Understanding solar thermal gradient to improve solar evaporation performance for water collection
Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient conc...
Saved in:
Published in | Nano Research Energy Vol. 4; no. 2; p. e9120152 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tsinghua University Press
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient concept, which significantly affects local heating during evaporation. In this work, the polymer sponge evaporator was designed to control the solar thermal gradient by adding copper–carbon core–shell (Cu@C) nanoparticles with similar solar absorptance to understand the effect of solar thermal gradient or local heating on evaporation performance. The optimized solar evaporation can be 2.0 kg·m−2·h−1 under 1000 W·m−² (one sun) with a Cu@C mass fraction of 0.5 wt.%, which was higher than that observed in cases with either higher or smaller Cu@C mass fraction. A too-small or large Cu@C mass fraction would enhance heat loss from the bottom or top parts, which was also confirmed by simulation results. Further outdoor water yield experiment showed that the optimized Cu@C mass fraction of 0.5 wt.% achieved the highest water collection (6.67 kg·m−2·d−1) compared with the other cases, such as 5.92 kg·m−2·d−1 for 0.1 wt.%, 5.29 kg·m−2·d−1 for 1 wt.%. These results highlighted the impact of local heating on evaporation performance under the solar thermal gradient during the solar evaporation process. |
---|---|
AbstractList | Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient concept, which significantly affects local heating during evaporation. In this work, the polymer sponge evaporator was designed to control the solar thermal gradient by adding copper–carbon core–shell (Cu@C) nanoparticles with similar solar absorptance to understand the effect of solar thermal gradient or local heating on evaporation performance. The optimized solar evaporation can be 2.0 kg·m−2·h−1 under 1000 W·m−² (one sun) with a Cu@C mass fraction of 0.5 wt.%, which was higher than that observed in cases with either higher or smaller Cu@C mass fraction. A too-small or large Cu@C mass fraction would enhance heat loss from the bottom or top parts, which was also confirmed by simulation results. Further outdoor water yield experiment showed that the optimized Cu@C mass fraction of 0.5 wt.% achieved the highest water collection (6.67 kg·m−2·d−1) compared with the other cases, such as 5.92 kg·m−2·d−1 for 0.1 wt.%, 5.29 kg·m−2·d−1 for 1 wt.%. These results highlighted the impact of local heating on evaporation performance under the solar thermal gradient during the solar evaporation process. |
Author | Chen, Xingyu Ye, Qin Shi, Changmin Zhou, Ping Zhang, Liwen Chen, Meijie |
Author_xml | – sequence: 1 givenname: Xingyu surname: Chen fullname: Chen, Xingyu – sequence: 2 givenname: Qin surname: Ye fullname: Ye, Qin – sequence: 3 givenname: Changmin surname: Shi fullname: Shi, Changmin – sequence: 4 givenname: Liwen surname: Zhang fullname: Zhang, Liwen – sequence: 5 givenname: Ping surname: Zhou fullname: Zhou, Ping – sequence: 6 givenname: Meijie surname: Chen fullname: Chen, Meijie |
BookMark | eNo9kNtKxDAURYOM4PUDfMsPdMylSZNHES8DoiD6HE6Sk7HSaUpaRvx7Oxd8OWez2ayHdUEWfe6RkBvOlkIra29f3x-Wggm1tFwwrsQJOReNZZXh3C72mVeMWX5GrsfxmzEmjJWNbc6J_-wjlnGCPrb9mo65g0KnLywb6Oi6QGyxn-iUabsZSt7icYFbGHKBqc09HbCkPO_7gHQO9AcmLDTkrsOwG1yR0wTdiNfHf0k-Hx8-7p-rl7en1f3dSxWE1FPVKI0GReQGUIfAtcbohQp1jCYlHYNkKhqZhMI6eC2SjcmDlkGzGGqu5CVZHbgxw7cbSruB8usytG5f5LJ2UKY2dOgAglHBe5-krFlC7xVY04jE43wMzix-YIWSx7Fg-udx5vbO3ezc7Zy7o3P5B881ej4 |
Cites_doi | 10.1038/s44221-023-00086-5 10.1002/aenm.202302451 10.1126/sciadv.aaw7013 10.1021/acs.langmuir.3c01041 10.1038/s41560-018-0260-7 10.1016/j.rser.2024.114603 10.1039/D4TA00069B 10.1016/j.renene.2024.120040 10.1016/j.enconman.2018.07.065 10.1007/s10853-019-03977-9 10.1038/s41893-020-0566-x 10.1002/adma.201903378 10.1016/j.renene.2018.01.115 10.1021/acsami.2c15212 10.1002/adfm.202113264 10.1038/s41467-021-25026-3 10.1016/j.desal.2022.115939 10.1039/D4TA00875H 10.1038/s41893-022-00880-1 10.1007/s12274-021-3834-9 10.1016/j.desal.2022.115897 10.1016/j.solmat.2017.11.012 10.1038/s41467-022-33062-w 10.1002/sus2.242 10.1016/j.xcrp.2022.101014 10.1016/j.rser.2024.114505 10.1016/j.desal.2023.116577 10.26599/NRE.2023.9120062 10.1126/sciadv.aaw5484 10.1016/j.chemosphere.2022.134394 10.1002/aenm.201702149 10.26599/NRE.2022.9120014 10.1016/j.desal.2021.115113 10.1016/j.gee.2024.05.005 10.1021/acsami.0c01261 10.1016/j.apenergy.2018.09.191 10.1126/sciadv.aax0763 10.1038/nphoton.2016.75 10.1016/j.nanoen.2020.104998 10.1016/j.renene.2022.08.065 10.1016/j.jcis.2023.03.114 10.1016/j.mtener.2022.101072 10.1016/j.matt.2024.08.003 10.1002/adma.202311151 10.1002/advs.202401322 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.26599/NRE.2025.9120152 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2790-8119 |
ExternalDocumentID | oai_doaj_org_article_aac85cbbbf3340febb5a9872f1d72f8e 10_26599_NRE_2025_9120152 |
GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c236t-756e8e2d18ae6cc166edb25c4dd8ff6dc305d83f25e4cb62f9dfba63c60dc4153 |
IEDL.DBID | DOA |
ISSN | 2791-0091 |
IngestDate | Wed Aug 27 01:15:50 EDT 2025 Sun Jul 06 05:03:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-756e8e2d18ae6cc166edb25c4dd8ff6dc305d83f25e4cb62f9dfba63c60dc4153 |
OpenAccessLink | https://doaj.org/article/aac85cbbbf3340febb5a9872f1d72f8e |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aac85cbbbf3340febb5a9872f1d72f8e crossref_primary_10_26599_NRE_2025_9120152 |
PublicationCentury | 2000 |
PublicationDate | 2025-6-00 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-6-00 |
PublicationDecade | 2020 |
PublicationTitle | Nano Research Energy |
PublicationYear | 2025 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | H. Y. Wang (ref33) 2024; 4 L. Zhou (ref34) 2016; 10 W. Zhou (ref7) 2022; 32 J. H. Wang (ref10) 2024; 36 Z. H. Zheng (ref30) 2022; 14 Y. Li (ref36) 2021; 511 S. C. Singh (ref42) 2020; 3 X. Y. Chen (ref44) 2022; 198 C. Y. He (ref1) 2021; 12 X. Z. Wang (ref19) 2018; 173 P. Tao (ref21) 2018; 3 M. J. Chen (ref23) 2022; 28 H. Kaya (ref16) 2018; 122 Y. D. Wang (ref22) 2023; 2 T. Arunkumar (ref13) 2024; 199 S. W. Sharshir (ref15) 2022; 539 X. Z. Wang (ref14) 2018; 179 O. Z. Sharaf (ref43) 2018; 231 J. H. Wang (ref31) 2023; 556 H. Shan (ref8) 2022; 13 M. J. Chen (ref11) 2024; 9 J. Gao (ref25) 2024; 12 L. C. Wang (ref9) 2024; 200 X. Y. Zhou (ref24) 2019; 5 H. R. Li (ref38) 2022; 538 N. Xu (ref20) 2023; 1 Y. Sui (ref41) 2020; 55 Z. X. Wang (ref3) 2019; 5 H. T. Kim (ref18) 2024; 11 H. R. Li (ref37) 2022; 3 L. L. Zhu (ref35) 2018; 8 Y. Geng (ref4) 2022; 15 C. M. Shi (ref12) 2024; 7 R. Niu (ref32) 2023; 13 N. Xu (ref6) 2019; 5 S. Chen (ref27) 2020; 76 I. Ibrahim (ref28) 2022; 299 Z. C. Wei (ref39) 2022; 1 H. S. Qi (ref2) 2019; 31 J. B. Tang (ref17) 2020; 12 Y. X. Zhang (ref5) 2022; 5 M. J. Chen (ref26) 2024; 12 J. Yan (ref29) 2023; 641 S. Li (ref40) 2023; 39 X. Y. Chen (ref45) 2024; 223 |
References_xml | – volume: 1 start-page: 494 year: 2023 ident: ref20 article-title: Going beyond efficiency for solar evaporation publication-title: Nat. Water doi: 10.1038/s44221-023-00086-5 – volume: 13 start-page: 2302451 year: 2023 ident: ref32 article-title: Bio-inspired sandwich-structured all-day-round solar evaporator for synergistic clean water and electricity generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202302451 – volume: 5 start-page: eaaw7013 year: 2019 ident: ref6 article-title: A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw7013 – volume: 39 start-page: 8900 year: 2023 ident: ref40 article-title: Thermal management of the solar evaporation process publication-title: Langmuir doi: 10.1021/acs.langmuir.3c01041 – volume: 3 start-page: 1031 year: 2018 ident: ref21 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 200 start-page: 114603 year: 2024 ident: ref9 article-title: Carbon emissions and reduction performance of photovoltaic systems in China publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2024.114603 – volume: 12 start-page: 6592 year: 2024 ident: ref25 article-title: Foaming photothermal inks for direct-ink writing: Hierarchical design and enhanced solar-powered interfacial evaporation publication-title: J. Mater. Chem. A doi: 10.1039/D4TA00069B – volume: 223 start-page: 120040 year: 2024 ident: ref45 article-title: Experimental investigation of Cu@C core–shell nanoparticle suspensions for highly efficient solar-thermal conversion publication-title: Renew. Energy doi: 10.1016/j.renene.2024.120040 – volume: 173 start-page: 158 year: 2018 ident: ref19 article-title: Synchronous steam generation and photodegradation for clean water generation based on localized solar energy harvesting publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.065 – volume: 55 start-page: 298 year: 2020 ident: ref41 article-title: A flowerlike sponge coated with carbon black nanoparticles for enhanced solar vapor generation publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03977-9 – volume: 3 start-page: 938 year: 2020 ident: ref42 article-title: Solar-trackable super-wicking black metal panel for photothermal water sanitation publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0566-x – volume: 31 start-page: 1903378 year: 2019 ident: ref2 article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption publication-title: Adv. Mater. doi: 10.1002/adma.201903378 – volume: 122 start-page: 329 year: 2018 ident: ref16 article-title: Experimental investigation of thermal performance of an evacuated U-tube solar collector with ZnO/etylene glycol-pure water nanofluids publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.115 – volume: 14 start-page: 50966 year: 2022 ident: ref30 article-title: Sustainable interfacial evaporation system based on hierarchical MXene/polydopamine/magnetic phase-change microcapsule composites for solar-driven seawater desalination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c15212 – volume: 32 start-page: 2113264 year: 2022 ident: ref7 article-title: High-performance freshwater harvesting system by coupling solar desalination and fog collection with hierarchical porous microneedle arrays publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202113264 – volume: 12 start-page: 4667 year: 2021 ident: ref1 article-title: Future global urban water scarcity and potential solutions publication-title: Nat. Commun. doi: 10.1038/s41467-021-25026-3 – volume: 539 start-page: 115939 year: 2022 ident: ref15 article-title: Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial publication-title: Desalination doi: 10.1016/j.desal.2022.115939 – volume: 12 start-page: 9574 year: 2024 ident: ref26 article-title: 3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination publication-title: J. Mater. Chem. A doi: 10.1039/D4TA00875H – volume: 5 start-page: 554 year: 2022 ident: ref5 article-title: Best practices for solar water production technologies publication-title: Nat. Sustain. doi: 10.1038/s41893-022-00880-1 – volume: 15 start-page: 3122 year: 2022 ident: ref4 article-title: Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation publication-title: Nano Res. doi: 10.1007/s12274-021-3834-9 – volume: 538 start-page: 115897 year: 2022 ident: ref38 article-title: Synchronously managed water and heat transportation for highly efficient interfacial solar desalination publication-title: Desalination doi: 10.1016/j.desal.2022.115897 – volume: 179 start-page: 185 year: 2018 ident: ref14 article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.11.012 – volume: 13 start-page: 5406 year: 2022 ident: ref8 article-title: Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate publication-title: Nat. Commun. doi: 10.1038/s41467-022-33062-w – volume: 4 start-page: e242 year: 2024 ident: ref33 article-title: Interfacial solar-driven steam and electricity co-generation using Hydrangea-like graphene by salt-assisted carbonization of waste polylactic acid publication-title: SusMat doi: 10.1002/sus2.242 – volume: 3 start-page: 101014 year: 2022 ident: ref37 article-title: Mixed temperature gradient evaporator for solar steam generation publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2022.101014 – volume: 199 start-page: 114505 year: 2024 ident: ref13 article-title: Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2024.114505 – volume: 556 start-page: 116577 year: 2023 ident: ref31 article-title: Marine biomass metal-organic framework hybrid evaporators for efficient solar water purification publication-title: Desalination doi: 10.1016/j.desal.2023.116577 – volume: 2 start-page: e9120062 year: 2023 ident: ref22 article-title: Recent strategies for constructing efficient interfacial solar evaporation systems publication-title: Nano Res. Energy doi: 10.26599/NRE.2023.9120062 – volume: 5 start-page: eaaw5484 year: 2019 ident: ref24 article-title: Architecting highly hydratable polymer networks to tune the water state for solar water purification publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw5484 – volume: 299 start-page: 134394 year: 2022 ident: ref28 article-title: Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134394 – volume: 8 start-page: 1702149 year: 2018 ident: ref35 article-title: Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702149 – volume: 1 start-page: e9120014 year: 2022 ident: ref39 article-title: Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120014 – volume: 511 start-page: 115113 year: 2021 ident: ref36 article-title: Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation publication-title: Desalination doi: 10.1016/j.desal.2021.115113 – volume: 9 start-page: 1812 year: 2024 ident: ref11 article-title: Recent advances in water collection based on solar evaporation publication-title: Green Energy Environ. doi: 10.1016/j.gee.2024.05.005 – volume: 12 start-page: 18504 year: 2020 ident: ref17 article-title: Realization of low latent heat of a solar evaporator via regulating the water state in wood channels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01261 – volume: 231 start-page: 1132 year: 2018 ident: ref43 article-title: Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian–Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.191 – volume: 5 start-page: eaax0763 year: 2019 ident: ref3 article-title: Pathways and challenges for efficient solar-thermal desalination publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0763 – volume: 10 start-page: 393 year: 2016 ident: ref34 article-title: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.75 – volume: 76 start-page: 104998 year: 2020 ident: ref27 article-title: Plasmonic wooden flower for highly efficient solar vapor generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104998 – volume: 198 start-page: 1307 year: 2022 ident: ref44 article-title: Solar-thermal conversion performance of heterogeneous nanofluids publication-title: Renew. Energy doi: 10.1016/j.renene.2022.08.065 – volume: 641 start-page: 1033 year: 2023 ident: ref29 article-title: Carbon nanofiber reinforced carbon aerogels for steam generation: Synergy of solar driven interface evaporation and side wall induced natural evaporation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.03.114 – volume: 28 start-page: 101072 year: 2022 ident: ref23 article-title: Selective absorber and emitter boost water evaporation and condensation toward water collection publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2022.101072 – volume: 7 start-page: 3247 year: 2024 ident: ref12 article-title: Unveiling passive design to enable synergistic water harvesting and irrigation publication-title: Matter doi: 10.1016/j.matt.2024.08.003 – volume: 36 start-page: 2311151 year: 2024 ident: ref10 article-title: Recent advances of green electricity generation: Potential in solar interfacial evaporation system publication-title: Adv. Mater. doi: 10.1002/adma.202311151 – volume: 11 start-page: 2401322 year: 2024 ident: ref18 article-title: Recent advances in high-rate solar-driven interfacial evaporation publication-title: Adv. Sci. doi: 10.1002/advs.202401322 |
SSID | ssj0002893797 |
Score | 2.3001604 |
Snippet | Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | e9120152 |
SubjectTerms | local heating solar evaporation solar thermal water collection |
Title | Understanding solar thermal gradient to improve solar evaporation performance for water collection |
URI | https://doaj.org/article/aac85cbbbf3340febb5a9872f1d72f8e |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAk1G2T5nVU2WURdg_iwt5KnqJgd1mr3vztTtKq9eTFSyhlWsI3034zmckEoXNKuac6gOemlc5Kr1imqQdbtpRpbRWxJmZ0pzM-mZe3C7boHfUVa8La9sAtcEN4QDJrjAmUlnnwxjANcTIJhYNB-vj3Bc7rBVNPbfqMinSyChGxtAck2pQm4Uyp4exuBKEhYZeqAAJk5Bcp9Xr3J5IZ76DtzjvEV-2sdtGGr_eQmfc3oOCXGIzi6Lc9g-jDOtVsNbhZ4se0QOA7Cf-mV51-8epnewCGC_wOHuYaRxtIlVj1PpqPR_c3k6w7GiGzhPImE4x76YkrpPbc2oJz7wxhtnROhsCdhc_YSRoI86U1nATlgtGcWp47C5xND9Bmvaz9IcJWCBeI1cIYXsoc6D-4YAMNIadaCDlAF1_YVKu2A0YFkUMCsgIgqwhk1QE5QNcRvW_B2Lw63QCVVp1Kq79UevQfLzlGW3FibVXXCdps1q_-FPyHxpwlU4Fx-jH6BJvMyBw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+solar+thermal+gradient+to+improve+solar+evaporation+performance+for+water+collection&rft.jtitle=Nano+Research+Energy&rft.au=Chen%2C+Xingyu&rft.au=Ye%2C+Qin&rft.au=Shi%2C+Changmin&rft.au=Zhang%2C+Liwen&rft.date=2025-06-01&rft.issn=2791-0091&rft.eissn=2790-8119&rft.volume=4&rft.issue=2&rft.spage=e9120152&rft_id=info:doi/10.26599%2FNRE.2025.9120152&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_NRE_2025_9120152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2791-0091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2791-0091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2791-0091&client=summon |