE international conference on computer vision – reference: W. Sun, Z. Chen, F. Wu, Visual scanpath prediction using IOR-ROI recurrent mixture density network, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2019.2956930. – volume: 75 start-page: 255 year: 2013 end-page: 264 ident: b0185 article-title: Mesh saliency with global rarity publication-title: Graph. Models – volume: 171 start-page: 308 year: 1971 end-page: 311 ident: b0075 article-title: Scanpaths in eye movements during pattern perception publication-title: Science – year: 2012 ident: b0140 article-title: Geodesic saliency using background priors publication-title: European conference on computer vision – volume: 24 start-page: 2552 year: 2015 end-page: 2564 ident: b0145 article-title: Spatiotemporal saliency detection for video sequences based on random walk with restart publication-title: IEEE Trans. Image Process. – year: 2020 ident: b0100 article-title: Towards visual saliency computation on 3D graphical contents for interactive visualization publication-title: IEEE international conference on image processing – volume: 17 start-page: 585 year: 2013 end-page: 593 ident: b0235 article-title: Information-seeking, curiosity, and attention: Computational and neural mechanisms publication-title: Trends Cogn. Sci. – volume: 7 start-page: 13 year: 2010 ident: b0065 article-title: Mesh saliency and human eye fixations publication-title: ACM Trans. Appl. Perception – volume: 37 start-page: 18 year: 2018 ident: b0085 article-title: Tracking the gaze on objects in 3D: How do people really look at the bunny? publication-title: ACM Trans. Graph. – volume: 24 start-page: 659 year: 2005 end-page: 666 ident: b0180 article-title: Mesh saliency publication-title: ACM Trans. Graphics – volume: 45 start-page: 251 year: 2013 end-page: 266 ident: b0265 article-title: Methods for comparing scanpaths and saliency maps: strengths and weaknesses publication-title: Behav. Res. Methods – volume: 37 start-page: 569 year: 2015 end-page: 582 ident: b0010 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 1 year: 2012 end-page: 12 ident: b0225 article-title: Schelling points on 3D surface meshes publication-title: ACM Trans. Graphics – volume: 34 start-page: 1325 year: 2018 end-page: 1338 ident: b0205 article-title: Point-wise saliency detection on 3D point clouds via covariance descriptors publication-title: Visual Comput. – volume: 42 start-page: 1755 year: 2020 end-page: 1769 ident: b0165 article-title: Synthesizing supervision for learning deep saliency network without human annotation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 128 start-page: 261 year: 2020 end-page: 318 ident: b0015 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vision – volume: 25 start-page: 1765 year: 2016 end-page: 1778 ident: b0055 article-title: Graph-based compression of dynamic 3D point cloud sequences publication-title: IEEE Trans. Image Process. – year: 2009 ident: b0280 article-title: Fast point feature histograms (FPFH) for 3D registration publication-title: International conference on robotics and automation – volume: 7 start-page: 39 year: 2010 ident: b0110 article-title: Computational visual attention systems and their cognitive foundations: A survey publication-title: ACM Trans. Appl. Perception – volume: 23 start-page: 4270 year: 2014 end-page: 4281 ident: b0020 article-title: VSI: A visual saliency-induced index for perceptual image quality assessment publication-title: IEEE Trans. Image Process. – volume: 29 start-page: 360 year: 2020 end-page: 374 ident: b0160 article-title: Deep salient object detection with contextual information guidance publication-title: IEEE Trans. Image Process. – year: 2016 ident: b0210 article-title: Supervoxel-based saliency detection for large-scale colored 3D point clouds publication-title: IEEE international conference on image processing – year: 2015 ident: b0200 article-title: Cluster-based point set saliency publication-title: IEEE international conference on computer vision – volume: 42 start-page: 188 year: 2010 end-page: 204 ident: b0250 article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data publication-title: Behav. Res. Methods – year: 2018 ident: b0150 article-title: Learning to promote saliency detectors publication-title: IEEE conference on computer vision and pattern recognition – volume: 28 start-page: 901 year: 2012 end-page: 917 ident: b0220 article-title: Evaluation of 3D interest point detection techniques via human-generated ground truth publication-title: Visual Comput. – volume: 126 start-page: 751 year: 2018 end-page: 770 ident: b0120 article-title: Hierarchical cellular automata for visual saliency publication-title: Int. J. Comput. Vision – volume: 24 start-page: 1633 year: 2018 end-page: 1642 ident: b0090 article-title: Saliency in VR: How do people explore virtual environments? publication-title: IEEE Trans. Visual Comput. Graphics – reference: Y. Liu, D. Zhang, Q. Zhang, J. Han, Part-object relational visual saliency, IEEE Trans. Pattern Anal. Mach. Intell. doi:10.1109/TPAMI.2021.3053577. – volume: 20 start-page: 1254 year: 1998 end-page: 1259 ident: b0005 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 115 start-page: 330 year: 2015 end-page: 344 ident: b0130 article-title: SuperCNN: A superpixelwise convolutional neural network for salient object detection publication-title: Int. J. Comput. Vision – volume: 45 start-page: 147 year: 2017 end-page: 155 ident: b0260 article-title: Exploring visual attention using random walks based eye tracking protocols publication-title: J. Vis. Commun. Image Represent – reference: C. Fang, H. Tian, D. Zhang, Q. Zhang, J. Han, Densely nested top-down flows for salient object detection, arXiv:2102.09133. – year: 2013 ident: b0195 article-title: Saliency detection in large point sets publication-title: IEEE international conference on computer vision – volume: 23 start-page: 19 year: 2014 end-page: 33 ident: b0025 article-title: Saliency-aware video compression publication-title: IEEE Trans. Image Process. – volume: 2 start-page: 286 year: 2005 end-page: 308 ident: b0230 article-title: Predicting and evaluating saliency for simplified polygonal models publication-title: ACM Trans. Appl. Perception – year: 2012 ident: b0060 article-title: A time series 3D hierarchy for real-time dynamic point cloud interaction, in – year: 1997 ident: b0275 article-title: Procedural elements for computer graphics – volume: 115 start-page: 330 issue: 3 year: 2015 ident: 10.1016/j.neucom.2022.06.088_b0130 article-title: SuperCNN: A superpixelwise convolutional neural network for salient object detection publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-015-0822-0 – volume: 17 start-page: 585 issue: 11 year: 2013 ident: 10.1016/j.neucom.2022.06.088_b0235 article-title: Information-seeking, curiosity, and attention: Computational and neural mechanisms publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.09.001 – volume: 90 start-page: 150 issue: 2 year: 2010 ident: 10.1016/j.neucom.2022.06.088_b0125 article-title: Probabilistic multi-task learning for visual saliency estimation in video publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-010-0354-6 – year: 2016 ident: 10.1016/j.neucom.2022.06.088_b0210 article-title: Supervoxel-based saliency detection for large-scale colored 3D point clouds – year: 2000 ident: 10.1016/j.neucom.2022.06.088_b0080 article-title: Identifying fixations and saccades in eye-tracking protocols – volume: 128 start-page: 261 issue: 2 year: 2020 ident: 10.1016/j.neucom.2022.06.088_b0015 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-019-01247-4 – volume: 36 start-page: 46 issue: 4 year: 2016 ident: 10.1016/j.neucom.2022.06.088_b0095 article-title: Measuring the visual salience of 3D printed objects publication-title: IEEE Comput. Graphics Appl. doi: 10.1109/MCG.2016.47 – volume: 20 start-page: 39 issue: 1 year: 2001 ident: 10.1016/j.neucom.2022.06.088_b0175 article-title: Spatiotemporal sensitivity and visual attention for efficient rendering of dynamic environments publication-title: ACM Trans. Graphics doi: 10.1145/383745.383748 – volume: 25 start-page: 1765 issue: 4 year: 2016 ident: 10.1016/j.neucom.2022.06.088_b0055 article-title: Graph-based compression of dynamic 3D point cloud sequences publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2529506 – year: 2020 ident: 10.1016/j.neucom.2022.06.088_b0100 article-title: Towards visual saliency computation on 3D graphical contents for interactive visualization – year: 2013 ident: 10.1016/j.neucom.2022.06.088_b0195 article-title: Saliency detection in large point sets – year: 1997 ident: 10.1016/j.neucom.2022.06.088_b0275 – volume: 20 start-page: 1254 issue: 11 year: 1998 ident: 10.1016/j.neucom.2022.06.088_b0005 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – volume: 42 start-page: 1755 issue: 7 year: 2020 ident: 10.1016/j.neucom.2022.06.088_b0165 article-title: Synthesizing supervision for learning deep saliency network without human annotation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2900649 – year: 2006 ident: 10.1016/j.neucom.2022.06.088_b0240 – volume: 43 start-page: 1423 issue: 4 year: 2021 ident: 10.1016/j.neucom.2022.06.088_b0030 article-title: Weakly-supervised learning of category-specific 3d object shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2949562 – ident: 10.1016/j.neucom.2022.06.088_b0035 – volume: 24 start-page: 1633 issue: 4 year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0090 article-title: Saliency in VR: How do people explore virtual environments? publication-title: IEEE Trans. Visual Comput. Graphics doi: 10.1109/TVCG.2018.2793599 – volume: 28 start-page: 5379 issue: 11 year: 2019 ident: 10.1016/j.neucom.2022.06.088_b0285 article-title: Point cloud saliency detection by local and global feature fusion publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2918735 – volume: 29 start-page: 360 year: 2020 ident: 10.1016/j.neucom.2022.06.088_b0160 article-title: Deep salient object detection with contextual information guidance publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2930906 – volume: 31 start-page: 1 issue: 4 year: 2012 ident: 10.1016/j.neucom.2022.06.088_b0225 article-title: Schelling points on 3D surface meshes publication-title: ACM Trans. Graphics doi: 10.1145/2185520.2185525 – volume: 7 start-page: 39 issue: 1 year: 2010 ident: 10.1016/j.neucom.2022.06.088_b0110 article-title: Computational visual attention systems and their cognitive foundations: A survey publication-title: ACM Trans. Appl. Perception doi: 10.1145/1658349.1658355 – volume: 75 start-page: 255 issue: 5 year: 2013 ident: 10.1016/j.neucom.2022.06.088_b0185 article-title: Mesh saliency with global rarity publication-title: Graph. Models doi: 10.1016/j.gmod.2013.05.002 – volume: 7 start-page: 13 issue: 2 year: 2010 ident: 10.1016/j.neucom.2022.06.088_b0065 article-title: Mesh saliency and human eye fixations publication-title: ACM Trans. Appl. Perception doi: 10.1145/1670671.1670676 – volume: 33 start-page: 6 issue: 1 year: 2014 ident: 10.1016/j.neucom.2022.06.088_b0045 article-title: Mesh saliency via spectral processing publication-title: ACM Trans. Graph. doi: 10.1145/2530691 – volume: 37 start-page: 191 issue: 2 year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0050 article-title: Visual attention for rendered 3D shapes publication-title: Comput. Graph. Forum doi: 10.1111/cgf.13353 – year: 2009 ident: 10.1016/j.neucom.2022.06.088_b0280 article-title: Fast point feature histograms (FPFH) for 3D registration – volume: 2 start-page: 286 issue: 3 year: 2005 ident: 10.1016/j.neucom.2022.06.088_b0230 article-title: Predicting and evaluating saliency for simplified polygonal models publication-title: ACM Trans. Appl. Perception doi: 10.1145/1077399.1077406 – volume: 23 start-page: 4270 issue: 10 year: 2014 ident: 10.1016/j.neucom.2022.06.088_b0020 article-title: VSI: A visual saliency-induced index for perceptual image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2346028 – volume: 28 start-page: 901 issue: 9 year: 2012 ident: 10.1016/j.neucom.2022.06.088_b0220 article-title: Evaluation of 3D interest point detection techniques via human-generated ground truth publication-title: Visual Comput. doi: 10.1007/s00371-012-0746-4 – ident: 10.1016/j.neucom.2022.06.088_b0155 doi: 10.1109/TPAMI.2021.3053577 – start-page: 8853 year: 2021 ident: 10.1016/j.neucom.2022.06.088_b0190 article-title: Mesh saliency: An independent perceptual measure or a derivative of image saliency? – ident: 10.1016/j.neucom.2022.06.088_b0170 – volume: 34 start-page: 1325 issue: 10 year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0205 article-title: Point-wise saliency detection on 3D point clouds via covariance descriptors publication-title: Visual Comput. doi: 10.1007/s00371-017-1416-3 – volume: 117 start-page: 93 issue: 1 year: 2016 ident: 10.1016/j.neucom.2022.06.088_b0135 article-title: Visual saliency detection using group lasso regularization in videos of natural scenes publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-015-0853-6 – year: 2015 ident: 10.1016/j.neucom.2022.06.088_b0200 article-title: Cluster-based point set saliency – volume: 38 start-page: 2544 issue: 12 year: 2016 ident: 10.1016/j.neucom.2022.06.088_b0040 article-title: Surface regions of interest for viewpoint selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2522437 – volume: 23 start-page: 19 issue: 1 year: 2014 ident: 10.1016/j.neucom.2022.06.088_b0025 article-title: Saliency-aware video compression publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2282897 – year: 2012 ident: 10.1016/j.neucom.2022.06.088_b0140 article-title: Geodesic saliency using background priors – volume: 126 start-page: 751 issue: 7 year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0120 article-title: Hierarchical cellular automata for visual saliency publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-017-1062-2 – volume: 24 start-page: 2552 issue: 8 year: 2015 ident: 10.1016/j.neucom.2022.06.088_b0145 article-title: Spatiotemporal saliency detection for video sequences based on random walk with restart publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2425544 – volume: 37 start-page: 18 issue: 6 year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0085 article-title: Tracking the gaze on objects in 3D: How do people really look at the bunny? publication-title: ACM Trans. Graph. doi: 10.1145/3272127.3275094 – volume: 45 start-page: 147 year: 2017 ident: 10.1016/j.neucom.2022.06.088_b0260 article-title: Exploring visual attention using random walks based eye tracking protocols publication-title: J. Vis. Commun. Image Represent doi: 10.1016/j.jvcir.2017.02.005 – ident: 10.1016/j.neucom.2022.06.088_b0255 doi: 10.1145/1518701.1518705 – year: 2018 ident: 10.1016/j.neucom.2022.06.088_b0150 article-title: Learning to promote saliency detectors – year: 2012 ident: 10.1016/j.neucom.2022.06.088_b0060 – volume: 4 start-page: 219 issue: 4 year: 1987 ident: 10.1016/j.neucom.2022.06.088_b0105 article-title: Shifts in selective visual attention: Towards the underlying neural circuitry publication-title: Matters of Intelligence: Conceptual Structures in Cognitive Neuroscience – start-page: 6354 year: 2017 ident: 10.1016/j.neucom.2022.06.088_b0245 article-title: Saliency revisited: Analysis of mouse movements versus fixations – volume: 28 start-page: 802 issue: 5 year: 2006 ident: 10.1016/j.neucom.2022.06.088_b0270 article-title: A coherent computational approach to model bottom-up visual attention publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.86 – volume: 37 start-page: 569 issue: 3 year: 2015 ident: 10.1016/j.neucom.2022.06.088_b0010 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345401 – volume: 107 start-page: 239 issue: 3 year: 2014 ident: 10.1016/j.neucom.2022.06.088_b0115 article-title: Visual saliency with statistical priors publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-013-0678-0 – ident: 10.1016/j.neucom.2022.06.088_b0070 doi: 10.1109/TPAMI.2019.2956930 – volume: 171 start-page: 308 issue: 3968 year: 1971 ident: 10.1016/j.neucom.2022.06.088_b0075 article-title: Scanpaths in eye movements during pattern perception publication-title: Science doi: 10.1126/science.171.3968.308 – volume: 24 start-page: 659 issue: 3 year: 2005 ident: 10.1016/j.neucom.2022.06.088_b0180 article-title: Mesh saliency publication-title: ACM Trans. Graphics doi: 10.1145/1073204.1073244 – start-page: 1598 year: 2019 ident: 10.1016/j.neucom.2022.06.088_b0215 article-title: Pointcloud saliency maps – volume: 42 start-page: 188 issue: 1 year: 2010 ident: 10.1016/j.neucom.2022.06.088_b0250 article-title: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data publication-title: Behav. Res. Methods doi: 10.3758/BRM.42.1.188 – volume: 45 start-page: 251 issue: 1 year: 2013 ident: 10.1016/j.neucom.2022.06.088_b0265 article-title: Methods for comparing scanpaths and saliency maps: strengths and weaknesses publication-title: Behav. Res. Methods doi: 10.3758/s13428-012-0226-9 |
SSID | ssj0017129 |
Score | 2.3760927 |
Snippet | In this work, a novel 6DoF mesh saliency database is developed which provides both the subject’s 6DoF data and eye-movement data. Different from traditional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120 |
SubjectTerms | 6DoF 6DoF mesh saliency detection Visual attention behavior |
Title | Towards mesh saliency in 6 degrees of freedom |
URI | https://dx.doi.org/10.1016/j.neucom.2022.06.088 |
Volume | 502 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHr2mSz2U2OpViqYi-20FvYxwQrNi22vfrbnc2jKIiC5JKEXcjObub7Br6ZIeQGObxKQx0zZSFhiPgJ0y7BUAXpaWAQoETgE4WfRnI4EQ_TeNoi_SYXxssqa99f-fTSW9dvurU1u8vZrPscpByjqBABrsQxn1EuhPKn_PZjK_MIVcirens8Zn50kz5XarwK2HjNCEcgK6t4lv1XfoCnL5AzOCT7NVekvepzjkgLimNy0PRhoPVveULYuNS-rugcVi90hcza51PSWUEldYABNazoIqc53rjF_JRMBnfj_pDVbRCY5ZFcMwVGJ1bx2MVOKmtcChyMcGBi6XiuIdGApCtyuRQxOJlb6cLUmQgjmyAOdHRGdopFAeeEmlxImwJeVgirpfZbZYWvaaOM1kGbRM3qM1vXCPetKt6yRgz2mlU2y7zNMq-JS5I2YdtZy6pGxh_jVWPY7NteZ-jGf5158e-Zl2TPP1XqsCuys37fwDXSibXplOelQ3Z794_D0SeRF8lv |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPejFt1ife_C6NtnsIzlKUaq2vdhCb2FfwYpNi22v_nZn8ygKoiC5hGQXsrPZ-b6Bb2YQugYOL5NQcSKNiwkgfkyUjSFUAXoaaAAoFvhE4f5AdEfscczHDdSpc2G8rLLy_aVPL7x19aRdWbM9n0zaz0FCIYoKAeAKHJMbaJPB8fVtDG4-1jqPUIa0LLhHOfHD6_y5QuSVu5UXjVBAsqKMZ9GA5Qd8-oI593topyKL-Lb8nn3UcPkB2q0bMeDqXB4iMizErws8dYsXvABq7RMq8STHAlsHEbVb4FmGM7ixs-kRGt3fDTtdUvVBIIZGYkmk0yo2knLLrZBG28RRp5l1mgtLM-Vi5YB1RTYTjDsrMiNsmFgdQWgT8EBFx6iZz3J3grDOmDCJg8swZpRQfq8M80VtpFYqaKGoXn1qqiLhvlfFW1qrwV7T0mapt1nqRXFx3EJkPWteFsn4Y7ysDZt-2-wU_PivM0__PfMKbXWH_V7aexg8naFt_6aUip2j5vJ95S6AWyz1ZfHvfAJghcr9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+mesh+saliency+in+6+degrees+of+freedom&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ding%2C+Xiaoying&rft.au=Chen%2C+Zhenzhong&rft.date=2022-09-01&rft.issn=0925-2312&rft.volume=502&rft.spage=120&rft.epage=139&rft_id=info:doi/10.1016%2Fj.neucom.2022.06.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2022_06_088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |