Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response

In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 70; p. 103766
Main Authors Feng, Xiaozhou, Sun, Cong, Yang, Wenbin, Li, Changtong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the main parameter, we mainly investigate the existence, stability and exact number of positive solutions when m is large and other parameters meet a certain range of conditions. Meanwhile, some numerical simulations are applied to illustrate the analytical results. The main techniques used in this paper include the fixed point index theory, the super-sub solution method, the Lyapunov-Schmidt reduction procedure and the perturbation principle.
AbstractList In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the main parameter, we mainly investigate the existence, stability and exact number of positive solutions when m is large and other parameters meet a certain range of conditions. Meanwhile, some numerical simulations are applied to illustrate the analytical results. The main techniques used in this paper include the fixed point index theory, the super-sub solution method, the Lyapunov-Schmidt reduction procedure and the perturbation principle.
ArticleNumber 103766
Author Yang, Wenbin
Feng, Xiaozhou
Sun, Cong
Li, Changtong
Author_xml – sequence: 1
  givenname: Xiaozhou
  orcidid: 0000-0001-9349-1432
  surname: Feng
  fullname: Feng, Xiaozhou
  email: flxzfxz8@163.com
  organization: School of Science, Xi’an Technological University, Xi’an 710032, China
– sequence: 2
  givenname: Cong
  surname: Sun
  fullname: Sun, Cong
  organization: School of Science, Xi’an Technological University, Xi’an 710032, China
– sequence: 3
  givenname: Wenbin
  surname: Yang
  fullname: Yang, Wenbin
  organization: School of Science, Xi’an University of post and Telecommunications, Xi’an 710121, China
– sequence: 4
  givenname: Changtong
  surname: Li
  fullname: Li, Changtong
  organization: School of Science, Xi’an Technological University, Xi’an 710032, China
BookMark eNqFULtOAzEQtFCQSAJ_QOEfuODHnX1HgQQJLykSDXRIlmPvgaOLHdkHUTr-gT_kS3AUKgqodjS7M7s7IzTwwQNCp5RMKKHibDnJRNzoCSOMZYpLIQ7QkNayLipJm0HGpagLymh9hEYpLQmhknI6RM-zrdcrZxIOLdZ4HcHqPsSvj88Mt3gVLHR44_pXnFd0zoOO-CWGTSai7gFrb_FVnp7h9s2b3gWvOxwhrYNPcIwOW90lOPmpY_R0c_04vSvmD7f308t5YRgXfcFNpSUnwsLC1pLJhpCqBmlLDpUWDEzT5n5bl5yJ1lSNqaWgtGGLhWCW2wUfo_O9r4khpQitMq7Xu2P6qF2nKFG7nNRS7XNSu5zUPqcsLn-J19GtdNz-J7vYyyA_9u4gqmQceAPWRTC9ssH9bfANcYqJhg
CitedBy_id crossref_primary_10_3934_dcdss_2024145
crossref_primary_10_1016_j_chaos_2023_113794
crossref_primary_10_1002_mma_10470
crossref_primary_10_1016_j_chaos_2024_115316
crossref_primary_10_3390_math11234808
crossref_primary_10_3389_fphy_2023_1205571
crossref_primary_10_3934_math_2024702
crossref_primary_10_3934_math_20241520
Cites_doi 10.1002/cpa.3160471203
10.57262/die/1369330437
10.1090/S0002-9947-97-01842-4
10.1137/0517094
10.1016/j.amc.2009.09.003
10.1080/00036819108840010
10.1016/S0362-546X(98)00250-8
10.1016/j.na.2006.02.049
10.2307/3866
10.1016/j.nonrwa.2007.08.020
10.1016/j.apm.2007.09.007
10.2307/1936298
10.1006/jmaa.2000.7343
10.1016/j.jde.2011.04.017
10.1016/j.nonrwa.2015.07.010
10.2307/1087
10.1016/j.nonrwa.2018.07.012
10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
10.1016/S0022-247X(02)00395-5
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2022.103766
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2022_103766
S1468121822001493
GrantInformation_xml – fundername: National Natural Science Youth Fund of China
  grantid: 12001425
– fundername: The Shaanxi Province Department of Education Fund
  grantid: 18JK0393
– fundername: The natural science basic research Plan in Shaanxi Province of China
  grantid: 2020JM-569
– fundername: The project of improving public scientific quality in Shaanxi Province
  grantid: 2020PSL(Y)073
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c236t-3c5a7306debd872790058e7d43e5a62ec9fa73f84326fc59c8761192bb62d3db3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Thu Apr 24 23:12:00 EDT 2025
Tue Jul 01 04:03:14 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Numerical simulations
Stability
Positive solutions
Predator–prey diffusive model
Existence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c236t-3c5a7306debd872790058e7d43e5a62ec9fa73f84326fc59c8761192bb62d3db3
ORCID 0000-0001-9349-1432
ParticipantIDs crossref_citationtrail_10_1016_j_nonrwa_2022_103766
crossref_primary_10_1016_j_nonrwa_2022_103766
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2022_103766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References DeAngelis, Goldstein, O’Neill (b9) 1975; 56
Gause (b1) 1936
Pao (b17) 1992
Cantrell, Cosner (b6) 2001; 257
Smoller (b27) 1994
Blat, Brown (b20) 1986; 17
Wang (b26) 1993
Casal, Eilbeck, Lopez-Gomez (b18) 1994; 7
Laurin, Rousseau (b5) 2011; 251
Beddington (b8) 1975; 44
Schaefer, Wolff (b14) 1999
Wu (b28) 2000; 39
Yamada (b15) 2008
Beverton, Holt (b10) 1956
De la Sen (b12) 2008; 32
Li, Ghoreishi (b23) 1991; 40
Hwang (b7) 2002; 281
Li, Li, Yang (b21) 2016; 27
Skalski, Gilliam (b4) 2001; 82
Nie, Wu (b25) 2009; 10
Tang, Cheke, Xiao (b11) 2006; 65
Wang (b16) 2010
Gui, Lou (b19) 1994; 47
Gause, Smaragdova, Witt (b2) 1936; 5
Meng, Yang (b22) 2019; 45
Ruan, Xiao (b3) 2000; 61
De la Sen, Alonso-Quesada (b13) 2009; 215
Du, Lou (b24) 1997; 349
Du (10.1016/j.nonrwa.2022.103766_b24) 1997; 349
Casal (10.1016/j.nonrwa.2022.103766_b18) 1994; 7
Skalski (10.1016/j.nonrwa.2022.103766_b4) 2001; 82
Beddington (10.1016/j.nonrwa.2022.103766_b8) 1975; 44
Nie (10.1016/j.nonrwa.2022.103766_b25) 2009; 10
De la Sen (10.1016/j.nonrwa.2022.103766_b12) 2008; 32
Wang (10.1016/j.nonrwa.2022.103766_b16) 2010
Gui (10.1016/j.nonrwa.2022.103766_b19) 1994; 47
Wu (10.1016/j.nonrwa.2022.103766_b28) 2000; 39
Gause (10.1016/j.nonrwa.2022.103766_b2) 1936; 5
Beverton (10.1016/j.nonrwa.2022.103766_b10) 1956
Gause (10.1016/j.nonrwa.2022.103766_b1) 1936
Laurin (10.1016/j.nonrwa.2022.103766_b5) 2011; 251
Yamada (10.1016/j.nonrwa.2022.103766_b15) 2008
Li (10.1016/j.nonrwa.2022.103766_b21) 2016; 27
Cantrell (10.1016/j.nonrwa.2022.103766_b6) 2001; 257
Schaefer (10.1016/j.nonrwa.2022.103766_b14) 1999
Li (10.1016/j.nonrwa.2022.103766_b23) 1991; 40
Ruan (10.1016/j.nonrwa.2022.103766_b3) 2000; 61
De la Sen (10.1016/j.nonrwa.2022.103766_b13) 2009; 215
Wang (10.1016/j.nonrwa.2022.103766_b26) 1993
Tang (10.1016/j.nonrwa.2022.103766_b11) 2006; 65
Smoller (10.1016/j.nonrwa.2022.103766_b27) 1994
Pao (10.1016/j.nonrwa.2022.103766_b17) 1992
DeAngelis (10.1016/j.nonrwa.2022.103766_b9) 1975; 56
Blat (10.1016/j.nonrwa.2022.103766_b20) 1986; 17
Meng (10.1016/j.nonrwa.2022.103766_b22) 2019; 45
Hwang (10.1016/j.nonrwa.2022.103766_b7) 2002; 281
References_xml – year: 1992
  ident: b17
  article-title: Nonlinear Parabolic and Elliptic Equations
– volume: 17
  start-page: 1339
  year: 1986
  end-page: 1353
  ident: b20
  article-title: Global bifurcation of positive solutions in some systems of ellipticequations
  publication-title: SIAM J. Math. Anal.
– volume: 10
  start-page: 154
  year: 2009
  end-page: 171
  ident: b25
  article-title: Multiplicity and stability of a predator–prey model with non-monotonic conversion rate
  publication-title: Nonlinear Anal. RWA
– year: 2010
  ident: b16
  article-title: Nonlinear Elliptic Equations
– volume: 39
  start-page: 817
  year: 2000
  end-page: 835
  ident: b28
  article-title: Global bifurcation of coexistence state for the competition model in the chemostat
  publication-title: Nonlinear Anal. TMA
– volume: 349
  start-page: 2443
  year: 1997
  end-page: 2475
  ident: b24
  article-title: Some uniqueness and exact multiplicity results for a predator–prey model
  publication-title: Trans. Amer. Math. Soc.
– volume: 215
  start-page: 2616
  year: 2009
  end-page: 2633
  ident: b13
  article-title: Control issues for the Beverton–Holt equation in ecologyby locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases
  publication-title: Appl. Math. Comput.
– volume: 7
  start-page: 411
  year: 1994
  end-page: 439
  ident: b18
  article-title: Existence and uniqueness of coexistence statesfor a predator–prey model with diffusion
  publication-title: Differential Integral Equations
– start-page: 372
  year: 1956
  end-page: 441
  ident: b10
  article-title: The theory of fishing
  publication-title: Sea Fisheries;their Investigation in the United Kingdom
– volume: 61
  start-page: 1445
  year: 2000
  end-page: 1472
  ident: b3
  article-title: Global analysis in a predator–prey system with nonmonotonic functonal reponse
  publication-title: SIAM J. Appl. Math.
– volume: 281
  start-page: 395
  year: 2002
  end-page: 401
  ident: b7
  article-title: Global analysis of the predator–prey system with Beddington-De Angelis functional response
  publication-title: J. Math. Anal. Appl.
– volume: 257
  start-page: 206
  year: 2001
  end-page: 222
  ident: b6
  article-title: On the dynamics of predator–prey models with Bedding’ton-De Angelis functional response
  publication-title: J. Math. Anal. Appl.
– volume: 65
  start-page: 2311
  year: 2006
  end-page: 2341
  ident: b11
  article-title: Optimal implusive harvesting on non-autonomous Beverton–Holt difference equations
  publication-title: Nonlinear Anal.
– volume: 56
  start-page: 881
  year: 1975
  end-page: 892
  ident: b9
  article-title: A model for trophic interaction
  publication-title: Ecology
– volume: 32
  start-page: 2312
  year: 2008
  end-page: 2328
  ident: b12
  article-title: The generalized Beverton–Holt equation and the control of populations
  publication-title: Appl. Math. Model.
– volume: 82
  start-page: 3083
  year: 2001
  end-page: 3092
  ident: b4
  article-title: Functional response with predator interference: Viable alternatives to the Holling type II model
  publication-title: Ecology
– volume: 44
  start-page: 331
  year: 1975
  end-page: 340
  ident: b8
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J. Anim. Ecol.
– volume: 27
  start-page: 261
  year: 2016
  end-page: 282
  ident: b21
  article-title: Existence and asymptotic behavior of positive solutions for aone-prey and two-competing-predators system with diffusion
  publication-title: Nonlinear Anal. RWA
– year: 1936
  ident: b1
  article-title: The Struggle for Existence, Williams and Wilkins, Baltimore
– volume: 251
  start-page: 2980
  year: 2011
  end-page: 2986
  ident: b5
  article-title: Organizing center for the bifurcation analysis of a generalized Gause model with prey havesting and Holling response function of type III
  publication-title: J. Differential Equations
– year: 1994
  ident: b27
  article-title: Shock Waves and Reaction-Diffusion Equations
– volume: 40
  start-page: 281
  year: 1991
  end-page: 295
  ident: b23
  article-title: On positive solutions of general nonlinear elliptic symbiotic interacting systems
  publication-title: Appl. Anal.
– start-page: 411
  year: 2008
  end-page: 501
  ident: b15
  article-title: Positive solutions for Lotka–Volterra systems with cross-diffsion
  publication-title: Handbook OfDifferential Equations: Stationary Partial Differential Equations, Vol. VI
– volume: 5
  start-page: 1
  year: 1936
  end-page: 18
  ident: b2
  article-title: Further studies of intteraction between predator and prey
  publication-title: J. Anim. Ecol.
– volume: 45
  start-page: 401
  year: 2019
  end-page: 413
  ident: b22
  article-title: Steady state in a cross-diffusion predator–prey model with the Beddington–DeAngelis functional response
  publication-title: Nonlinear Anal. RWA
– volume: 47
  start-page: 1571
  year: 1994
  end-page: 1594
  ident: b19
  article-title: Uniqueness and nonuniqueness of coexistence states in the Lotka–Volterracompetition model
  publication-title: Comm. Pure Appl. Math.
– year: 1999
  ident: b14
  article-title: Topological Vector Spaces
– year: 1993
  ident: b26
  article-title: Nonlinear Parabolic Equation
– volume: 47
  start-page: 1571
  year: 1994
  ident: 10.1016/j.nonrwa.2022.103766_b19
  article-title: Uniqueness and nonuniqueness of coexistence states in the Lotka–Volterracompetition model
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160471203
– volume: 7
  start-page: 411
  year: 1994
  ident: 10.1016/j.nonrwa.2022.103766_b18
  article-title: Existence and uniqueness of coexistence statesfor a predator–prey model with diffusion
  publication-title: Differential Integral Equations
  doi: 10.57262/die/1369330437
– volume: 349
  start-page: 2443
  year: 1997
  ident: 10.1016/j.nonrwa.2022.103766_b24
  article-title: Some uniqueness and exact multiplicity results for a predator–prey model
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-97-01842-4
– volume: 17
  start-page: 1339
  year: 1986
  ident: 10.1016/j.nonrwa.2022.103766_b20
  article-title: Global bifurcation of positive solutions in some systems of ellipticequations
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517094
– year: 1999
  ident: 10.1016/j.nonrwa.2022.103766_b14
– volume: 215
  start-page: 2616
  year: 2009
  ident: 10.1016/j.nonrwa.2022.103766_b13
  article-title: Control issues for the Beverton–Holt equation in ecologyby locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.09.003
– volume: 40
  start-page: 281
  year: 1991
  ident: 10.1016/j.nonrwa.2022.103766_b23
  article-title: On positive solutions of general nonlinear elliptic symbiotic interacting systems
  publication-title: Appl. Anal.
  doi: 10.1080/00036819108840010
– volume: 39
  start-page: 817
  year: 2000
  ident: 10.1016/j.nonrwa.2022.103766_b28
  article-title: Global bifurcation of coexistence state for the competition model in the chemostat
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/S0362-546X(98)00250-8
– volume: 65
  start-page: 2311
  year: 2006
  ident: 10.1016/j.nonrwa.2022.103766_b11
  article-title: Optimal implusive harvesting on non-autonomous Beverton–Holt difference equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2006.02.049
– volume: 44
  start-page: 331
  year: 1975
  ident: 10.1016/j.nonrwa.2022.103766_b8
  article-title: Mutual interference between parasites or predators and its effect on searching efficiency
  publication-title: J. Anim. Ecol.
  doi: 10.2307/3866
– start-page: 411
  year: 2008
  ident: 10.1016/j.nonrwa.2022.103766_b15
  article-title: Positive solutions for Lotka–Volterra systems with cross-diffsion
– volume: 10
  start-page: 154
  year: 2009
  ident: 10.1016/j.nonrwa.2022.103766_b25
  article-title: Multiplicity and stability of a predator–prey model with non-monotonic conversion rate
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2007.08.020
– volume: 32
  start-page: 2312
  year: 2008
  ident: 10.1016/j.nonrwa.2022.103766_b12
  article-title: The generalized Beverton–Holt equation and the control of populations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2007.09.007
– volume: 56
  start-page: 881
  year: 1975
  ident: 10.1016/j.nonrwa.2022.103766_b9
  article-title: A model for trophic interaction
  publication-title: Ecology
  doi: 10.2307/1936298
– year: 1992
  ident: 10.1016/j.nonrwa.2022.103766_b17
– volume: 257
  start-page: 206
  year: 2001
  ident: 10.1016/j.nonrwa.2022.103766_b6
  article-title: On the dynamics of predator–prey models with Bedding’ton-De Angelis functional response
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7343
– year: 1993
  ident: 10.1016/j.nonrwa.2022.103766_b26
– volume: 251
  start-page: 2980
  year: 2011
  ident: 10.1016/j.nonrwa.2022.103766_b5
  article-title: Organizing center for the bifurcation analysis of a generalized Gause model with prey havesting and Holling response function of type III
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2011.04.017
– year: 1994
  ident: 10.1016/j.nonrwa.2022.103766_b27
– volume: 27
  start-page: 261
  year: 2016
  ident: 10.1016/j.nonrwa.2022.103766_b21
  article-title: Existence and asymptotic behavior of positive solutions for aone-prey and two-competing-predators system with diffusion
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2015.07.010
– volume: 5
  start-page: 1
  year: 1936
  ident: 10.1016/j.nonrwa.2022.103766_b2
  article-title: Further studies of intteraction between predator and prey
  publication-title: J. Anim. Ecol.
  doi: 10.2307/1087
– start-page: 372
  year: 1956
  ident: 10.1016/j.nonrwa.2022.103766_b10
  article-title: The theory of fishing
– volume: 45
  start-page: 401
  year: 2019
  ident: 10.1016/j.nonrwa.2022.103766_b22
  article-title: Steady state in a cross-diffusion predator–prey model with the Beddington–DeAngelis functional response
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2018.07.012
– volume: 61
  start-page: 1445
  issue: 4
  year: 2000
  ident: 10.1016/j.nonrwa.2022.103766_b3
  article-title: Global analysis in a predator–prey system with nonmonotonic functonal reponse
  publication-title: SIAM J. Appl. Math.
– year: 2010
  ident: 10.1016/j.nonrwa.2022.103766_b16
– year: 1936
  ident: 10.1016/j.nonrwa.2022.103766_b1
– volume: 82
  start-page: 3083
  year: 2001
  ident: 10.1016/j.nonrwa.2022.103766_b4
  article-title: Functional response with predator interference: Viable alternatives to the Holling type II model
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
– volume: 281
  start-page: 395
  year: 2002
  ident: 10.1016/j.nonrwa.2022.103766_b7
  article-title: Global analysis of the predator–prey system with Beddington-De Angelis functional response
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/S0022-247X(02)00395-5
SSID ssj0017131
Score 2.406004
Snippet In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103766
SubjectTerms Existence
Numerical simulations
Positive solutions
Predator–prey diffusive model
Stability
Title Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response
URI https://dx.doi.org/10.1016/j.nonrwa.2022.103766
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5e13Y32dextpb6aBG10IOwJJtEKlLLtiJexP_gP_SXOLPZLQqi4GmXbAbCJDvzTZj5hpBDo5hgMZeOUb50OITMjtBCOmEgOW_KqGk0Fif3B0FvyM9G_qhC2mUtDKZVFrbf2vTcWhcjjUKbjel43LjGoiEXCci9HOcj4yfnIZ7yo9dFmocLQZhbVhjh7LJ8Ls_xggg7e0b2Ic_Lq89zrsQf3NMXl9NdI6sFVqQtu5x1UtGTDbLSXxCtzjbJbcd2lJ_RR0MFnWZaYRT98fYOry8073ND8a6VTiwnhsjoHUTeMIAcEVRMFD2G2R2KDs7eC9LM5s3qLTLsnty0e07RMMFJPRbMHZb6Av7YQGmpIgAmMTYN1KHiTPsi8HQaG_huIg6YzaR-nIIpdAHiSRl4iinJtkkVVqN3CG0axoRkOoyk4sr1BIukRpJf4yrAPKJGWKmnJC3YxLGpxUNSpo3dJ1a7CWo3sdqtEWchNbVsGn_MD8stSL6digQM_q-Su_-W3CPL2FLeZufsk-o8e9IHADzmsp6frDpZarWvLi7xeXreG3wCUrXc3A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPrMwevS7ubfR5ra1nt42ILPQhLskmkIrVsK-LN_-A_9Jc42ewWBVHwtmQzEGazM98kM98AXChBGY1cbinhccvFkNliknEr8LnrNnnYVFIXJw-Gfjx2bybepALtshZGp1UWtt_Y9NxaFyONQpuN-XTauNVFQ7YmIHdynE_XoKbZqbwq1FrXvXi4ukzAOMwui4y0QFlBl6d5YZCdvWgCIsfJC9BzusQfPNQXr9Pdhq0CLpKWWdEOVORsFzYHK67VxR7cdUxT-QV5UoSReSaFDqQ_3t7x8ZXkrW6IPm4lM0OLwTJyj8E3DmiaCMJmglzi7A7RPs4cDZLMpM7KfRh3r0bt2Cp6JlipQ_2lRVOP4U_rC8lFiNgk0n0DZSBcKj3mOzKNFL5XoYuwTaVelKI1tBHlce47ggpOD6CKq5GHQJqKUsapDEIuXGE7jIZcap5fZQuEPawOtNRTkhaE4rqvxWNSZo49JEa7idZuYrRbB2slNTeEGn_MD8pPkHzbGAna_F8lj_4teQ7r8WjQT_rXw94xbOgO8yZZ5wSqy-xZniIOWfKzYp99AvxH3fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+a+predator%E2%80%93prey+model+with+nonlinear+growth+rate+and+B%E2%80%93D+functional+response&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Feng%2C+Xiaozhou&rft.au=Sun%2C+Cong&rft.au=Yang%2C+Wenbin&rft.au=Li%2C+Changtong&rft.date=2023-04-01&rft.issn=1468-1218&rft.volume=70&rft.spage=103766&rft_id=info:doi/10.1016%2Fj.nonrwa.2022.103766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2022_103766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon