A cluster of 1D quadratic chaotic map and its applications in image encryption
Chaotic systems are widely used in designing encryption algorithms for their ideal dynamical performances. One-dimensional (1D) chaotic maps have the highest efficiency in implementation and have achieved great attention. However, 1D chaotic maps have a common security weakness, which is that their...
Saved in:
Published in | Mathematics and computers in simulation Vol. 204; pp. 89 - 114 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 1872-7166 |
DOI | 10.1016/j.matcom.2022.07.030 |
Cover
Loading…
Abstract | Chaotic systems are widely used in designing encryption algorithms for their ideal dynamical performances. One-dimensional (1D) chaotic maps have the highest efficiency in implementation and have achieved great attention. However, 1D chaotic maps have a common security weakness, which is that their key space is relatively small. Therefore, in this paper, a cluster of 1D quadratic chaotic maps is proposed according to the topological conjugate theory. The 1D chaotic map has three tunable parameters which have a significant expansion in parameter space than the traditional 1D chaotic maps. The 1D map is proved to be chaotic theoretically since it is topologically conjugated with a logistic chaotic map. An example of a 1D quadratic chaotic map is provided in this paper, and several numerical simulation results indicate that this 1D quadratic map has ideal chaotic characteristics, which are consistent with the theoretical analysis. To verify the effectiveness of this 1D quadratic map, a novel image encryption algorithm is proposed. The security of this image encryption algorithm is completely dependent on the properties of the 1D quadratic map. Security experimental test results show that this image encryption algorithm has a high-security level, and is quite competitive with other chaos-based image encryption algorithms. |
---|---|
AbstractList | Chaotic systems are widely used in designing encryption algorithms for their ideal dynamical performances. One-dimensional (1D) chaotic maps have the highest efficiency in implementation and have achieved great attention. However, 1D chaotic maps have a common security weakness, which is that their key space is relatively small. Therefore, in this paper, a cluster of 1D quadratic chaotic maps is proposed according to the topological conjugate theory. The 1D chaotic map has three tunable parameters which have a significant expansion in parameter space than the traditional 1D chaotic maps. The 1D map is proved to be chaotic theoretically since it is topologically conjugated with a logistic chaotic map. An example of a 1D quadratic chaotic map is provided in this paper, and several numerical simulation results indicate that this 1D quadratic map has ideal chaotic characteristics, which are consistent with the theoretical analysis. To verify the effectiveness of this 1D quadratic map, a novel image encryption algorithm is proposed. The security of this image encryption algorithm is completely dependent on the properties of the 1D quadratic map. Security experimental test results show that this image encryption algorithm has a high-security level, and is quite competitive with other chaos-based image encryption algorithms. |
Author | Liu, Lingfeng Wang, Jie |
Author_xml | – sequence: 1 givenname: Lingfeng surname: Liu fullname: Liu, Lingfeng email: lfliu@ncu.edu.cn – sequence: 2 givenname: Jie surname: Wang fullname: Wang, Jie |
BookMark | eNqFkEtLAzEUhYNUsK3-Axf5AzPmMXmMC6HUJ4hudB3STKIp8zJJhf57M9aVC13dy72cwznfAsz6obcAnGNUYoT5xbbsdDJDVxJESIlEiSg6AnMsBSkE5nwG5ogKWVSCVSdgEeMWIZR3NgdPK2jaXUw2wMFBfA0_droJOnkDzbseptnpEeq-gT5FqMex9Sa_hz5C30Pf6TcLbW_CfpyOp-DY6Tbas5-5BK-3Ny_r--Lx-e5hvXosDKE8FXxTaSw5YZbXsnaUcSZMzs605E40xGmDOKmsEaahtdxQ7TCSVc20bRyijC5BdfA1YYgxWKfGkLOEvcJITUzUVh2YqImJQkJlJll2-UtmfPpuk4L27X_iq4PY5mKf3gYVjc_VbeODNUk1g__b4AtIYYG5 |
CitedBy_id | crossref_primary_10_1016_j_prime_2024_100642 crossref_primary_10_1016_j_vlsi_2023_102130 crossref_primary_10_1038_s41598_024_62260_3 crossref_primary_10_1016_j_dsp_2024_104725 crossref_primary_10_1088_1402_4896_acbba6 crossref_primary_10_1016_j_isci_2023_108610 crossref_primary_10_1371_journal_pone_0297534 crossref_primary_10_1088_1402_4896_ad6d0e crossref_primary_10_1088_1402_4896_ad9428 crossref_primary_10_1007_s11071_024_10099_8 crossref_primary_10_1109_TCSI_2024_3511675 crossref_primary_10_1007_s11071_024_10143_7 crossref_primary_10_1016_j_asr_2025_03_040 crossref_primary_10_3390_sym15030726 crossref_primary_10_1007_s11042_023_16817_5 crossref_primary_10_1016_j_matcom_2023_11_006 crossref_primary_10_17780_ksujes_1412850 crossref_primary_10_1007_s11042_023_14841_z crossref_primary_10_3390_math11010231 crossref_primary_10_1016_j_eswa_2024_125468 crossref_primary_10_3390_math11224575 crossref_primary_10_1016_j_energy_2024_131332 crossref_primary_10_1109_JIOT_2023_3325223 crossref_primary_10_1007_s11760_023_02984_3 crossref_primary_10_1088_1402_4896_ad1fc3 crossref_primary_10_1002_cpe_8261 crossref_primary_10_1109_TII_2024_3403266 crossref_primary_10_1109_ACCESS_2023_3287858 crossref_primary_10_1007_s11042_023_17912_3 crossref_primary_10_1049_ipr2_12858 crossref_primary_10_1049_cit2_12401 crossref_primary_10_1109_TCSI_2023_3283877 crossref_primary_10_1016_j_vlsi_2023_102071 crossref_primary_10_1016_j_eswa_2024_126027 crossref_primary_10_1088_1402_4896_ad418d crossref_primary_10_1109_ACCESS_2024_3408136 crossref_primary_10_1016_j_sciaf_2023_e01955 crossref_primary_10_1088_1402_4896_acdc62 crossref_primary_10_1016_j_energy_2024_130916 crossref_primary_10_1016_j_ijleo_2022_170342 crossref_primary_10_1155_2024_6618382 crossref_primary_10_1007_s11042_023_17581_2 crossref_primary_10_1007_s11071_024_09679_5 crossref_primary_10_1007_s11071_024_10415_2 crossref_primary_10_1109_ACCESS_2024_3389975 crossref_primary_10_1109_ACCESS_2024_3432008 crossref_primary_10_3934_math_2025150 crossref_primary_10_1007_s10489_024_05447_5 crossref_primary_10_1007_s10586_024_04672_4 crossref_primary_10_3390_fractalfract9020095 crossref_primary_10_3390_math11163619 crossref_primary_10_3390_electronics12061325 crossref_primary_10_1016_j_chaos_2024_115443 crossref_primary_10_1145_3708546 crossref_primary_10_1088_1402_4896_ad4f64 crossref_primary_10_3390_fractalfract7100734 crossref_primary_10_1007_s11042_024_19746_z crossref_primary_10_3390_math11071589 |
Cites_doi | 10.1142/S0218127418500591 10.1063/1.5099261 10.1073/pnas.94.8.3513 10.1007/s11071-018-4391-y 10.1007/s00521-017-2970-3 10.3390/math10030457 10.1016/j.dcan.2020.02.001 10.3390/e23030341 10.1016/j.matcom.2021.06.012 10.1016/j.optlastec.2019.01.039 10.1103/PhysRevLett.110.168703 10.1007/s11071-020-05654-y 10.1016/j.matcom.2021.06.008 10.1080/02564602.2019.1595751 10.1016/j.future.2020.04.002 10.1016/j.ins.2020.09.032 10.1016/j.ins.2020.07.051 10.1007/s11045-018-0589-x 10.3390/sym12091497 10.1007/s11042-020-08835-4 10.1109/ACCESS.2018.2874336 10.3390/app11020788 10.1103/PhysRevLett.88.174102 10.1016/j.optcom.2011.04.001 10.1016/j.matcom.2020.07.007 10.1007/s11042-017-5594-9 10.1007/s11042-019-7602-8 10.15388/Informatica.2017.149 10.1186/s40064-016-1959-1 10.1070/RM9859 10.1109/ACCESS.2020.2991420 10.1007/978-3-662-48410-4_7 10.1016/j.ijleo.2012.11.002 10.1016/j.ijleo.2019.03.065 10.1007/s11042-015-2982-x 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1016/j.ecocom.2016.12.009 10.1109/ACCESS.2020.3011724 10.1007/s11042-019-08071-5 10.1016/j.future.2020.02.029 10.1016/j.chaos.2020.110131 10.1007/s11071-015-2392-7 10.1016/j.matcom.2021.02.009 10.1016/j.ins.2014.11.018 10.1016/j.camwa.2010.03.017 10.1155/2020/7647421 10.1016/j.optlaseng.2020.106202 10.1049/iet-ipr.2018.5900 10.1007/s11071-021-06235-3 10.1016/j.optlaseng.2016.08.009 |
ContentType | Journal Article |
Copyright | 2022 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2022 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2022.07.030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7166 |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_matcom_2022_07_030 S0378475422003329 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c236t-6b4a18625e6989f35657c0225a86f7d2fac0624ec7cd398b3af108495aedf0353 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Thu Apr 24 23:11:56 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 Fri Feb 23 02:39:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chaos Image encryption Topological conjugate 1D quadratic chaotic map |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-6b4a18625e6989f35657c0225a86f7d2fac0624ec7cd398b3af108495aedf0353 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1016_j_matcom_2022_07_030 crossref_citationtrail_10_1016_j_matcom_2022_07_030 elsevier_sciencedirect_doi_10_1016_j_matcom_2022_07_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Wang, Zhao (b47) 2021; 544 Ozturk, Kilic (b32) 2021; 103 Song, Qiao, Zhang (b41) 2013; 124 Kaur, Singh, Sun (b12) 2020; 107 Maltsev, Novikov (b29) 2019; 74 Khan, Boulila, Ahmad (b14) 2020; 8 Lacasa, Gomez-Gardenes (b17) 2013; 110 Khan, Kayhan (b15) 2021; 58 Hua, Zhou, Pun, Chen (b10) 2015; 297 Zhang, Gao (b52) 2016; 75 Wu, Liu (b48) 2020; 11 Liu, Wang (b26) 2011; 284 Chai, Chen, Broyde (b3) 2017; 88 Li, Peng, Tan (b19) 2020; 12 Wang, Liu (b45) 2022; 10 Pincus, Kalman (b34) 1997; 94 Sprott (b42) 2003 Guesmi, Farah, Kachouri (b8) 2016; 83 Sambas, Vaidyanathan, Tlelo-Cuautle (b38) 2020; 8 Gong, Qiu, Deng, Zhou (b6) 2019; 115 Pourasad, Ranjbarzadeh, Mardani (b35) 2021; 23 Sambas, Vaidyanathan, Bonny (b37) 2021; 11 Lorenz (b27) 1963; 20 Choi, Kim (b4) 2020; 140 Liu, Liu, Hu, Miao (b21) 2018; 28 Tang, Yu, Liu (b44) 2019; 78 Sambas, He, Liu (b36) 2020; 2020 Khan, Khan, Ahmad (b16) 2017; 28 Zhu, Dai, Liu (b55) 2021; 185 Khan, Ahmad (b13) 2019; 30 Shakiba (b40) 2019; 78 Zhang, Zhang (b54) 2020; 79 Malik, Shah (b28) 2020; 178 Wang, Wang, Fan (b46) 2020; 110 Patro, Acharya, Nath (b33) 2020; 37 Bandt, Pompe (b2) 2002; 88 Elmanfaloty, Ehab (b5) 2020 Xian, Wang, Yan, Li (b49) 2020; 134 Zhang, Liu (b53) 2021; 190 Zhu, Zhu, Wang (b57) 2018; 6 Yan, Bai, Liu, Yang, Guo (b50) 2018; 35 Liu, Miao (b22) 2016; 5 Hua, Zhu, Yi, Zhang, Huang (b11) 2021; 546 Li, Liu, Liu (b18) 2019; 13 Ye, Pan, Huang, Mei (b51) 2018; 94 Liu, Wang (b25) 2010; 59 Gottwald, Melbourne (b7) 2016 Munir, Khan, Jamal (b30) 2021; 190 Hasheminejad, Rostami (b9) 2019; 184 Setyaningsih, Wardoyo, Sari (b39) 2020; 6 Liu, Qin, Liao, Wu (b24) 2020; 100 Stollenwerk, Sommer, Kooi (b43) 2017; 30 Liu, Liu (b20) 2020; 8 Ahmad, Khan, Ahmed (b1) 2018; 30 Liu, Miao (b23) 2017; 77 Nepomuceno, Nardo, Garcia, Butusov, Tutueva (b31) 2019; 29 Zhu, Zhu (b56) 2019; 7 Li (10.1016/j.matcom.2022.07.030_b19) 2020; 12 Wang (10.1016/j.matcom.2022.07.030_b47) 2021; 544 Wang (10.1016/j.matcom.2022.07.030_b46) 2020; 110 Ye (10.1016/j.matcom.2022.07.030_b51) 2018; 94 Zhu (10.1016/j.matcom.2022.07.030_b57) 2018; 6 Liu (10.1016/j.matcom.2022.07.030_b23) 2017; 77 Shakiba (10.1016/j.matcom.2022.07.030_b40) 2019; 78 Zhu (10.1016/j.matcom.2022.07.030_b56) 2019; 7 Chai (10.1016/j.matcom.2022.07.030_b3) 2017; 88 Choi (10.1016/j.matcom.2022.07.030_b4) 2020; 140 Guesmi (10.1016/j.matcom.2022.07.030_b8) 2016; 83 Khan (10.1016/j.matcom.2022.07.030_b13) 2019; 30 Bandt (10.1016/j.matcom.2022.07.030_b2) 2002; 88 Zhang (10.1016/j.matcom.2022.07.030_b53) 2021; 190 Lorenz (10.1016/j.matcom.2022.07.030_b27) 1963; 20 Nepomuceno (10.1016/j.matcom.2022.07.030_b31) 2019; 29 Munir (10.1016/j.matcom.2022.07.030_b30) 2021; 190 Xian (10.1016/j.matcom.2022.07.030_b49) 2020; 134 Lacasa (10.1016/j.matcom.2022.07.030_b17) 2013; 110 Tang (10.1016/j.matcom.2022.07.030_b44) 2019; 78 Gottwald (10.1016/j.matcom.2022.07.030_b7) 2016 Wu (10.1016/j.matcom.2022.07.030_b48) 2020; 11 Khan (10.1016/j.matcom.2022.07.030_b15) 2021; 58 Khan (10.1016/j.matcom.2022.07.030_b16) 2017; 28 Ahmad (10.1016/j.matcom.2022.07.030_b1) 2018; 30 Pourasad (10.1016/j.matcom.2022.07.030_b35) 2021; 23 Setyaningsih (10.1016/j.matcom.2022.07.030_b39) 2020; 6 Zhang (10.1016/j.matcom.2022.07.030_b54) 2020; 79 Liu (10.1016/j.matcom.2022.07.030_b26) 2011; 284 Elmanfaloty (10.1016/j.matcom.2022.07.030_b5) 2020 Wang (10.1016/j.matcom.2022.07.030_b45) 2022; 10 Malik (10.1016/j.matcom.2022.07.030_b28) 2020; 178 Kaur (10.1016/j.matcom.2022.07.030_b12) 2020; 107 Li (10.1016/j.matcom.2022.07.030_b18) 2019; 13 Zhang (10.1016/j.matcom.2022.07.030_b52) 2016; 75 Patro (10.1016/j.matcom.2022.07.030_b33) 2020; 37 Gong (10.1016/j.matcom.2022.07.030_b6) 2019; 115 Stollenwerk (10.1016/j.matcom.2022.07.030_b43) 2017; 30 Liu (10.1016/j.matcom.2022.07.030_b20) 2020; 8 Sambas (10.1016/j.matcom.2022.07.030_b37) 2021; 11 Liu (10.1016/j.matcom.2022.07.030_b22) 2016; 5 Hasheminejad (10.1016/j.matcom.2022.07.030_b9) 2019; 184 Sambas (10.1016/j.matcom.2022.07.030_b36) 2020; 2020 Liu (10.1016/j.matcom.2022.07.030_b21) 2018; 28 Maltsev (10.1016/j.matcom.2022.07.030_b29) 2019; 74 Pincus (10.1016/j.matcom.2022.07.030_b34) 1997; 94 Yan (10.1016/j.matcom.2022.07.030_b50) 2018; 35 Hua (10.1016/j.matcom.2022.07.030_b10) 2015; 297 Khan (10.1016/j.matcom.2022.07.030_b14) 2020; 8 Sprott (10.1016/j.matcom.2022.07.030_b42) 2003 Song (10.1016/j.matcom.2022.07.030_b41) 2013; 124 Zhu (10.1016/j.matcom.2022.07.030_b55) 2021; 185 Ozturk (10.1016/j.matcom.2022.07.030_b32) 2021; 103 Hua (10.1016/j.matcom.2022.07.030_b11) 2021; 546 Liu (10.1016/j.matcom.2022.07.030_b24) 2020; 100 Liu (10.1016/j.matcom.2022.07.030_b25) 2010; 59 Sambas (10.1016/j.matcom.2022.07.030_b38) 2020; 8 |
References_xml | – volume: 20 start-page: 130 year: 1963 end-page: 141 ident: b27 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. – volume: 185 start-page: 754 year: 2021 end-page: 770 ident: b55 article-title: A three-dimensional bit-level image encryption algorithm with Rubik’s cube method publication-title: Math. Comput. Simulation – volume: 297 start-page: 80 year: 2015 end-page: 94 ident: b10 article-title: 2D sine logistic modulation map for image encryption publication-title: Inform. Sci. – volume: 107 start-page: 333 year: 2020 end-page: 350 ident: b12 article-title: Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5D chaotic map publication-title: Future Gener. Comput. Syst. - Int. J. Escience – volume: 284 start-page: 3895 year: 2011 end-page: 3903 ident: b26 article-title: Color image encryption using spatial bit-level permutation and high-dimension chaotic system publication-title: Opt. Commun. – year: 2020 ident: b5 article-title: An image encryption scheme using a 1D chaotic double section skew tent map publication-title: Complexity – volume: 6 start-page: 486 year: 2020 end-page: 503 ident: b39 article-title: Securing color image transmission using compression-encryption model with dynamic key generator and efficient symmetric key distribution publication-title: Digit. Commun. Netw. – volume: 6 start-page: 67095 year: 2018 end-page: 67107 ident: b57 article-title: A novel image compression-encryption scheme based on chaos and compression sensing publication-title: IEEE Access – volume: 11 year: 2020 ident: b48 article-title: An iteration-time combination method to reduce the dynamic degradation of digital chaotic maps publication-title: Complexity – volume: 8 year: 2020 ident: b38 article-title: A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption publication-title: IEEE Access – year: 2003 ident: b42 publication-title: Chaos and Time Series Analysis – start-page: 221 year: 2016 end-page: 247 ident: b7 article-title: The 0-1 test for chaos: A review publication-title: Chaos Detect. Predict. – volume: 94 start-page: 745 year: 2018 end-page: 756 ident: b51 article-title: An efficient pixel-level chaotic image encryption algorithm publication-title: Nonlinear Dynam. – volume: 184 start-page: 205 year: 2019 end-page: 213 ident: b9 article-title: A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic map publication-title: Optik – volume: 100 start-page: 2917 year: 2020 end-page: 2931 ident: b24 article-title: Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled Sine map publication-title: Nonlinear Dynam. – volume: 35 start-page: 1797 year: 2018 end-page: 1799 ident: b50 article-title: Algorithm of image encryption in wavelet domain based on cross chaotic map publication-title: Appl. Res. Comput. – volume: 10 start-page: 457 year: 2022 ident: b45 article-title: A novel chaos-based image encryption using magic square scrambling and octree diffusing publication-title: Mathematics – volume: 78 start-page: 34773 year: 2019 end-page: 34799 ident: b40 article-title: A novel randomized one-dimensional chaotic Chebyshev mapping for chosen plaintext attack secure image encryption with a novel chaotic breadth first traversal publication-title: Multimedia Tools Appl. – volume: 8 year: 2020 ident: b14 article-title: DNA and plaintext dependent chaotic visual selective image encryption publication-title: IEEE Access – volume: 110 year: 2013 ident: b17 article-title: Correlation dimension of complex network publication-title: Phys. Rev. Lett. – volume: 74 start-page: 141 year: 2019 end-page: 173 ident: b29 article-title: Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter publication-title: Russian Math. Surveys – volume: 88 year: 2002 ident: b2 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. – volume: 110 start-page: 57 year: 2020 end-page: 67 ident: b46 article-title: A logistic mapping-based encryption scheme for wireless body area networks publication-title: Future Gener. Comput. Syst. - Int. J. Escience – volume: 79 start-page: 20753 year: 2020 end-page: 20771 ident: b54 article-title: Multiple-image encryption algorithm based on bit planes and chaos publication-title: Multimedia Tools Appl. – volume: 178 start-page: 646 year: 2020 end-page: 666 ident: b28 article-title: Color multiple image encryption scheme based on 3D-chaotic maps publication-title: Math. Comput. Simulation – volume: 115 start-page: 257 year: 2019 end-page: 267 ident: b6 article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing publication-title: Opt. Laser Technol. – volume: 30 start-page: 3847 year: 2018 end-page: 3857 ident: b1 article-title: A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation publication-title: Neural Comput. Appl. – volume: 8 start-page: 83596 year: 2020 ident: b20 article-title: Color image encryption algorithm based on DNA coding and double chaos system publication-title: IEEE Access – volume: 13 start-page: 125 year: 2019 end-page: 134 ident: b18 article-title: Novel image encryption algorithm based on improved logistic map publication-title: IET Image Process. – volume: 75 start-page: 17157 year: 2016 end-page: 17170 ident: b52 article-title: An image encryption scheme based on DNA coding and permutation of hyper-image publication-title: Multimedia Tools Appl. – volume: 134 year: 2020 ident: b49 article-title: Image encryption based on chaotic sub-block scrambling and chaotic digit selection diffusion publication-title: Opt. Lasers Eng. – volume: 2020 start-page: 1 year: 2020 end-page: 12 ident: b36 article-title: Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system publication-title: Adv. Difference Equ. – volume: 190 start-page: 826 year: 2021 end-page: 836 ident: b30 article-title: Cryptanalysis of hybrid secure image encryption based on Julia set fractals and three-dimensional Lorenz chaotic map publication-title: Math. Comput. Simulation – volume: 103 start-page: 2805 year: 2021 end-page: 2818 ident: b32 article-title: Utilizing true periodic orbits in chaos-based cryptography publication-title: Nonlinear Dynam. – volume: 190 start-page: 723 year: 2021 end-page: 744 ident: b53 article-title: A novel image encryption algorithm based on SPWLCM and DNA coding publication-title: Math. Comput. Simulation – volume: 11 start-page: 788 year: 2021 ident: b37 article-title: Mathematical model and FPGA realization of a multi-stable chaotic dynamical system with a closed butterfly-like curve of equilibrium points publication-title: Appl. Sci. – volume: 83 start-page: 1123 year: 2016 end-page: 1136 ident: b8 article-title: A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2 publication-title: Nonlinear Dynam. – volume: 23 start-page: 341 year: 2021 ident: b35 article-title: A new algorithm for digital image encryption based on chaos theory publication-title: Entropy – volume: 140 year: 2020 ident: b4 article-title: Reservoir computing based on quenched chaos publication-title: Chaos Solitons Fractals – volume: 94 start-page: 3513 year: 1997 end-page: 3518 ident: b34 article-title: Not all (possibly) ‘random’ sequences are created equal publication-title: Proc. Natl. Acad. Sci. – volume: 544 start-page: 1 year: 2021 end-page: 24 ident: b47 article-title: Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme publication-title: Inform. Sci. – volume: 78 start-page: 24765 year: 2019 end-page: 24788 ident: b44 article-title: A delay coupling method to reduce the dynamical degradation of digital chaotic maps and its application for image encryption publication-title: Multimedia Tools Appl. – volume: 37 start-page: 223 year: 2020 end-page: 245 ident: b33 article-title: Secure, lossless, and noise-resistive image encryption using chaos, hyper-chaos, and DNA sequence operation publication-title: IETE Tech. Rev. – volume: 77 start-page: 21445 year: 2017 end-page: 21462 ident: b23 article-title: A new simple one-dimensional chaotic map and its application for image encryption publication-title: Multimedia Tools Appl. – volume: 546 start-page: 1063 year: 2021 end-page: 1083 ident: b11 article-title: Cross-plane colour image encryption using a two-dimensional logistic tent modular map publication-title: Inform. Sci. – volume: 88 start-page: 197 year: 2017 end-page: 213 ident: b3 article-title: A novel chaos-based image encryption algorithm using DNA sequence operations publication-title: Opt. Lasers Eng. – volume: 12 start-page: 1497 year: 2020 ident: b19 article-title: A novel chaos-based color image encryption scheme using bit-level permutation publication-title: Symmetry – volume: 5 start-page: 289 year: 2016 ident: b22 article-title: A new image encryption algorithm based on logistic chaotic map with varying parameter publication-title: SpringerPlus – volume: 124 start-page: 3329 year: 2013 end-page: 3334 ident: b41 article-title: An image encryption scheme based on new spatiotemporal chaos publication-title: Optik - Int. J. Light Electron Opt. – volume: 28 start-page: 629 year: 2017 end-page: 649 ident: b16 article-title: An improved image encryption scheme based on a non-linear chaotic algorithm and substitution boxes publication-title: Informatica – volume: 59 start-page: 3320 year: 2010 end-page: 3327 ident: b25 article-title: Color image encryption based on one-time keys and robust chaotic maps publication-title: Comput. Math. Appl. – volume: 30 start-page: 91 year: 2017 end-page: 99 ident: b43 article-title: Hopf and torus bifurcations, torus destruction and chaos in population biology publication-title: Ecol. Complex. – volume: 28 year: 2018 ident: b21 article-title: Reducing the dynamical degradation by bi-coupling digital chaotic maps publication-title: Int. J. Bifurcation Chaos – volume: 7 year: 2019 ident: b56 article-title: Plaintext-related image encryption algorithm based on block structure and five-dimensional chaotic map publication-title: IEEE Access – volume: 30 start-page: 943 year: 2019 end-page: 961 ident: b13 article-title: Chaos based efficient selective image encryption publication-title: Multidimens. Syst. Signal Process. – volume: 29 year: 2019 ident: b31 article-title: Image encryption based on the pseudo-orbits from 1D chaotic map publication-title: Chaos – volume: 58 year: 2021 ident: b15 article-title: Chaos and compressive sensing based novel image encryption scheme publication-title: J. Inf. Secur. Appl. – volume: 28 issue: 5 year: 2018 ident: 10.1016/j.matcom.2022.07.030_b21 article-title: Reducing the dynamical degradation by bi-coupling digital chaotic maps publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127418500591 – volume: 29 issue: 6 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b31 article-title: Image encryption based on the pseudo-orbits from 1D chaotic map publication-title: Chaos doi: 10.1063/1.5099261 – volume: 94 start-page: 3513 issue: 6 year: 1997 ident: 10.1016/j.matcom.2022.07.030_b34 article-title: Not all (possibly) ‘random’ sequences are created equal publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.94.8.3513 – volume: 94 start-page: 745 year: 2018 ident: 10.1016/j.matcom.2022.07.030_b51 article-title: An efficient pixel-level chaotic image encryption algorithm publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-4391-y – volume: 30 start-page: 3847 issue: 12 year: 2018 ident: 10.1016/j.matcom.2022.07.030_b1 article-title: A novel image encryption scheme based on orthogonal matrix, skew tent map, and XOR operation publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2970-3 – year: 2003 ident: 10.1016/j.matcom.2022.07.030_b42 – volume: 10 start-page: 457 issue: 3 year: 2022 ident: 10.1016/j.matcom.2022.07.030_b45 article-title: A novel chaos-based image encryption using magic square scrambling and octree diffusing publication-title: Mathematics doi: 10.3390/math10030457 – volume: 35 start-page: 1797 issue: 06 year: 2018 ident: 10.1016/j.matcom.2022.07.030_b50 article-title: Algorithm of image encryption in wavelet domain based on cross chaotic map publication-title: Appl. Res. Comput. – volume: 6 start-page: 486 issue: 4 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b39 article-title: Securing color image transmission using compression-encryption model with dynamic key generator and efficient symmetric key distribution publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2020.02.001 – volume: 23 start-page: 341 issue: 3 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b35 article-title: A new algorithm for digital image encryption based on chaos theory publication-title: Entropy doi: 10.3390/e23030341 – volume: 190 start-page: 723 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b53 article-title: A novel image encryption algorithm based on SPWLCM and DNA coding publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.06.012 – volume: 115 start-page: 257 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b6 article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.01.039 – volume: 110 issue: 16 year: 2013 ident: 10.1016/j.matcom.2022.07.030_b17 article-title: Correlation dimension of complex network publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.168703 – volume: 100 start-page: 2917 issue: 3 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b24 article-title: Cryptanalysis and enhancement of an image encryption scheme based on a 1-D coupled Sine map publication-title: Nonlinear Dynam. doi: 10.1007/s11071-020-05654-y – volume: 190 start-page: 826 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b30 article-title: Cryptanalysis of hybrid secure image encryption based on Julia set fractals and three-dimensional Lorenz chaotic map publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.06.008 – volume: 37 start-page: 223 issue: 3 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b33 article-title: Secure, lossless, and noise-resistive image encryption using chaos, hyper-chaos, and DNA sequence operation publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2019.1595751 – volume: 7 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b56 article-title: Plaintext-related image encryption algorithm based on block structure and five-dimensional chaotic map publication-title: IEEE Access – volume: 110 start-page: 57 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b46 article-title: A logistic mapping-based encryption scheme for wireless body area networks publication-title: Future Gener. Comput. Syst. - Int. J. Escience doi: 10.1016/j.future.2020.04.002 – volume: 546 start-page: 1063 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b11 article-title: Cross-plane colour image encryption using a two-dimensional logistic tent modular map publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.09.032 – volume: 544 start-page: 1 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b47 article-title: Spatiotemporal chaos in improved cross coupled map lattice and its application in a bit-level image encryption scheme publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.07.051 – volume: 30 start-page: 943 issue: 2 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b13 article-title: Chaos based efficient selective image encryption publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-018-0589-x – volume: 11 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b48 article-title: An iteration-time combination method to reduce the dynamic degradation of digital chaotic maps publication-title: Complexity – volume: 12 start-page: 1497 issue: 9 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b19 article-title: A novel chaos-based color image encryption scheme using bit-level permutation publication-title: Symmetry doi: 10.3390/sym12091497 – volume: 79 start-page: 20753 issue: 29 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b54 article-title: Multiple-image encryption algorithm based on bit planes and chaos publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-08835-4 – volume: 6 start-page: 67095 year: 2018 ident: 10.1016/j.matcom.2022.07.030_b57 article-title: A novel image compression-encryption scheme based on chaos and compression sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2874336 – volume: 11 start-page: 788 issue: 2 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b37 article-title: Mathematical model and FPGA realization of a multi-stable chaotic dynamical system with a closed butterfly-like curve of equilibrium points publication-title: Appl. Sci. doi: 10.3390/app11020788 – volume: 58 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b15 article-title: Chaos and compressive sensing based novel image encryption scheme publication-title: J. Inf. Secur. Appl. – volume: 88 issue: 17 year: 2002 ident: 10.1016/j.matcom.2022.07.030_b2 article-title: Permutation entropy: A natural complexity measure for time series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.174102 – volume: 284 start-page: 3895 issue: 16–17 year: 2011 ident: 10.1016/j.matcom.2022.07.030_b26 article-title: Color image encryption using spatial bit-level permutation and high-dimension chaotic system publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.04.001 – volume: 178 start-page: 646 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b28 article-title: Color multiple image encryption scheme based on 3D-chaotic maps publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2020.07.007 – volume: 77 start-page: 21445 year: 2017 ident: 10.1016/j.matcom.2022.07.030_b23 article-title: A new simple one-dimensional chaotic map and its application for image encryption publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-017-5594-9 – volume: 78 start-page: 24765 issue: 17 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b44 article-title: A delay coupling method to reduce the dynamical degradation of digital chaotic maps and its application for image encryption publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-7602-8 – volume: 28 start-page: 629 issue: 4 year: 2017 ident: 10.1016/j.matcom.2022.07.030_b16 article-title: An improved image encryption scheme based on a non-linear chaotic algorithm and substitution boxes publication-title: Informatica doi: 10.15388/Informatica.2017.149 – volume: 5 start-page: 289 issue: 1 year: 2016 ident: 10.1016/j.matcom.2022.07.030_b22 article-title: A new image encryption algorithm based on logistic chaotic map with varying parameter publication-title: SpringerPlus doi: 10.1186/s40064-016-1959-1 – volume: 74 start-page: 141 issue: 1 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b29 article-title: Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter publication-title: Russian Math. Surveys doi: 10.1070/RM9859 – volume: 8 start-page: 83596 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b20 article-title: Color image encryption algorithm based on DNA coding and double chaos system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2991420 – start-page: 221 year: 2016 ident: 10.1016/j.matcom.2022.07.030_b7 article-title: The 0-1 test for chaos: A review publication-title: Chaos Detect. Predict. doi: 10.1007/978-3-662-48410-4_7 – volume: 124 start-page: 3329 issue: 18 year: 2013 ident: 10.1016/j.matcom.2022.07.030_b41 article-title: An image encryption scheme based on new spatiotemporal chaos publication-title: Optik - Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2012.11.002 – volume: 184 start-page: 205 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b9 article-title: A novel bit level multiphase algorithm for image encryption based on PWLCM chaotic map publication-title: Optik doi: 10.1016/j.ijleo.2019.03.065 – volume: 75 start-page: 17157 issue: 24 year: 2016 ident: 10.1016/j.matcom.2022.07.030_b52 article-title: An image encryption scheme based on DNA coding and permutation of hyper-image publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-015-2982-x – volume: 20 start-page: 130 year: 1963 ident: 10.1016/j.matcom.2022.07.030_b27 article-title: Deterministic nonperiodic flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 2020 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b36 article-title: Dynamical analysis and adaptive fuzzy control for the fractional-order financial risk chaotic system publication-title: Adv. Difference Equ. – volume: 30 start-page: 91 issue: SI year: 2017 ident: 10.1016/j.matcom.2022.07.030_b43 article-title: Hopf and torus bifurcations, torus destruction and chaos in population biology publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2016.12.009 – volume: 8 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b38 article-title: A 3-D multi-stable system with a peanut-shaped equilibrium curve: Circuit design, FPGA realization, and an application to image encryption publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3011724 – volume: 78 start-page: 34773 issue: 24 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b40 article-title: A novel randomized one-dimensional chaotic Chebyshev mapping for chosen plaintext attack secure image encryption with a novel chaotic breadth first traversal publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-019-08071-5 – volume: 107 start-page: 333 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b12 article-title: Color image encryption using non-dominated sorting genetic algorithm with local chaotic search based 5D chaotic map publication-title: Future Gener. Comput. Syst. - Int. J. Escience doi: 10.1016/j.future.2020.02.029 – volume: 140 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b4 article-title: Reservoir computing based on quenched chaos publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110131 – volume: 83 start-page: 1123 issue: 3 year: 2016 ident: 10.1016/j.matcom.2022.07.030_b8 article-title: A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2 publication-title: Nonlinear Dynam. doi: 10.1007/s11071-015-2392-7 – volume: 185 start-page: 754 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b55 article-title: A three-dimensional bit-level image encryption algorithm with Rubik’s cube method publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2021.02.009 – volume: 297 start-page: 80 year: 2015 ident: 10.1016/j.matcom.2022.07.030_b10 article-title: 2D sine logistic modulation map for image encryption publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.11.018 – volume: 59 start-page: 3320 issue: 10 year: 2010 ident: 10.1016/j.matcom.2022.07.030_b25 article-title: Color image encryption based on one-time keys and robust chaotic maps publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2010.03.017 – volume: 8 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b14 article-title: DNA and plaintext dependent chaotic visual selective image encryption publication-title: IEEE Access – year: 2020 ident: 10.1016/j.matcom.2022.07.030_b5 article-title: An image encryption scheme using a 1D chaotic double section skew tent map publication-title: Complexity doi: 10.1155/2020/7647421 – volume: 134 year: 2020 ident: 10.1016/j.matcom.2022.07.030_b49 article-title: Image encryption based on chaotic sub-block scrambling and chaotic digit selection diffusion publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2020.106202 – volume: 13 start-page: 125 issue: 1 year: 2019 ident: 10.1016/j.matcom.2022.07.030_b18 article-title: Novel image encryption algorithm based on improved logistic map publication-title: IET Image Process. doi: 10.1049/iet-ipr.2018.5900 – volume: 103 start-page: 2805 issue: 3 year: 2021 ident: 10.1016/j.matcom.2022.07.030_b32 article-title: Utilizing true periodic orbits in chaos-based cryptography publication-title: Nonlinear Dynam. doi: 10.1007/s11071-021-06235-3 – volume: 88 start-page: 197 year: 2017 ident: 10.1016/j.matcom.2022.07.030_b3 article-title: A novel chaos-based image encryption algorithm using DNA sequence operations publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.08.009 |
SSID | ssj0007545 |
Score | 2.575185 |
Snippet | Chaotic systems are widely used in designing encryption algorithms for their ideal dynamical performances. One-dimensional (1D) chaotic maps have the highest... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 89 |
SubjectTerms | 1D quadratic chaotic map Chaos Image encryption Topological conjugate |
Title | A cluster of 1D quadratic chaotic map and its applications in image encryption |
URI | https://dx.doi.org/10.1016/j.matcom.2022.07.030 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHV1LETpx2rQlVAdIFK3Sw_RVCblpIOLPx2bCfhISGQmCJFd1Fyvnx3lr-7A-DcUhMas6GeVBjFXUKRJHGKtMWRFFJoFsYB3Y3ZaBLfTJNpAwzqWhhPq6ywv8T0gNbVnU5lzc4yyzr3mKYOWpOYeH4VJb6Iz3evcz598fZJ83ACgcbohJGXrsvnAsfLJYWeM0JcIAstPD0X-qfw9CXkDHfAVpUrwn75OrugYfI9sF3PYYDVb7kPxn2oZmvf8QAuLIwu4fNaaL-yCqpHsfDXuVhCkWuYFS_w65k1zHKYzR2mQPeo1WvAjwMwGV49DEaompOAFKGsQEzGInI7k8T4aZCW-pNM5T4pEV1mU02sUJiR2KhUadrrSipshLtuZySMWxKa0EPQzBe5OQIwUtJgahjVRsa-qharlEXGGqJFLxKmBWhtHq6qJuJ-lsWM12yxJ14alXujcpxyZ9QWQB9ay7KJxh_yaW15_s0ZuMP5XzWP_615Ajb9JPmSkH0KmsVqbc5cvlHIdnCoNtjoX9-Oxu9I5dT3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwED5RGNql76r06aGrRWLnxYhoUSiQpSCxWbbjqKkgUApD_33tPBCVqlbqFCnyRcln57uz_N0dwENCVV6YDbeFtLATEIoFcXwcJ5YtuOCxl7cDGkVeOHGep-60Bt0qF8bIKkvuLzg9Z-vyTqtEs7VM09aLRX1Nra5DjL6KkvYeNEx1KqcOjU5_EEZbQtZjciWjHo-NQZVBl8u8dFxoZCNE-7K8iqeRQ__koXa8Tu8YDstwEXWKNzqBmspO4ahqxYDKP_MMog6Ss40peoAWCbIf0fuGx2ZyJZKvfGGuc75EPItRuv5Au8fWKM1QOte0gvSjVp85hZzDpPc07oa4bJWAJaHeGnvC4bbenLjKNIRMqDnMlPqTXB54iR-ThEvLI46SvoxpOxCUJ7YV6M0RV3pWqEsvoJ4tMnUJyJZCWVR5NFbCMYm1lvQ9WyWKxLxtc9UEWsHDZFlH3LSzmLFKMPbGClCZAZVZPtOgNgFvrZZFHY0_xvsV8uzbemCa6n-1vPq35T3sh-PRkA370eAaDkxj-UKffQP19WqjbnX4sRZ35fL6AqOf16g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cluster+of+1D+quadratic+chaotic+map+and+its+applications+in+image+encryption&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Liu%2C+Lingfeng&rft.au=Wang%2C+Jie&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=204&rft.spage=89&rft.epage=114&rft_id=info:doi/10.1016%2Fj.matcom.2022.07.030&rft.externalDocID=S0378475422003329 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |