Understanding solar thermal gradient to improve solar evaporation performance for water collection

Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient conc...

Full description

Saved in:
Bibliographic Details
Published inNano Research Energy Vol. 4; no. 2; p. e9120152
Main Authors Chen, Xingyu, Ye, Qin, Shi, Changmin, Zhang, Liwen, Zhou, Ping, Chen, Meijie
Format Journal Article
LanguageEnglish
Published Tsinghua University Press 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient concept, which significantly affects local heating during evaporation. In this work, the polymer sponge evaporator was designed to control the solar thermal gradient by adding copper–carbon core–shell (Cu@C) nanoparticles with similar solar absorptance to understand the effect of solar thermal gradient or local heating on evaporation performance. The optimized solar evaporation can be 2.0 kg·m−2·h−1 under 1000 W·m−² (one sun) with a Cu@C mass fraction of 0.5 wt.%, which was higher than that observed in cases with either higher or smaller Cu@C mass fraction. A too-small or large Cu@C mass fraction would enhance heat loss from the bottom or top parts, which was also confirmed by simulation results. Further outdoor water yield experiment showed that the optimized Cu@C mass fraction of 0.5 wt.% achieved the highest water collection (6.67 kg·m−2·d−1) compared with the other cases, such as 5.92 kg·m−2·d−1 for 0.1 wt.%, 5.29 kg·m−2·d−1 for 1 wt.%. These results highlighted the impact of local heating on evaporation performance under the solar thermal gradient during the solar evaporation process.
AbstractList Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar thermal conversion performance from materials design aspects, little attention has been given to the fundamental solar thermal gradient concept, which significantly affects local heating during evaporation. In this work, the polymer sponge evaporator was designed to control the solar thermal gradient by adding copper–carbon core–shell (Cu@C) nanoparticles with similar solar absorptance to understand the effect of solar thermal gradient or local heating on evaporation performance. The optimized solar evaporation can be 2.0 kg·m−2·h−1 under 1000 W·m−² (one sun) with a Cu@C mass fraction of 0.5 wt.%, which was higher than that observed in cases with either higher or smaller Cu@C mass fraction. A too-small or large Cu@C mass fraction would enhance heat loss from the bottom or top parts, which was also confirmed by simulation results. Further outdoor water yield experiment showed that the optimized Cu@C mass fraction of 0.5 wt.% achieved the highest water collection (6.67 kg·m−2·d−1) compared with the other cases, such as 5.92 kg·m−2·d−1 for 0.1 wt.%, 5.29 kg·m−2·d−1 for 1 wt.%. These results highlighted the impact of local heating on evaporation performance under the solar thermal gradient during the solar evaporation process.
Author Chen, Xingyu
Ye, Qin
Shi, Changmin
Zhou, Ping
Zhang, Liwen
Chen, Meijie
Author_xml – sequence: 1
  givenname: Xingyu
  surname: Chen
  fullname: Chen, Xingyu
– sequence: 2
  givenname: Qin
  surname: Ye
  fullname: Ye, Qin
– sequence: 3
  givenname: Changmin
  surname: Shi
  fullname: Shi, Changmin
– sequence: 4
  givenname: Liwen
  surname: Zhang
  fullname: Zhang, Liwen
– sequence: 5
  givenname: Ping
  surname: Zhou
  fullname: Zhou, Ping
– sequence: 6
  givenname: Meijie
  surname: Chen
  fullname: Chen, Meijie
BookMark eNo9kNtKxDAURYOM4PUDfMsPdMylSZNHES8DoiD6HE6Sk7HSaUpaRvx7Oxd8OWez2ayHdUEWfe6RkBvOlkIra29f3x-Wggm1tFwwrsQJOReNZZXh3C72mVeMWX5GrsfxmzEmjJWNbc6J_-wjlnGCPrb9mo65g0KnLywb6Oi6QGyxn-iUabsZSt7icYFbGHKBqc09HbCkPO_7gHQO9AcmLDTkrsOwG1yR0wTdiNfHf0k-Hx8-7p-rl7en1f3dSxWE1FPVKI0GReQGUIfAtcbohQp1jCYlHYNkKhqZhMI6eC2SjcmDlkGzGGqu5CVZHbgxw7cbSruB8usytG5f5LJ2UKY2dOgAglHBe5-krFlC7xVY04jE43wMzix-YIWSx7Fg-udx5vbO3ezc7Zy7o3P5B881ej4
Cites_doi 10.1038/s44221-023-00086-5
10.1002/aenm.202302451
10.1126/sciadv.aaw7013
10.1021/acs.langmuir.3c01041
10.1038/s41560-018-0260-7
10.1016/j.rser.2024.114603
10.1039/D4TA00069B
10.1016/j.renene.2024.120040
10.1016/j.enconman.2018.07.065
10.1007/s10853-019-03977-9
10.1038/s41893-020-0566-x
10.1002/adma.201903378
10.1016/j.renene.2018.01.115
10.1021/acsami.2c15212
10.1002/adfm.202113264
10.1038/s41467-021-25026-3
10.1016/j.desal.2022.115939
10.1039/D4TA00875H
10.1038/s41893-022-00880-1
10.1007/s12274-021-3834-9
10.1016/j.desal.2022.115897
10.1016/j.solmat.2017.11.012
10.1038/s41467-022-33062-w
10.1002/sus2.242
10.1016/j.xcrp.2022.101014
10.1016/j.rser.2024.114505
10.1016/j.desal.2023.116577
10.26599/NRE.2023.9120062
10.1126/sciadv.aaw5484
10.1016/j.chemosphere.2022.134394
10.1002/aenm.201702149
10.26599/NRE.2022.9120014
10.1016/j.desal.2021.115113
10.1016/j.gee.2024.05.005
10.1021/acsami.0c01261
10.1016/j.apenergy.2018.09.191
10.1126/sciadv.aax0763
10.1038/nphoton.2016.75
10.1016/j.nanoen.2020.104998
10.1016/j.renene.2022.08.065
10.1016/j.jcis.2023.03.114
10.1016/j.mtener.2022.101072
10.1016/j.matt.2024.08.003
10.1002/adma.202311151
10.1002/advs.202401322
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.26599/NRE.2025.9120152
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2790-8119
ExternalDocumentID oai_doaj_org_article_aac85cbbbf3340febb5a9872f1d72f8e
10_26599_NRE_2025_9120152
GroupedDBID AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c236t-756e8e2d18ae6cc166edb25c4dd8ff6dc305d83f25e4cb62f9dfba63c60dc4153
IEDL.DBID DOA
ISSN 2791-0091
IngestDate Wed Aug 27 01:15:50 EDT 2025
Sun Jul 06 05:03:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-756e8e2d18ae6cc166edb25c4dd8ff6dc305d83f25e4cb62f9dfba63c60dc4153
OpenAccessLink https://doaj.org/article/aac85cbbbf3340febb5a9872f1d72f8e
ParticipantIDs doaj_primary_oai_doaj_org_article_aac85cbbbf3340febb5a9872f1d72f8e
crossref_primary_10_26599_NRE_2025_9120152
PublicationCentury 2000
PublicationDate 2025-6-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-6-00
PublicationDecade 2020
PublicationTitle Nano Research Energy
PublicationYear 2025
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References H. Y. Wang (ref33) 2024; 4
L. Zhou (ref34) 2016; 10
W. Zhou (ref7) 2022; 32
J. H. Wang (ref10) 2024; 36
Z. H. Zheng (ref30) 2022; 14
Y. Li (ref36) 2021; 511
S. C. Singh (ref42) 2020; 3
X. Y. Chen (ref44) 2022; 198
C. Y. He (ref1) 2021; 12
X. Z. Wang (ref19) 2018; 173
P. Tao (ref21) 2018; 3
M. J. Chen (ref23) 2022; 28
H. Kaya (ref16) 2018; 122
Y. D. Wang (ref22) 2023; 2
T. Arunkumar (ref13) 2024; 199
S. W. Sharshir (ref15) 2022; 539
X. Z. Wang (ref14) 2018; 179
O. Z. Sharaf (ref43) 2018; 231
J. H. Wang (ref31) 2023; 556
H. Shan (ref8) 2022; 13
M. J. Chen (ref11) 2024; 9
J. Gao (ref25) 2024; 12
L. C. Wang (ref9) 2024; 200
X. Y. Zhou (ref24) 2019; 5
H. R. Li (ref38) 2022; 538
N. Xu (ref20) 2023; 1
Y. Sui (ref41) 2020; 55
Z. X. Wang (ref3) 2019; 5
H. T. Kim (ref18) 2024; 11
H. R. Li (ref37) 2022; 3
L. L. Zhu (ref35) 2018; 8
Y. Geng (ref4) 2022; 15
C. M. Shi (ref12) 2024; 7
R. Niu (ref32) 2023; 13
N. Xu (ref6) 2019; 5
S. Chen (ref27) 2020; 76
I. Ibrahim (ref28) 2022; 299
Z. C. Wei (ref39) 2022; 1
H. S. Qi (ref2) 2019; 31
J. B. Tang (ref17) 2020; 12
Y. X. Zhang (ref5) 2022; 5
M. J. Chen (ref26) 2024; 12
J. Yan (ref29) 2023; 641
S. Li (ref40) 2023; 39
X. Y. Chen (ref45) 2024; 223
References_xml – volume: 1
  start-page: 494
  year: 2023
  ident: ref20
  article-title: Going beyond efficiency for solar evaporation
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00086-5
– volume: 13
  start-page: 2302451
  year: 2023
  ident: ref32
  article-title: Bio-inspired sandwich-structured all-day-round solar evaporator for synergistic clean water and electricity generation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202302451
– volume: 5
  start-page: eaaw7013
  year: 2019
  ident: ref6
  article-title: A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw7013
– volume: 39
  start-page: 8900
  year: 2023
  ident: ref40
  article-title: Thermal management of the solar evaporation process
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.3c01041
– volume: 3
  start-page: 1031
  year: 2018
  ident: ref21
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 200
  start-page: 114603
  year: 2024
  ident: ref9
  article-title: Carbon emissions and reduction performance of photovoltaic systems in China
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.114603
– volume: 12
  start-page: 6592
  year: 2024
  ident: ref25
  article-title: Foaming photothermal inks for direct-ink writing: Hierarchical design and enhanced solar-powered interfacial evaporation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA00069B
– volume: 223
  start-page: 120040
  year: 2024
  ident: ref45
  article-title: Experimental investigation of Cu@C core–shell nanoparticle suspensions for highly efficient solar-thermal conversion
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120040
– volume: 173
  start-page: 158
  year: 2018
  ident: ref19
  article-title: Synchronous steam generation and photodegradation for clean water generation based on localized solar energy harvesting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.065
– volume: 55
  start-page: 298
  year: 2020
  ident: ref41
  article-title: A flowerlike sponge coated with carbon black nanoparticles for enhanced solar vapor generation
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-03977-9
– volume: 3
  start-page: 938
  year: 2020
  ident: ref42
  article-title: Solar-trackable super-wicking black metal panel for photothermal water sanitation
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0566-x
– volume: 31
  start-page: 1903378
  year: 2019
  ident: ref2
  article-title: An interfacial solar-driven atmospheric water generator based on a liquid sorbent with simultaneous adsorption–desorption
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903378
– volume: 122
  start-page: 329
  year: 2018
  ident: ref16
  article-title: Experimental investigation of thermal performance of an evacuated U-tube solar collector with ZnO/etylene glycol-pure water nanofluids
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.01.115
– volume: 14
  start-page: 50966
  year: 2022
  ident: ref30
  article-title: Sustainable interfacial evaporation system based on hierarchical MXene/polydopamine/magnetic phase-change microcapsule composites for solar-driven seawater desalination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c15212
– volume: 32
  start-page: 2113264
  year: 2022
  ident: ref7
  article-title: High-performance freshwater harvesting system by coupling solar desalination and fog collection with hierarchical porous microneedle arrays
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202113264
– volume: 12
  start-page: 4667
  year: 2021
  ident: ref1
  article-title: Future global urban water scarcity and potential solutions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25026-3
– volume: 539
  start-page: 115939
  year: 2022
  ident: ref15
  article-title: Performance evaluation of a modified pyramid solar still employing wick, reflectors, glass cooling and TiO2 nanomaterial
  publication-title: Desalination
  doi: 10.1016/j.desal.2022.115939
– volume: 12
  start-page: 9574
  year: 2024
  ident: ref26
  article-title: 3D bridge-arch-structured dual-side evaporator for practical, all-weather water harvesting and desalination
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D4TA00875H
– volume: 5
  start-page: 554
  year: 2022
  ident: ref5
  article-title: Best practices for solar water production technologies
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-00880-1
– volume: 15
  start-page: 3122
  year: 2022
  ident: ref4
  article-title: Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3834-9
– volume: 538
  start-page: 115897
  year: 2022
  ident: ref38
  article-title: Synchronously managed water and heat transportation for highly efficient interfacial solar desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2022.115897
– volume: 179
  start-page: 185
  year: 2018
  ident: ref14
  article-title: ZnO-Au composite hierarchical particles dispersed oil-based nanofluids for direct absorption solar collectors
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.11.012
– volume: 13
  start-page: 5406
  year: 2022
  ident: ref8
  article-title: Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33062-w
– volume: 4
  start-page: e242
  year: 2024
  ident: ref33
  article-title: Interfacial solar-driven steam and electricity co-generation using Hydrangea-like graphene by salt-assisted carbonization of waste polylactic acid
  publication-title: SusMat
  doi: 10.1002/sus2.242
– volume: 3
  start-page: 101014
  year: 2022
  ident: ref37
  article-title: Mixed temperature gradient evaporator for solar steam generation
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2022.101014
– volume: 199
  start-page: 114505
  year: 2024
  ident: ref13
  article-title: Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2024.114505
– volume: 556
  start-page: 116577
  year: 2023
  ident: ref31
  article-title: Marine biomass metal-organic framework hybrid evaporators for efficient solar water purification
  publication-title: Desalination
  doi: 10.1016/j.desal.2023.116577
– volume: 2
  start-page: e9120062
  year: 2023
  ident: ref22
  article-title: Recent strategies for constructing efficient interfacial solar evaporation systems
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2023.9120062
– volume: 5
  start-page: eaaw5484
  year: 2019
  ident: ref24
  article-title: Architecting highly hydratable polymer networks to tune the water state for solar water purification
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw5484
– volume: 299
  start-page: 134394
  year: 2022
  ident: ref28
  article-title: Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134394
– volume: 8
  start-page: 1702149
  year: 2018
  ident: ref35
  article-title: Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702149
– volume: 1
  start-page: e9120014
  year: 2022
  ident: ref39
  article-title: Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120014
– volume: 511
  start-page: 115113
  year: 2021
  ident: ref36
  article-title: Solar absorber with tunable porosity to control the water supply velocity to accelerate water evaporation
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.115113
– volume: 9
  start-page: 1812
  year: 2024
  ident: ref11
  article-title: Recent advances in water collection based on solar evaporation
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2024.05.005
– volume: 12
  start-page: 18504
  year: 2020
  ident: ref17
  article-title: Realization of low latent heat of a solar evaporator via regulating the water state in wood channels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01261
– volume: 231
  start-page: 1132
  year: 2018
  ident: ref43
  article-title: Direct absorption solar collector (DASC) modeling and simulation using a novel Eulerian–Lagrangian hybrid approach: Optical, thermal, and hydrodynamic interactions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.191
– volume: 5
  start-page: eaax0763
  year: 2019
  ident: ref3
  article-title: Pathways and challenges for efficient solar-thermal desalination
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0763
– volume: 10
  start-page: 393
  year: 2016
  ident: ref34
  article-title: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.75
– volume: 76
  start-page: 104998
  year: 2020
  ident: ref27
  article-title: Plasmonic wooden flower for highly efficient solar vapor generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104998
– volume: 198
  start-page: 1307
  year: 2022
  ident: ref44
  article-title: Solar-thermal conversion performance of heterogeneous nanofluids
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.08.065
– volume: 641
  start-page: 1033
  year: 2023
  ident: ref29
  article-title: Carbon nanofiber reinforced carbon aerogels for steam generation: Synergy of solar driven interface evaporation and side wall induced natural evaporation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.03.114
– volume: 28
  start-page: 101072
  year: 2022
  ident: ref23
  article-title: Selective absorber and emitter boost water evaporation and condensation toward water collection
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2022.101072
– volume: 7
  start-page: 3247
  year: 2024
  ident: ref12
  article-title: Unveiling passive design to enable synergistic water harvesting and irrigation
  publication-title: Matter
  doi: 10.1016/j.matt.2024.08.003
– volume: 36
  start-page: 2311151
  year: 2024
  ident: ref10
  article-title: Recent advances of green electricity generation: Potential in solar interfacial evaporation system
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202311151
– volume: 11
  start-page: 2401322
  year: 2024
  ident: ref18
  article-title: Recent advances in high-rate solar-driven interfacial evaporation
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202401322
SSID ssj0002893797
Score 2.3001604
Snippet Solar evaporation has attracted great interest in water collection, gaining considerable attention recently. While many efforts have been made to enhance solar...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage e9120152
SubjectTerms local heating
solar evaporation
solar thermal
water collection
Title Understanding solar thermal gradient to improve solar evaporation performance for water collection
URI https://doaj.org/article/aac85cbbbf3340febb5a9872f1d72f8e
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYsoKq4vcvAk1G2T5nVU2WURdg_iwt5KnqJgd1mr3vztTtKq9eTFSyhlWsI3034zmckEoXNKuac6gOemlc5Kr1imqQdbtpRpbRWxJmZ0pzM-mZe3C7boHfUVa8La9sAtcEN4QDJrjAmUlnnwxjANcTIJhYNB-vj3Bc7rBVNPbfqMinSyChGxtAck2pQm4Uyp4exuBKEhYZeqAAJk5Bcp9Xr3J5IZ76DtzjvEV-2sdtGGr_eQmfc3oOCXGIzi6Lc9g-jDOtVsNbhZ4se0QOA7Cf-mV51-8epnewCGC_wOHuYaRxtIlVj1PpqPR_c3k6w7GiGzhPImE4x76YkrpPbc2oJz7wxhtnROhsCdhc_YSRoI86U1nATlgtGcWp47C5xND9Bmvaz9IcJWCBeI1cIYXsoc6D-4YAMNIadaCDlAF1_YVKu2A0YFkUMCsgIgqwhk1QE5QNcRvW_B2Lw63QCVVp1Kq79UevQfLzlGW3FibVXXCdps1q_-FPyHxpwlU4Fx-jH6BJvMyBw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+solar+thermal+gradient+to+improve+solar+evaporation+performance+for+water+collection&rft.jtitle=Nano+Research+Energy&rft.au=Chen%2C+Xingyu&rft.au=Ye%2C+Qin&rft.au=Shi%2C+Changmin&rft.au=Zhang%2C+Liwen&rft.date=2025-06-01&rft.issn=2791-0091&rft.eissn=2790-8119&rft.volume=4&rft.issue=2&rft.spage=e9120152&rft_id=info:doi/10.26599%2FNRE.2025.9120152&rft.externalDBID=n%2Fa&rft.externalDocID=10_26599_NRE_2025_9120152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2791-0091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2791-0091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2791-0091&client=summon