Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation
[Display omitted] •Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ conc...
Saved in:
Published in | Separation and purification technology Vol. 282; p. 120109 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2021.120109 |
Cover
Loading…
Abstract | [Display omitted]
•Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ concentration.•Flotation recovery of cerussite was related to the Cu2+ concentrations added in the pulp solution.
Metal ions are unavoidable in pulp solution, and they frequently influence the flotation recovery of minerals, such as by activation or depression. In this work, we systematically investigated the adsorption characteristics of Cu2+ species on cerussite surfaces and the concomitant effect on sulfidization flotation by micro-flotation experiments and surface analysis. The flotation results indicated that the flotation recovery of cerussite was almost unchanged at low Cu2+ concentration in the presence of Na2S, but it decreased at high Cu2+ concentration. X-ray photoelectron spectroscopy indicated that CuCO3 species formed on cerussite surface in the presence of Cu2+, and Pb–S species and Cu–S species formed after Cu2+–Na2S treatment. Time-of-flight-secondary-ion mass spectrometry indicated that the distribution of lead species narrowed and that of copper species broadened with increasing Cu2+ concentration, which demonstrated that Cu2+ covered the mineral surfaces and inherent Pb2+ was shield. Ultraviolet–visible spectroscopy indicated that the stability of cerussite surface increased with increasing amount of added Na2S. Compared with only Na2S treatment, consumption of xanthate was almost unchanged at low Cu2+ concentration, whereas consumption of xanthate considerably increased at high Cu2+ concentration, which may be because xanthate was consumed by the residual copper ions in the pulp solution. Zeta potential measurements indicated that Cu2+ can chemisorb on cerussite surfaces and increasing the Cu2+ concentration facilitates adsorption of copper species, but it inhibits adsorption of Na2S and BX. Therefore, sulfidization flotation of cerussite is not substantially affected by low concentrations of Cu2+, but is greatly affected by high concentrations of Cu2+. |
---|---|
AbstractList | [Display omitted]
•Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ concentration.•Flotation recovery of cerussite was related to the Cu2+ concentrations added in the pulp solution.
Metal ions are unavoidable in pulp solution, and they frequently influence the flotation recovery of minerals, such as by activation or depression. In this work, we systematically investigated the adsorption characteristics of Cu2+ species on cerussite surfaces and the concomitant effect on sulfidization flotation by micro-flotation experiments and surface analysis. The flotation results indicated that the flotation recovery of cerussite was almost unchanged at low Cu2+ concentration in the presence of Na2S, but it decreased at high Cu2+ concentration. X-ray photoelectron spectroscopy indicated that CuCO3 species formed on cerussite surface in the presence of Cu2+, and Pb–S species and Cu–S species formed after Cu2+–Na2S treatment. Time-of-flight-secondary-ion mass spectrometry indicated that the distribution of lead species narrowed and that of copper species broadened with increasing Cu2+ concentration, which demonstrated that Cu2+ covered the mineral surfaces and inherent Pb2+ was shield. Ultraviolet–visible spectroscopy indicated that the stability of cerussite surface increased with increasing amount of added Na2S. Compared with only Na2S treatment, consumption of xanthate was almost unchanged at low Cu2+ concentration, whereas consumption of xanthate considerably increased at high Cu2+ concentration, which may be because xanthate was consumed by the residual copper ions in the pulp solution. Zeta potential measurements indicated that Cu2+ can chemisorb on cerussite surfaces and increasing the Cu2+ concentration facilitates adsorption of copper species, but it inhibits adsorption of Na2S and BX. Therefore, sulfidization flotation of cerussite is not substantially affected by low concentrations of Cu2+, but is greatly affected by high concentrations of Cu2+. |
ArticleNumber | 120109 |
Author | Feng, Qicheng Zhang, Qian Wen, Shuming Miao, Yongchao |
Author_xml | – sequence: 1 givenname: Qian surname: Zhang fullname: Zhang, Qian – sequence: 2 givenname: Shuming surname: Wen fullname: Wen, Shuming – sequence: 3 givenname: Qicheng surname: Feng fullname: Feng, Qicheng email: fqckmust@163.com – sequence: 4 givenname: Yongchao surname: Miao fullname: Miao, Yongchao |
BookMark | eNqFkEtLAzEUhYNUsFb_gYvsZcbcpJ2HC6EUX1Bwo-uQuUkwZToZkhlBf71px5ULXd1zT3IOyXdOZp3vDCFXwHJgUNzs8mj6fgw5Zxxy4AxYfULmUJUiE2W9nCUtKpGtqqI4I-cx7hiDEio-J_u1jj70g_MdxXcVFA4muDg4jNRbuhn5NY29QWfSnq6YMMboBkPjGKzC5KpOU7fvW4fq0BKp9SGdttZp93W0qG39cFQX5NSqNprLn7kgbw_3r5unbPvy-LxZbzPkohiysuSCC6str7Q1DbeAoi71yoC2WGtmmG00Q500ckTkShdgl1Y0NbAGQCzI7dSLwccYjJXophcMQblWApMHcHInJ3DyAE5O4FJ4-SvcB7dX4fO_2N0UM-ljH84EGRO1Do12weAgtXd_F3wDeGOQyw |
CitedBy_id | crossref_primary_10_1016_j_mineng_2023_108087 crossref_primary_10_1016_j_molliq_2023_122406 crossref_primary_10_1016_j_mineng_2024_109092 crossref_primary_10_1016_j_apt_2025_104831 crossref_primary_10_1016_j_psep_2025_106920 crossref_primary_10_1016_j_mineng_2023_108349 crossref_primary_10_1016_j_mineng_2022_107710 crossref_primary_10_1016_j_oregeorev_2025_106571 crossref_primary_10_1007_s12613_023_2793_4 |
Cites_doi | 10.1016/j.mineng.2019.106006 10.1016/j.seppur.2019.04.007 10.1016/j.mineng.2021.106956 10.1016/j.mineng.2020.106400 10.1134/S1062739114030181 10.1016/j.jtice.2018.11.021 10.1016/j.jclepro.2019.117833 10.1016/j.mineng.2021.106809 10.1016/S1003-6326(21)65640-6 10.1016/j.apsusc.2021.150308 10.1016/j.apsusc.2015.11.035 10.1016/j.apsusc.2020.146270 10.1016/j.cis.2004.08.006 10.1016/S0301-7516(97)00049-5 10.1016/j.apsusc.2021.149350 10.1016/j.molstruc.2021.131116 10.1016/j.chemer.2021.125769 10.1016/j.mineng.2021.106982 10.1016/j.mineng.2020.106367 10.1016/S1003-6326(21)65643-1 10.1016/j.apsusc.2020.147036 10.1016/j.talanta.2021.122775 10.1016/j.molliq.2021.115802 10.1016/j.apcata.2021.118055 10.1016/j.mineng.2018.03.034 10.1016/j.mineng.2018.01.039 10.1016/j.surfin.2021.101053 10.1016/j.rinp.2019.102361 10.1016/S0301-7516(00)00045-4 10.1016/j.mineng.2018.10.012 10.1016/0301-7516(92)90013-M 10.1016/j.colsurfa.2021.127101 10.1016/j.powtec.2018.12.002 10.1016/j.apsusc.2019.02.113 10.1016/j.matlet.2021.129534 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2021.120109 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2021_120109 S1383586621018141 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c236t-772323fdf28dfeb2f1c397d5e1dfc9d0e0fbd0cdc9dc2ccc2ad61f4f3b910b113 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Tue Jul 01 00:32:50 EDT 2025 Thu Apr 24 22:53:43 EDT 2025 Fri Feb 23 02:39:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Depression Cerussite Sulfidization flotation Copper ions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-772323fdf28dfeb2f1c397d5e1dfc9d0e0fbd0cdc9dc2ccc2ad61f4f3b910b113 |
ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2021_120109 crossref_primary_10_1016_j_seppur_2021_120109 elsevier_sciencedirect_doi_10_1016_j_seppur_2021_120109 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Wen, Feng, Liu (b0070) 2021; 163 Cozza, Di Castro, Polzonetti, Marabini (b0145) 1992; 34 Yang, Wang, Wang, Zhang, Jia, Song (b0095) 2019; 130 Zhang, Wen, Feng, Liu (b0185) 2020; 543 Tzvetkov, Spassov, Tsvetkov, Rangelova (b0160) 2021; 291 Liu, Zhang, Song, Li, Jiao (b0010) 2019; 344 Kryuchkova, Syrokvashin, Stabniko (b0150) 2021; 1245 Tian, Gao, Khoso, Sun, Hu (b0075) 2019; 143 Wei, Dong, Qin, Jiao, Qi, Feng, Sun, Wang, Xiao (b0015) 2021 Ling, Wu, Dong, Dong, Wang, Pan, Han (b0180) 2021; 423 Han, Wen, Wang, Feng (b0085) 2022; 278 Liu, Wang, Yang (b0030) 2021; 626 Cao, Chen, Feng, Wen (b0060) 2018; 119 Zatsepin, Boukhvalov, Zatsepin (b0120) 2021; 563 Feng, Wen, Zhao, Deng, Xian (b0115) 2016; 360 QIU, LI, LI, YAN, LIU (b0100) 2021; 31 Cai, Liu, Shen, Zhang, Song, Jia, Su (b0175) 2021; 169 Chanturia, Bunin, Ryazantseva, Khabarova, Koporulina, Anashkina (b0135) 2014; 50 Zhang, Zhu, Yang, Jia, Yan, Zeng, Qu (b0080) 2019; 14 Grano, Prestidge, Ralston (b0130) 1997; 52 Han, Wen, Wang, Feng (b0050) 2021; 169 Wang, Zhang, Yin, Wu (b0155) 2021; 614 Tao, Zhang, Wang, Cao, Jiang (b0005) 2019; 237 Huang, Li, Hao, Yu, Li (b0165) 2021; 235 Bu, Chen, Chen, Ding (b0040) 2019; 479 Lai, Liu, Deng, Wen, Liu (b0190) 2020; 518 Zhang, Wen, Feng, Huang (b0065) 2021; 331 Klauber, Parker, van Bronswijk, Watling (b0140) 2001; 62 Wang, Wen, Han, Feng (b0055) 2021; 550 Martha, Alejandro, Fabiola (b0105) 2020; 155 Li, Liu, Liu, Liu, Liu, Jia, Chang (b0110) 2020; 153 Li, Bai, Ding, Yu, Wen (b0170) 2019; 96 Aikawa, Ito, Segawa, Jeon, Park, Tabelin, Hiroyoshi (b0020) 2020; 152 GAO, JIANG, SUN, GAO (b0035) 2021; 31 Paulin, McGettrick, Graeff, Mostert (b0125) 2021; 24 Fuerstenau, Pradip (b0195) 2005; 114-115 Öztürk, Bıçak, Özdemir, Ekmekçi (b0025) 2018; 122 Huang, Qiu, Ren, Qiu (b0045) 2020; 530 Yu, Liu, Li, Deng, Luo, Lai (b0090) 2019; 222 QIU (10.1016/j.seppur.2021.120109_b0100) 2021; 31 Klauber (10.1016/j.seppur.2021.120109_b0140) 2001; 62 Kryuchkova (10.1016/j.seppur.2021.120109_b0150) 2021; 1245 Yu (10.1016/j.seppur.2021.120109_b0090) 2019; 222 Huang (10.1016/j.seppur.2021.120109_b0045) 2020; 530 Cao (10.1016/j.seppur.2021.120109_b0060) 2018; 119 Wei (10.1016/j.seppur.2021.120109_b0015) 2021 Wang (10.1016/j.seppur.2021.120109_b0055) 2021; 550 Liu (10.1016/j.seppur.2021.120109_b0030) 2021; 626 Wang (10.1016/j.seppur.2021.120109_b0155) 2021; 614 Li (10.1016/j.seppur.2021.120109_b0110) 2020; 153 Chanturia (10.1016/j.seppur.2021.120109_b0135) 2014; 50 Aikawa (10.1016/j.seppur.2021.120109_b0020) 2020; 152 Öztürk (10.1016/j.seppur.2021.120109_b0025) 2018; 122 Huang (10.1016/j.seppur.2021.120109_b0165) 2021; 235 Martha (10.1016/j.seppur.2021.120109_b0105) 2020; 155 Cai (10.1016/j.seppur.2021.120109_b0175) 2021; 169 Liu (10.1016/j.seppur.2021.120109_b0010) 2019; 344 Zatsepin (10.1016/j.seppur.2021.120109_b0120) 2021; 563 GAO (10.1016/j.seppur.2021.120109_b0035) 2021; 31 Ling (10.1016/j.seppur.2021.120109_b0180) 2021; 423 Tao (10.1016/j.seppur.2021.120109_b0005) 2019; 237 Zhang (10.1016/j.seppur.2021.120109_b0080) 2019; 14 Yang (10.1016/j.seppur.2021.120109_b0095) 2019; 130 Grano (10.1016/j.seppur.2021.120109_b0130) 1997; 52 Tian (10.1016/j.seppur.2021.120109_b0075) 2019; 143 Cozza (10.1016/j.seppur.2021.120109_b0145) 1992; 34 Li (10.1016/j.seppur.2021.120109_b0170) 2019; 96 Han (10.1016/j.seppur.2021.120109_b0085) 2022; 278 Feng (10.1016/j.seppur.2021.120109_b0115) 2016; 360 Zhang (10.1016/j.seppur.2021.120109_b0065) 2021; 331 Zhang (10.1016/j.seppur.2021.120109_b0185) 2020; 543 Fuerstenau (10.1016/j.seppur.2021.120109_b0195) 2005; 114-115 Lai (10.1016/j.seppur.2021.120109_b0190) 2020; 518 Bu (10.1016/j.seppur.2021.120109_b0040) 2019; 479 Zhang (10.1016/j.seppur.2021.120109_b0070) 2021; 163 Paulin (10.1016/j.seppur.2021.120109_b0125) 2021; 24 Tzvetkov (10.1016/j.seppur.2021.120109_b0160) 2021; 291 Han (10.1016/j.seppur.2021.120109_b0050) 2021; 169 |
References_xml | – volume: 423 year: 2021 ident: b0180 article-title: Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: major radicals, the role of sulfur species, and particle size effect publication-title: J. Hazard. Mater. – volume: 152 year: 2020 ident: b0020 article-title: Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores publication-title: Miner. Eng. – volume: 31 start-page: 2081 year: 2021 end-page: 2101 ident: b0035 article-title: Typical roles of metal ions in mineral flotation: A review publication-title: T. Nonferr. Metal. Soc. – volume: 222 start-page: 109 year: 2019 end-page: 116 ident: b0090 article-title: Depression mechanism involving Fe publication-title: Sep. Purif. Technol. – volume: 155 year: 2020 ident: b0105 article-title: Flotation studies of galena (PbS), cerussite (PbCO publication-title: Miner. Eng. – volume: 518 year: 2020 ident: b0190 article-title: Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis publication-title: Appl. Surf. Sci. – volume: 31 start-page: 2128 year: 2021 end-page: 2138 ident: b0100 article-title: Influence of high concentration Zn publication-title: T. Nonferr. Metal. Soc. – volume: 163 year: 2021 ident: b0070 article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector publication-title: Miner. Eng. – volume: 52 start-page: 1 year: 1997 end-page: 29 ident: b0130 article-title: Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption publication-title: Int. J. Miner. Process. – volume: 143 year: 2019 ident: b0075 article-title: Understanding the activation mechanism of Pb publication-title: Miner. Eng. – volume: 1245 year: 2021 ident: b0150 article-title: Electronic Structure and Stability of Hexanuclear Complex [Cu publication-title: J. Mol. Struct. – volume: 291 year: 2021 ident: b0160 article-title: Mesoporous cauliflower- like CuO/Cu(OH) publication-title: Mater. Lett. – volume: 563 year: 2021 ident: b0120 article-title: Quality assessment of GaN epitaxial films: acidification scenarios based on XPS-and-DFT combined study publication-title: Appl. Surf. Sci. – volume: 169 year: 2021 ident: b0175 article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation publication-title: Miner. Eng. – volume: 550 year: 2021 ident: b0055 article-title: Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation publication-title: Appl. Surf. Sci. – volume: 119 start-page: 173 year: 2018 end-page: 182 ident: b0060 article-title: Activation mechanism of lead ion in the flotation of stibnite publication-title: Miner. Eng. – volume: 331 year: 2021 ident: b0065 article-title: Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption publication-title: J. Mol. Liq. – volume: 360 start-page: 365 year: 2016 end-page: 372 ident: b0115 article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation publication-title: Appl. Surf. Sci. – volume: 14 year: 2019 ident: b0080 article-title: Effect of Pb publication-title: Results Phys. – volume: 24 start-page: 101053 year: 2021 ident: b0125 article-title: Melanin system composition analyzed by XPS depth profiling publication-title: Surf. Interfaces. – volume: 530 year: 2020 ident: b0045 article-title: Research on flotation mechanism of wolframite activated by Pb(II) in neutral solution publication-title: Appl. Surf. Sci. – volume: 237 year: 2019 ident: b0005 article-title: Life cycle assessment on lead-zinc ore mining and beneficiation in China publication-title: J. Clean. Prod. – volume: 114-115 start-page: 9 year: 2005 end-page: 26 ident: b0195 article-title: Pradip, Zeta potentials in the flotation of oxide and silicate minerals publication-title: Adv. Colloid. Interface. – volume: 543 year: 2020 ident: b0185 article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species publication-title: Appl. Surf. Sci. – volume: 344 start-page: 103 year: 2019 end-page: 107 ident: b0010 article-title: A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite publication-title: Powder Technol. – volume: 122 start-page: 142 year: 2018 end-page: 147 ident: b0025 article-title: Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore publication-title: Miner. Eng. – volume: 235 year: 2021 ident: b0165 article-title: A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity publication-title: Talanta. – volume: 34 start-page: 23 year: 1992 end-page: 32 ident: b0145 article-title: An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite publication-title: Int. J. Miner. Process. – volume: 278 year: 2022 ident: b0085 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. – volume: 50 start-page: 573 year: 2014 end-page: 586 ident: b0135 article-title: Surface activation and induced change of physicochemical and process properties of galena by nanosecond electromagnetic pulses publication-title: J. Min. Sci. – volume: 479 start-page: 303 year: 2019 end-page: 310 ident: b0040 article-title: The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system publication-title: Appl. Surf. Sci. – volume: 626 year: 2021 ident: b0030 article-title: Effects of barite size on the fluorite flotation using the reagent scheme of GS/NaOL publication-title: Colloid. Surface. A. – volume: 62 start-page: 65 year: 2001 end-page: 94 ident: b0140 article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy publication-title: Int. J. Miner. Process. – volume: 96 start-page: 53 year: 2019 end-page: 62 ident: b0170 article-title: Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption publication-title: J. Taiwan Inst. Chem. E. – start-page: 125769 year: 2021 ident: b0015 article-title: Efficient flotation recovery of lead and zinc from refractory lead–zinc ores under low alkaline conditions publication-title: Chem. Erde-Geochem. – volume: 130 start-page: 101 year: 2019 end-page: 109 ident: b0095 article-title: Effect of Cu publication-title: Miner. Eng. – volume: 153 year: 2020 ident: b0110 article-title: Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO publication-title: Miner. Eng. – volume: 169 year: 2021 ident: b0050 article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance publication-title: Miner. Eng. – volume: 614 year: 2021 ident: b0155 article-title: Synthesis of Cu publication-title: Appl. Catal. A-Gen. – volume: 143 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0075 article-title: Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations publication-title: Miner. Eng. doi: 10.1016/j.mineng.2019.106006 – volume: 222 start-page: 109 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0090 article-title: Depression mechanism involving Fe3+ during arsenopyrite flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.04.007 – volume: 169 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0175 article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106956 – volume: 153 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0110 article-title: Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO3/PbS core-shell particles publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106400 – volume: 50 start-page: 573 issue: 3 year: 2014 ident: 10.1016/j.seppur.2021.120109_b0135 article-title: Surface activation and induced change of physicochemical and process properties of galena by nanosecond electromagnetic pulses publication-title: J. Min. Sci. doi: 10.1134/S1062739114030181 – volume: 96 start-page: 53 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0170 article-title: Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption publication-title: J. Taiwan Inst. Chem. E. doi: 10.1016/j.jtice.2018.11.021 – volume: 237 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0005 article-title: Life cycle assessment on lead-zinc ore mining and beneficiation in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117833 – volume: 163 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0070 article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106809 – volume: 31 start-page: 2081 issue: 7 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0035 article-title: Typical roles of metal ions in mineral flotation: A review publication-title: T. Nonferr. Metal. Soc. doi: 10.1016/S1003-6326(21)65640-6 – volume: 563 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0120 article-title: Quality assessment of GaN epitaxial films: acidification scenarios based on XPS-and-DFT combined study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150308 – volume: 360 start-page: 365 year: 2016 ident: 10.1016/j.seppur.2021.120109_b0115 article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.035 – volume: 518 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0190 article-title: Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146270 – volume: 114-115 start-page: 9 year: 2005 ident: 10.1016/j.seppur.2021.120109_b0195 article-title: Pradip, Zeta potentials in the flotation of oxide and silicate minerals publication-title: Adv. Colloid. Interface. doi: 10.1016/j.cis.2004.08.006 – volume: 52 start-page: 1 issue: 1 year: 1997 ident: 10.1016/j.seppur.2021.120109_b0130 article-title: Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(97)00049-5 – volume: 550 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0055 article-title: Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149350 – volume: 1245 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0150 article-title: Electronic Structure and Stability of Hexanuclear Complex [Cu6(hfa)4(dpm)4(OH)4] publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2021.131116 – volume: 423 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0180 article-title: Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: major radicals, the role of sulfur species, and particle size effect publication-title: J. Hazard. Mater. – start-page: 125769 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0015 article-title: Efficient flotation recovery of lead and zinc from refractory lead–zinc ores under low alkaline conditions publication-title: Chem. Erde-Geochem. doi: 10.1016/j.chemer.2021.125769 – volume: 278 year: 2022 ident: 10.1016/j.seppur.2021.120109_b0085 article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation publication-title: Sep. Purif. Technol. – volume: 169 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0050 article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance publication-title: Miner. Eng. doi: 10.1016/j.mineng.2021.106982 – volume: 152 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0020 article-title: Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores publication-title: Miner. Eng. doi: 10.1016/j.mineng.2020.106367 – volume: 31 start-page: 2128 issue: 7 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0100 article-title: Influence of high concentration Zn2+ on floatability of sphalerite in acidic system publication-title: T. Nonferr. Metal. Soc. doi: 10.1016/S1003-6326(21)65643-1 – volume: 530 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0045 article-title: Research on flotation mechanism of wolframite activated by Pb(II) in neutral solution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.147036 – volume: 235 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0165 article-title: A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity publication-title: Talanta. doi: 10.1016/j.talanta.2021.122775 – volume: 543 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0185 article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species publication-title: Appl. Surf. Sci. – volume: 331 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0065 article-title: Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115802 – volume: 614 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0155 article-title: Synthesis of Cu2(OH)3Cl as facile and effective Fenton catalysts for mineralizing aromatic contaminants: Combination of σ-Cu-ligand and self-redox property publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2021.118055 – volume: 122 start-page: 142 year: 2018 ident: 10.1016/j.seppur.2021.120109_b0025 article-title: Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.03.034 – volume: 155 year: 2020 ident: 10.1016/j.seppur.2021.120109_b0105 article-title: Flotation studies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4) with hydroxamic acids as collectors publication-title: Miner. Eng. – volume: 119 start-page: 173 year: 2018 ident: 10.1016/j.seppur.2021.120109_b0060 article-title: Activation mechanism of lead ion in the flotation of stibnite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.01.039 – volume: 24 start-page: 101053 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0125 article-title: Melanin system composition analyzed by XPS depth profiling publication-title: Surf. Interfaces. doi: 10.1016/j.surfin.2021.101053 – volume: 14 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0080 article-title: Effect of Pb2+ on the flotation of molybdenite in the presence of sulfide ion publication-title: Results Phys. doi: 10.1016/j.rinp.2019.102361 – volume: 62 start-page: 65 issue: 1-4 year: 2001 ident: 10.1016/j.seppur.2021.120109_b0140 article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(00)00045-4 – volume: 130 start-page: 101 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0095 article-title: Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2018.10.012 – volume: 34 start-page: 23 issue: 1-2 year: 1992 ident: 10.1016/j.seppur.2021.120109_b0145 article-title: An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(92)90013-M – volume: 626 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0030 article-title: Effects of barite size on the fluorite flotation using the reagent scheme of GS/NaOL publication-title: Colloid. Surface. A. doi: 10.1016/j.colsurfa.2021.127101 – volume: 344 start-page: 103 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0010 article-title: A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.12.002 – volume: 479 start-page: 303 year: 2019 ident: 10.1016/j.seppur.2021.120109_b0040 article-title: The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.113 – volume: 291 year: 2021 ident: 10.1016/j.seppur.2021.120109_b0160 article-title: Mesoporous cauliflower- like CuO/Cu(OH)2 hierarchical structures as an excellent catalyst for ammonium perchlorate thermal decomposition publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.129534 |
SSID | ssj0017182 |
Score | 2.404154 |
Snippet | [Display omitted]
•Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120109 |
SubjectTerms | Cerussite Copper ions Depression Sulfidization flotation |
Title | Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation |
URI | https://dx.doi.org/10.1016/j.seppur.2021.120109 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6KHvwJmm7u3k0x1IsVbEXLfQWkn1ApDYhaa7-dmfyKC2IgreQzIQw2cwj832zhNxLrVzP0yOEVXDLdjn-aOLK8iDURAbqB4chwfl17s4W9vPSWbbIpOHCIKyy9v2VTy-9dX1mUFtzkMbx4I1BceWMXJeXQ6eQvN7hwnedNumMn15m820zAdxv2fQEeQsVGgZdCfPKdZoWOBiUsz7D1rD_c4TaiTrTE3Jcp4t0XD3RKWnp9Rk52hkieE4-xypPsvLLp3J__DJNDJ0U_IEinxJKYooiOitybBnTvMgMArJouFY03kGWU0hk4erKxKpmaVKzSqqe_QVZTB_fJzOr3kTBkly4G8yeBRdGGT5SBspowySkIMrRTBnpq6EemkgNpYJjyaWUPFQuM7YRESQSEWPikrTXyVpfERpCIINq2hcK8w5bhCoUcFfHk4Ybo-wuEY3hAllPGMeNLlZBAyX7CCpzB2juoDJ3l1hbrbSasPGHvNe8k2BvpQQQBH7VvP635g055Eh7KNHat6S9yQp9B8nIJuqRg_4X69VL7hv97uGg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT63IM3SdvdzaM9lmKp2vZiC72FZB8QqWlImqu_3Zk8Sgui4C0kMyFMNjPfZL6ZJeRRauV6nu4irYJbtsvxRxNXlgehJjSQPzgMG5wnU3c0t18XzqJBBnUvDNIqK99f-vTCW1dn2pU120kUtd8ZJFdO13V5MXQKm9f3bUd4yOtrfW14Hgycb1HyBGkLxev-uYLklekkyXEsKGcthoXh3s_xaSvmDE_IcQUWab98nlPS0PEZOdoaIXhOPvsqW6XFd0_l7vBlujJ0kPMnit2UkBBTFNFpnmHBmGZ5apCORYNY0WiLV04BxsLVpYlU1aNJzXJVVuwvyHz4PBuMrGoLBUty4a4ROwsujDK8qwwk0YZJACDK0UwZ2VMd3TGh6kgFx5JLKXmgXGZsI0KAESFj4pLsxatYXxEaQBiDXLonFKIOWwQqEHBXx5OGG6PsJhG14XxZzRfHbS6Wfk0k-_BLc_tobr80d5NYG62knK_xh7xXvxN_Z534EAJ-1bz-t-YDORjNJmN__DJ9uyGHHBsgCt72Ldlbp7m-A1iyDu-LZfcN6zjiaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+characteristics+of+Cu2%2B+species+on+cerussite+surfaces+and+implications+for+sulfidization+flotation&rft.jtitle=Separation+and+purification+technology&rft.au=Zhang%2C+Qian&rft.au=Wen%2C+Shuming&rft.au=Feng%2C+Qicheng&rft.au=Miao%2C+Yongchao&rft.date=2022-02-01&rft.issn=1383-5866&rft.volume=282&rft.spage=120109&rft_id=info:doi/10.1016%2Fj.seppur.2021.120109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2021_120109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |