Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation

[Display omitted] •Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ conc...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 282; p. 120109
Main Authors Zhang, Qian, Wen, Shuming, Feng, Qicheng, Miao, Yongchao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2022
Subjects
Online AccessGet full text
ISSN1383-5866
1873-3794
DOI10.1016/j.seppur.2021.120109

Cover

Loading…
Abstract [Display omitted] •Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ concentration.•Flotation recovery of cerussite was related to the Cu2+ concentrations added in the pulp solution. Metal ions are unavoidable in pulp solution, and they frequently influence the flotation recovery of minerals, such as by activation or depression. In this work, we systematically investigated the adsorption characteristics of Cu2+ species on cerussite surfaces and the concomitant effect on sulfidization flotation by micro-flotation experiments and surface analysis. The flotation results indicated that the flotation recovery of cerussite was almost unchanged at low Cu2+ concentration in the presence of Na2S, but it decreased at high Cu2+ concentration. X-ray photoelectron spectroscopy indicated that CuCO3 species formed on cerussite surface in the presence of Cu2+, and Pb–S species and Cu–S species formed after Cu2+–Na2S treatment. Time-of-flight-secondary-ion mass spectrometry indicated that the distribution of lead species narrowed and that of copper species broadened with increasing Cu2+ concentration, which demonstrated that Cu2+ covered the mineral surfaces and inherent Pb2+ was shield. Ultraviolet–visible spectroscopy indicated that the stability of cerussite surface increased with increasing amount of added Na2S. Compared with only Na2S treatment, consumption of xanthate was almost unchanged at low Cu2+ concentration, whereas consumption of xanthate considerably increased at high Cu2+ concentration, which may be because xanthate was consumed by the residual copper ions in the pulp solution. Zeta potential measurements indicated that Cu2+ can chemisorb on cerussite surfaces and increasing the Cu2+ concentration facilitates adsorption of copper species, but it inhibits adsorption of Na2S and BX. Therefore, sulfidization flotation of cerussite is not substantially affected by low concentrations of Cu2+, but is greatly affected by high concentrations of Cu2+.
AbstractList [Display omitted] •Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on cerussite surfaces after Cu2+ and Na2S treatment.•Lots of Cu ions covered the cerussite surfaces and inherent Pb ions was shield at high Cu2+ concentration.•Flotation recovery of cerussite was related to the Cu2+ concentrations added in the pulp solution. Metal ions are unavoidable in pulp solution, and they frequently influence the flotation recovery of minerals, such as by activation or depression. In this work, we systematically investigated the adsorption characteristics of Cu2+ species on cerussite surfaces and the concomitant effect on sulfidization flotation by micro-flotation experiments and surface analysis. The flotation results indicated that the flotation recovery of cerussite was almost unchanged at low Cu2+ concentration in the presence of Na2S, but it decreased at high Cu2+ concentration. X-ray photoelectron spectroscopy indicated that CuCO3 species formed on cerussite surface in the presence of Cu2+, and Pb–S species and Cu–S species formed after Cu2+–Na2S treatment. Time-of-flight-secondary-ion mass spectrometry indicated that the distribution of lead species narrowed and that of copper species broadened with increasing Cu2+ concentration, which demonstrated that Cu2+ covered the mineral surfaces and inherent Pb2+ was shield. Ultraviolet–visible spectroscopy indicated that the stability of cerussite surface increased with increasing amount of added Na2S. Compared with only Na2S treatment, consumption of xanthate was almost unchanged at low Cu2+ concentration, whereas consumption of xanthate considerably increased at high Cu2+ concentration, which may be because xanthate was consumed by the residual copper ions in the pulp solution. Zeta potential measurements indicated that Cu2+ can chemisorb on cerussite surfaces and increasing the Cu2+ concentration facilitates adsorption of copper species, but it inhibits adsorption of Na2S and BX. Therefore, sulfidization flotation of cerussite is not substantially affected by low concentrations of Cu2+, but is greatly affected by high concentrations of Cu2+.
ArticleNumber 120109
Author Feng, Qicheng
Zhang, Qian
Wen, Shuming
Miao, Yongchao
Author_xml – sequence: 1
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
– sequence: 2
  givenname: Shuming
  surname: Wen
  fullname: Wen, Shuming
– sequence: 3
  givenname: Qicheng
  surname: Feng
  fullname: Feng, Qicheng
  email: fqckmust@163.com
– sequence: 4
  givenname: Yongchao
  surname: Miao
  fullname: Miao, Yongchao
BookMark eNqFkEtLAzEUhYNUsFb_gYvsZcbcpJ2HC6EUX1Bwo-uQuUkwZToZkhlBf71px5ULXd1zT3IOyXdOZp3vDCFXwHJgUNzs8mj6fgw5Zxxy4AxYfULmUJUiE2W9nCUtKpGtqqI4I-cx7hiDEio-J_u1jj70g_MdxXcVFA4muDg4jNRbuhn5NY29QWfSnq6YMMboBkPjGKzC5KpOU7fvW4fq0BKp9SGdttZp93W0qG39cFQX5NSqNprLn7kgbw_3r5unbPvy-LxZbzPkohiysuSCC6str7Q1DbeAoi71yoC2WGtmmG00Q500ckTkShdgl1Y0NbAGQCzI7dSLwccYjJXophcMQblWApMHcHInJ3DyAE5O4FJ4-SvcB7dX4fO_2N0UM-ljH84EGRO1Do12weAgtXd_F3wDeGOQyw
CitedBy_id crossref_primary_10_1016_j_mineng_2023_108087
crossref_primary_10_1016_j_molliq_2023_122406
crossref_primary_10_1016_j_mineng_2024_109092
crossref_primary_10_1016_j_apt_2025_104831
crossref_primary_10_1016_j_psep_2025_106920
crossref_primary_10_1016_j_mineng_2023_108349
crossref_primary_10_1016_j_mineng_2022_107710
crossref_primary_10_1016_j_oregeorev_2025_106571
crossref_primary_10_1007_s12613_023_2793_4
Cites_doi 10.1016/j.mineng.2019.106006
10.1016/j.seppur.2019.04.007
10.1016/j.mineng.2021.106956
10.1016/j.mineng.2020.106400
10.1134/S1062739114030181
10.1016/j.jtice.2018.11.021
10.1016/j.jclepro.2019.117833
10.1016/j.mineng.2021.106809
10.1016/S1003-6326(21)65640-6
10.1016/j.apsusc.2021.150308
10.1016/j.apsusc.2015.11.035
10.1016/j.apsusc.2020.146270
10.1016/j.cis.2004.08.006
10.1016/S0301-7516(97)00049-5
10.1016/j.apsusc.2021.149350
10.1016/j.molstruc.2021.131116
10.1016/j.chemer.2021.125769
10.1016/j.mineng.2021.106982
10.1016/j.mineng.2020.106367
10.1016/S1003-6326(21)65643-1
10.1016/j.apsusc.2020.147036
10.1016/j.talanta.2021.122775
10.1016/j.molliq.2021.115802
10.1016/j.apcata.2021.118055
10.1016/j.mineng.2018.03.034
10.1016/j.mineng.2018.01.039
10.1016/j.surfin.2021.101053
10.1016/j.rinp.2019.102361
10.1016/S0301-7516(00)00045-4
10.1016/j.mineng.2018.10.012
10.1016/0301-7516(92)90013-M
10.1016/j.colsurfa.2021.127101
10.1016/j.powtec.2018.12.002
10.1016/j.apsusc.2019.02.113
10.1016/j.matlet.2021.129534
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2021.120109
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2021_120109
S1383586621018141
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
ID FETCH-LOGICAL-c236t-772323fdf28dfeb2f1c397d5e1dfc9d0e0fbd0cdc9dc2ccc2ad61f4f3b910b113
IEDL.DBID AIKHN
ISSN 1383-5866
IngestDate Tue Jul 01 00:32:50 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
Fri Feb 23 02:39:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Depression
Cerussite
Sulfidization flotation
Copper ions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-772323fdf28dfeb2f1c397d5e1dfc9d0e0fbd0cdc9dc2ccc2ad61f4f3b910b113
ParticipantIDs crossref_citationtrail_10_1016_j_seppur_2021_120109
crossref_primary_10_1016_j_seppur_2021_120109
elsevier_sciencedirect_doi_10_1016_j_seppur_2021_120109
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Wen, Feng, Liu (b0070) 2021; 163
Cozza, Di Castro, Polzonetti, Marabini (b0145) 1992; 34
Yang, Wang, Wang, Zhang, Jia, Song (b0095) 2019; 130
Zhang, Wen, Feng, Liu (b0185) 2020; 543
Tzvetkov, Spassov, Tsvetkov, Rangelova (b0160) 2021; 291
Liu, Zhang, Song, Li, Jiao (b0010) 2019; 344
Kryuchkova, Syrokvashin, Stabniko (b0150) 2021; 1245
Tian, Gao, Khoso, Sun, Hu (b0075) 2019; 143
Wei, Dong, Qin, Jiao, Qi, Feng, Sun, Wang, Xiao (b0015) 2021
Ling, Wu, Dong, Dong, Wang, Pan, Han (b0180) 2021; 423
Han, Wen, Wang, Feng (b0085) 2022; 278
Liu, Wang, Yang (b0030) 2021; 626
Cao, Chen, Feng, Wen (b0060) 2018; 119
Zatsepin, Boukhvalov, Zatsepin (b0120) 2021; 563
Feng, Wen, Zhao, Deng, Xian (b0115) 2016; 360
QIU, LI, LI, YAN, LIU (b0100) 2021; 31
Cai, Liu, Shen, Zhang, Song, Jia, Su (b0175) 2021; 169
Chanturia, Bunin, Ryazantseva, Khabarova, Koporulina, Anashkina (b0135) 2014; 50
Zhang, Zhu, Yang, Jia, Yan, Zeng, Qu (b0080) 2019; 14
Grano, Prestidge, Ralston (b0130) 1997; 52
Han, Wen, Wang, Feng (b0050) 2021; 169
Wang, Zhang, Yin, Wu (b0155) 2021; 614
Tao, Zhang, Wang, Cao, Jiang (b0005) 2019; 237
Huang, Li, Hao, Yu, Li (b0165) 2021; 235
Bu, Chen, Chen, Ding (b0040) 2019; 479
Lai, Liu, Deng, Wen, Liu (b0190) 2020; 518
Zhang, Wen, Feng, Huang (b0065) 2021; 331
Klauber, Parker, van Bronswijk, Watling (b0140) 2001; 62
Wang, Wen, Han, Feng (b0055) 2021; 550
Martha, Alejandro, Fabiola (b0105) 2020; 155
Li, Liu, Liu, Liu, Liu, Jia, Chang (b0110) 2020; 153
Li, Bai, Ding, Yu, Wen (b0170) 2019; 96
Aikawa, Ito, Segawa, Jeon, Park, Tabelin, Hiroyoshi (b0020) 2020; 152
GAO, JIANG, SUN, GAO (b0035) 2021; 31
Paulin, McGettrick, Graeff, Mostert (b0125) 2021; 24
Fuerstenau, Pradip (b0195) 2005; 114-115
Öztürk, Bıçak, Özdemir, Ekmekçi (b0025) 2018; 122
Huang, Qiu, Ren, Qiu (b0045) 2020; 530
Yu, Liu, Li, Deng, Luo, Lai (b0090) 2019; 222
QIU (10.1016/j.seppur.2021.120109_b0100) 2021; 31
Klauber (10.1016/j.seppur.2021.120109_b0140) 2001; 62
Kryuchkova (10.1016/j.seppur.2021.120109_b0150) 2021; 1245
Yu (10.1016/j.seppur.2021.120109_b0090) 2019; 222
Huang (10.1016/j.seppur.2021.120109_b0045) 2020; 530
Cao (10.1016/j.seppur.2021.120109_b0060) 2018; 119
Wei (10.1016/j.seppur.2021.120109_b0015) 2021
Wang (10.1016/j.seppur.2021.120109_b0055) 2021; 550
Liu (10.1016/j.seppur.2021.120109_b0030) 2021; 626
Wang (10.1016/j.seppur.2021.120109_b0155) 2021; 614
Li (10.1016/j.seppur.2021.120109_b0110) 2020; 153
Chanturia (10.1016/j.seppur.2021.120109_b0135) 2014; 50
Aikawa (10.1016/j.seppur.2021.120109_b0020) 2020; 152
Öztürk (10.1016/j.seppur.2021.120109_b0025) 2018; 122
Huang (10.1016/j.seppur.2021.120109_b0165) 2021; 235
Martha (10.1016/j.seppur.2021.120109_b0105) 2020; 155
Cai (10.1016/j.seppur.2021.120109_b0175) 2021; 169
Liu (10.1016/j.seppur.2021.120109_b0010) 2019; 344
Zatsepin (10.1016/j.seppur.2021.120109_b0120) 2021; 563
GAO (10.1016/j.seppur.2021.120109_b0035) 2021; 31
Ling (10.1016/j.seppur.2021.120109_b0180) 2021; 423
Tao (10.1016/j.seppur.2021.120109_b0005) 2019; 237
Zhang (10.1016/j.seppur.2021.120109_b0080) 2019; 14
Yang (10.1016/j.seppur.2021.120109_b0095) 2019; 130
Grano (10.1016/j.seppur.2021.120109_b0130) 1997; 52
Tian (10.1016/j.seppur.2021.120109_b0075) 2019; 143
Cozza (10.1016/j.seppur.2021.120109_b0145) 1992; 34
Li (10.1016/j.seppur.2021.120109_b0170) 2019; 96
Han (10.1016/j.seppur.2021.120109_b0085) 2022; 278
Feng (10.1016/j.seppur.2021.120109_b0115) 2016; 360
Zhang (10.1016/j.seppur.2021.120109_b0065) 2021; 331
Zhang (10.1016/j.seppur.2021.120109_b0185) 2020; 543
Fuerstenau (10.1016/j.seppur.2021.120109_b0195) 2005; 114-115
Lai (10.1016/j.seppur.2021.120109_b0190) 2020; 518
Bu (10.1016/j.seppur.2021.120109_b0040) 2019; 479
Zhang (10.1016/j.seppur.2021.120109_b0070) 2021; 163
Paulin (10.1016/j.seppur.2021.120109_b0125) 2021; 24
Tzvetkov (10.1016/j.seppur.2021.120109_b0160) 2021; 291
Han (10.1016/j.seppur.2021.120109_b0050) 2021; 169
References_xml – volume: 423
  year: 2021
  ident: b0180
  article-title: Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: major radicals, the role of sulfur species, and particle size effect
  publication-title: J. Hazard. Mater.
– volume: 152
  year: 2020
  ident: b0020
  article-title: Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores
  publication-title: Miner. Eng.
– volume: 31
  start-page: 2081
  year: 2021
  end-page: 2101
  ident: b0035
  article-title: Typical roles of metal ions in mineral flotation: A review
  publication-title: T. Nonferr. Metal. Soc.
– volume: 222
  start-page: 109
  year: 2019
  end-page: 116
  ident: b0090
  article-title: Depression mechanism involving Fe
  publication-title: Sep. Purif. Technol.
– volume: 155
  year: 2020
  ident: b0105
  article-title: Flotation studies of galena (PbS), cerussite (PbCO
  publication-title: Miner. Eng.
– volume: 518
  year: 2020
  ident: b0190
  article-title: Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 2128
  year: 2021
  end-page: 2138
  ident: b0100
  article-title: Influence of high concentration Zn
  publication-title: T. Nonferr. Metal. Soc.
– volume: 163
  year: 2021
  ident: b0070
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
– volume: 52
  start-page: 1
  year: 1997
  end-page: 29
  ident: b0130
  article-title: Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption
  publication-title: Int. J. Miner. Process.
– volume: 143
  year: 2019
  ident: b0075
  article-title: Understanding the activation mechanism of Pb
  publication-title: Miner. Eng.
– volume: 1245
  year: 2021
  ident: b0150
  article-title: Electronic Structure and Stability of Hexanuclear Complex [Cu
  publication-title: J. Mol. Struct.
– volume: 291
  year: 2021
  ident: b0160
  article-title: Mesoporous cauliflower- like CuO/Cu(OH)
  publication-title: Mater. Lett.
– volume: 563
  year: 2021
  ident: b0120
  article-title: Quality assessment of GaN epitaxial films: acidification scenarios based on XPS-and-DFT combined study
  publication-title: Appl. Surf. Sci.
– volume: 169
  year: 2021
  ident: b0175
  article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation
  publication-title: Miner. Eng.
– volume: 550
  year: 2021
  ident: b0055
  article-title: Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation
  publication-title: Appl. Surf. Sci.
– volume: 119
  start-page: 173
  year: 2018
  end-page: 182
  ident: b0060
  article-title: Activation mechanism of lead ion in the flotation of stibnite
  publication-title: Miner. Eng.
– volume: 331
  year: 2021
  ident: b0065
  article-title: Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption
  publication-title: J. Mol. Liq.
– volume: 360
  start-page: 365
  year: 2016
  end-page: 372
  ident: b0115
  article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation
  publication-title: Appl. Surf. Sci.
– volume: 14
  year: 2019
  ident: b0080
  article-title: Effect of Pb
  publication-title: Results Phys.
– volume: 24
  start-page: 101053
  year: 2021
  ident: b0125
  article-title: Melanin system composition analyzed by XPS depth profiling
  publication-title: Surf. Interfaces.
– volume: 530
  year: 2020
  ident: b0045
  article-title: Research on flotation mechanism of wolframite activated by Pb(II) in neutral solution
  publication-title: Appl. Surf. Sci.
– volume: 237
  year: 2019
  ident: b0005
  article-title: Life cycle assessment on lead-zinc ore mining and beneficiation in China
  publication-title: J. Clean. Prod.
– volume: 114-115
  start-page: 9
  year: 2005
  end-page: 26
  ident: b0195
  article-title: Pradip, Zeta potentials in the flotation of oxide and silicate minerals
  publication-title: Adv. Colloid. Interface.
– volume: 543
  year: 2020
  ident: b0185
  article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species
  publication-title: Appl. Surf. Sci.
– volume: 344
  start-page: 103
  year: 2019
  end-page: 107
  ident: b0010
  article-title: A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite
  publication-title: Powder Technol.
– volume: 122
  start-page: 142
  year: 2018
  end-page: 147
  ident: b0025
  article-title: Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore
  publication-title: Miner. Eng.
– volume: 235
  year: 2021
  ident: b0165
  article-title: A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity
  publication-title: Talanta.
– volume: 34
  start-page: 23
  year: 1992
  end-page: 32
  ident: b0145
  article-title: An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite
  publication-title: Int. J. Miner. Process.
– volume: 278
  year: 2022
  ident: b0085
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
– volume: 50
  start-page: 573
  year: 2014
  end-page: 586
  ident: b0135
  article-title: Surface activation and induced change of physicochemical and process properties of galena by nanosecond electromagnetic pulses
  publication-title: J. Min. Sci.
– volume: 479
  start-page: 303
  year: 2019
  end-page: 310
  ident: b0040
  article-title: The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system
  publication-title: Appl. Surf. Sci.
– volume: 626
  year: 2021
  ident: b0030
  article-title: Effects of barite size on the fluorite flotation using the reagent scheme of GS/NaOL
  publication-title: Colloid. Surface. A.
– volume: 62
  start-page: 65
  year: 2001
  end-page: 94
  ident: b0140
  article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy
  publication-title: Int. J. Miner. Process.
– volume: 96
  start-page: 53
  year: 2019
  end-page: 62
  ident: b0170
  article-title: Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption
  publication-title: J. Taiwan Inst. Chem. E.
– start-page: 125769
  year: 2021
  ident: b0015
  article-title: Efficient flotation recovery of lead and zinc from refractory lead–zinc ores under low alkaline conditions
  publication-title: Chem. Erde-Geochem.
– volume: 130
  start-page: 101
  year: 2019
  end-page: 109
  ident: b0095
  article-title: Effect of Cu
  publication-title: Miner. Eng.
– volume: 153
  year: 2020
  ident: b0110
  article-title: Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO
  publication-title: Miner. Eng.
– volume: 169
  year: 2021
  ident: b0050
  article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance
  publication-title: Miner. Eng.
– volume: 614
  year: 2021
  ident: b0155
  article-title: Synthesis of Cu
  publication-title: Appl. Catal. A-Gen.
– volume: 143
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0075
  article-title: Understanding the activation mechanism of Pb2+ ion in benzohydroxamic acid flotation of spodumene: Experimental findings and DFT simulations
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2019.106006
– volume: 222
  start-page: 109
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0090
  article-title: Depression mechanism involving Fe3+ during arsenopyrite flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2019.04.007
– volume: 169
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0175
  article-title: Effects of heating-sulfidation on the formation of zinc sulfide species on smithsonite surfaces and its response to flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106956
– volume: 153
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0110
  article-title: Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO3/PbS core-shell particles
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106400
– volume: 50
  start-page: 573
  issue: 3
  year: 2014
  ident: 10.1016/j.seppur.2021.120109_b0135
  article-title: Surface activation and induced change of physicochemical and process properties of galena by nanosecond electromagnetic pulses
  publication-title: J. Min. Sci.
  doi: 10.1134/S1062739114030181
– volume: 96
  start-page: 53
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0170
  article-title: Visual MINTEQ model, ToF–SIMS, and XPS study of smithsonite surface sulfidation behavior: Zinc sulfide precipitation adsorption
  publication-title: J. Taiwan Inst. Chem. E.
  doi: 10.1016/j.jtice.2018.11.021
– volume: 237
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0005
  article-title: Life cycle assessment on lead-zinc ore mining and beneficiation in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117833
– volume: 163
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0070
  article-title: Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106809
– volume: 31
  start-page: 2081
  issue: 7
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0035
  article-title: Typical roles of metal ions in mineral flotation: A review
  publication-title: T. Nonferr. Metal. Soc.
  doi: 10.1016/S1003-6326(21)65640-6
– volume: 563
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0120
  article-title: Quality assessment of GaN epitaxial films: acidification scenarios based on XPS-and-DFT combined study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150308
– volume: 360
  start-page: 365
  year: 2016
  ident: 10.1016/j.seppur.2021.120109_b0115
  article-title: Adsorption of sulfide ions on cerussite surfaces and implications for flotation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.035
– volume: 518
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0190
  article-title: Surface chemistry study of Cu-Pb sulfide ore using ToF-SIMS and multivariate analysis
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.146270
– volume: 114-115
  start-page: 9
  year: 2005
  ident: 10.1016/j.seppur.2021.120109_b0195
  article-title: Pradip, Zeta potentials in the flotation of oxide and silicate minerals
  publication-title: Adv. Colloid. Interface.
  doi: 10.1016/j.cis.2004.08.006
– volume: 52
  start-page: 1
  issue: 1
  year: 1997
  ident: 10.1016/j.seppur.2021.120109_b0130
  article-title: Sulphite modification of galena surfaces and its effect on flotation and xanthate adsorption
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(97)00049-5
– volume: 550
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0055
  article-title: Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149350
– volume: 1245
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0150
  article-title: Electronic Structure and Stability of Hexanuclear Complex [Cu6(hfa)4(dpm)4(OH)4]
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2021.131116
– volume: 423
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0180
  article-title: Sulfadiazine removal by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron: major radicals, the role of sulfur species, and particle size effect
  publication-title: J. Hazard. Mater.
– start-page: 125769
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0015
  article-title: Efficient flotation recovery of lead and zinc from refractory lead–zinc ores under low alkaline conditions
  publication-title: Chem. Erde-Geochem.
  doi: 10.1016/j.chemer.2021.125769
– volume: 278
  year: 2022
  ident: 10.1016/j.seppur.2021.120109_b0085
  article-title: Effect of ferric ion on cuprite surface properties and sulfidization flotation
  publication-title: Sep. Purif. Technol.
– volume: 169
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0050
  article-title: Surface sulfidization mechanism of cuprite and its response to xanthate adsorption and flotation performance
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2021.106982
– volume: 152
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0020
  article-title: Depression of lead-activated sphalerite by pyrite via galvanic interactions: Implications to the selective flotation of complex sulfide ores
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2020.106367
– volume: 31
  start-page: 2128
  issue: 7
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0100
  article-title: Influence of high concentration Zn2+ on floatability of sphalerite in acidic system
  publication-title: T. Nonferr. Metal. Soc.
  doi: 10.1016/S1003-6326(21)65643-1
– volume: 530
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0045
  article-title: Research on flotation mechanism of wolframite activated by Pb(II) in neutral solution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.147036
– volume: 235
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0165
  article-title: A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity
  publication-title: Talanta.
  doi: 10.1016/j.talanta.2021.122775
– volume: 543
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0185
  article-title: Surface modification of azurite with lead ions and its effects on the adsorption of sulfide ions and xanthate species
  publication-title: Appl. Surf. Sci.
– volume: 331
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0065
  article-title: Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115802
– volume: 614
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0155
  article-title: Synthesis of Cu2(OH)3Cl as facile and effective Fenton catalysts for mineralizing aromatic contaminants: Combination of σ-Cu-ligand and self-redox property
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2021.118055
– volume: 122
  start-page: 142
  year: 2018
  ident: 10.1016/j.seppur.2021.120109_b0025
  article-title: Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.03.034
– volume: 155
  year: 2020
  ident: 10.1016/j.seppur.2021.120109_b0105
  article-title: Flotation studies of galena (PbS), cerussite (PbCO3) and anglesite (PbSO4) with hydroxamic acids as collectors
  publication-title: Miner. Eng.
– volume: 119
  start-page: 173
  year: 2018
  ident: 10.1016/j.seppur.2021.120109_b0060
  article-title: Activation mechanism of lead ion in the flotation of stibnite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.01.039
– volume: 24
  start-page: 101053
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0125
  article-title: Melanin system composition analyzed by XPS depth profiling
  publication-title: Surf. Interfaces.
  doi: 10.1016/j.surfin.2021.101053
– volume: 14
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0080
  article-title: Effect of Pb2+ on the flotation of molybdenite in the presence of sulfide ion
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2019.102361
– volume: 62
  start-page: 65
  issue: 1-4
  year: 2001
  ident: 10.1016/j.seppur.2021.120109_b0140
  article-title: Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(00)00045-4
– volume: 130
  start-page: 101
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0095
  article-title: Effect of Cu2+ and Fe3+ on the depression of molybdenite in flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2018.10.012
– volume: 34
  start-page: 23
  issue: 1-2
  year: 1992
  ident: 10.1016/j.seppur.2021.120109_b0145
  article-title: An X-ray photoelectron spectroscopy (XPS) study of the interaction of mercapto-benzo-thiazole with cerussite
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(92)90013-M
– volume: 626
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0030
  article-title: Effects of barite size on the fluorite flotation using the reagent scheme of GS/NaOL
  publication-title: Colloid. Surface. A.
  doi: 10.1016/j.colsurfa.2021.127101
– volume: 344
  start-page: 103
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0010
  article-title: A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.12.002
– volume: 479
  start-page: 303
  year: 2019
  ident: 10.1016/j.seppur.2021.120109_b0040
  article-title: The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.113
– volume: 291
  year: 2021
  ident: 10.1016/j.seppur.2021.120109_b0160
  article-title: Mesoporous cauliflower- like CuO/Cu(OH)2 hierarchical structures as an excellent catalyst for ammonium perchlorate thermal decomposition
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.129534
SSID ssj0017182
Score 2.404154
Snippet [Display omitted] •Cu ions could chemisorb on cerussite surfaces and mainly existed in the form of CuCO3 species.•Pb–S species and Cu–S species formed on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120109
SubjectTerms Cerussite
Copper ions
Depression
Sulfidization flotation
Title Adsorption characteristics of Cu2+ species on cerussite surfaces and implications for sulfidization flotation
URI https://dx.doi.org/10.1016/j.seppur.2021.120109
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe9GD-MT6KHvwJmm7u3k0x1IsVbEXLfQWkn1ApDYhaa7-dmfyKC2IgreQzIQw2cwj832zhNxLrVzP0yOEVXDLdjn-aOLK8iDURAbqB4chwfl17s4W9vPSWbbIpOHCIKyy9v2VTy-9dX1mUFtzkMbx4I1BceWMXJeXQ6eQvN7hwnedNumMn15m820zAdxv2fQEeQsVGgZdCfPKdZoWOBiUsz7D1rD_c4TaiTrTE3Jcp4t0XD3RKWnp9Rk52hkieE4-xypPsvLLp3J__DJNDJ0U_IEinxJKYooiOitybBnTvMgMArJouFY03kGWU0hk4erKxKpmaVKzSqqe_QVZTB_fJzOr3kTBkly4G8yeBRdGGT5SBspowySkIMrRTBnpq6EemkgNpYJjyaWUPFQuM7YRESQSEWPikrTXyVpfERpCIINq2hcK8w5bhCoUcFfHk4Ybo-wuEY3hAllPGMeNLlZBAyX7CCpzB2juoDJ3l1hbrbSasPGHvNe8k2BvpQQQBH7VvP635g055Eh7KNHat6S9yQp9B8nIJuqRg_4X69VL7hv97uGg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MT63IM3SdvdzaM9lmKp2vZiC72FZB8QqWlImqu_3Zk8Sgui4C0kMyFMNjPfZL6ZJeRRauV6nu4irYJbtsvxRxNXlgehJjSQPzgMG5wnU3c0t18XzqJBBnUvDNIqK99f-vTCW1dn2pU120kUtd8ZJFdO13V5MXQKm9f3bUd4yOtrfW14Hgycb1HyBGkLxev-uYLklekkyXEsKGcthoXh3s_xaSvmDE_IcQUWab98nlPS0PEZOdoaIXhOPvsqW6XFd0_l7vBlujJ0kPMnit2UkBBTFNFpnmHBmGZ5apCORYNY0WiLV04BxsLVpYlU1aNJzXJVVuwvyHz4PBuMrGoLBUty4a4ROwsujDK8qwwk0YZJACDK0UwZ2VMd3TGh6kgFx5JLKXmgXGZsI0KAESFj4pLsxatYXxEaQBiDXLonFKIOWwQqEHBXx5OGG6PsJhG14XxZzRfHbS6Wfk0k-_BLc_tobr80d5NYG62knK_xh7xXvxN_Z534EAJ-1bz-t-YDORjNJmN__DJ9uyGHHBsgCt72Ldlbp7m-A1iyDu-LZfcN6zjiaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+characteristics+of+Cu2%2B+species+on+cerussite+surfaces+and+implications+for+sulfidization+flotation&rft.jtitle=Separation+and+purification+technology&rft.au=Zhang%2C+Qian&rft.au=Wen%2C+Shuming&rft.au=Feng%2C+Qicheng&rft.au=Miao%2C+Yongchao&rft.date=2022-02-01&rft.issn=1383-5866&rft.volume=282&rft.spage=120109&rft_id=info:doi/10.1016%2Fj.seppur.2021.120109&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2021_120109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon