Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response
In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 70; p. 103766 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the main parameter, we mainly investigate the existence, stability and exact number of positive solutions when m is large and other parameters meet a certain range of conditions. Meanwhile, some numerical simulations are applied to illustrate the analytical results. The main techniques used in this paper include the fixed point index theory, the super-sub solution method, the Lyapunov-Schmidt reduction procedure and the perturbation principle. |
---|---|
AbstractList | In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and nonlinear growth rate on the predator is proposed and the well posedness of its solution is systematically studied. Taking the capture rate m as the main parameter, we mainly investigate the existence, stability and exact number of positive solutions when m is large and other parameters meet a certain range of conditions. Meanwhile, some numerical simulations are applied to illustrate the analytical results. The main techniques used in this paper include the fixed point index theory, the super-sub solution method, the Lyapunov-Schmidt reduction procedure and the perturbation principle. |
ArticleNumber | 103766 |
Author | Yang, Wenbin Feng, Xiaozhou Sun, Cong Li, Changtong |
Author_xml | – sequence: 1 givenname: Xiaozhou orcidid: 0000-0001-9349-1432 surname: Feng fullname: Feng, Xiaozhou email: flxzfxz8@163.com organization: School of Science, Xi’an Technological University, Xi’an 710032, China – sequence: 2 givenname: Cong surname: Sun fullname: Sun, Cong organization: School of Science, Xi’an Technological University, Xi’an 710032, China – sequence: 3 givenname: Wenbin surname: Yang fullname: Yang, Wenbin organization: School of Science, Xi’an University of post and Telecommunications, Xi’an 710121, China – sequence: 4 givenname: Changtong surname: Li fullname: Li, Changtong organization: School of Science, Xi’an Technological University, Xi’an 710032, China |
BookMark | eNqFULtOAzEQtFCQSAJ_QOEfuODHnX1HgQQJLykSDXRIlmPvgaOLHdkHUTr-gT_kS3AUKgqodjS7M7s7IzTwwQNCp5RMKKHibDnJRNzoCSOMZYpLIQ7QkNayLipJm0HGpagLymh9hEYpLQmhknI6RM-zrdcrZxIOLdZ4HcHqPsSvj88Mt3gVLHR44_pXnFd0zoOO-CWGTSai7gFrb_FVnp7h9s2b3gWvOxwhrYNPcIwOW90lOPmpY_R0c_04vSvmD7f308t5YRgXfcFNpSUnwsLC1pLJhpCqBmlLDpUWDEzT5n5bl5yJ1lSNqaWgtGGLhWCW2wUfo_O9r4khpQitMq7Xu2P6qF2nKFG7nNRS7XNSu5zUPqcsLn-J19GtdNz-J7vYyyA_9u4gqmQceAPWRTC9ssH9bfANcYqJhg |
CitedBy_id | crossref_primary_10_3934_dcdss_2024145 crossref_primary_10_1016_j_chaos_2023_113794 crossref_primary_10_1002_mma_10470 crossref_primary_10_1016_j_chaos_2024_115316 crossref_primary_10_3390_math11234808 crossref_primary_10_3389_fphy_2023_1205571 crossref_primary_10_3934_math_2024702 crossref_primary_10_3934_math_20241520 |
Cites_doi | 10.1002/cpa.3160471203 10.57262/die/1369330437 10.1090/S0002-9947-97-01842-4 10.1137/0517094 10.1016/j.amc.2009.09.003 10.1080/00036819108840010 10.1016/S0362-546X(98)00250-8 10.1016/j.na.2006.02.049 10.2307/3866 10.1016/j.nonrwa.2007.08.020 10.1016/j.apm.2007.09.007 10.2307/1936298 10.1006/jmaa.2000.7343 10.1016/j.jde.2011.04.017 10.1016/j.nonrwa.2015.07.010 10.2307/1087 10.1016/j.nonrwa.2018.07.012 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 10.1016/S0022-247X(02)00395-5 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2022.103766 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2022_103766 S1468121822001493 |
GrantInformation_xml | – fundername: National Natural Science Youth Fund of China grantid: 12001425 – fundername: The Shaanxi Province Department of Education Fund grantid: 18JK0393 – fundername: The natural science basic research Plan in Shaanxi Province of China grantid: 2020JM-569 – fundername: The project of improving public scientific quality in Shaanxi Province grantid: 2020PSL(Y)073 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c236t-3c5a7306debd872790058e7d43e5a62ec9fa73f84326fc59c8761192bb62d3db3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Thu Apr 24 23:12:00 EDT 2025 Tue Jul 01 04:03:14 EDT 2025 Fri Feb 23 02:39:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Numerical simulations Stability Positive solutions Predator–prey diffusive model Existence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-3c5a7306debd872790058e7d43e5a62ec9fa73f84326fc59c8761192bb62d3db3 |
ORCID | 0000-0001-9349-1432 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nonrwa_2022_103766 crossref_primary_10_1016_j_nonrwa_2022_103766 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2022_103766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | DeAngelis, Goldstein, O’Neill (b9) 1975; 56 Gause (b1) 1936 Pao (b17) 1992 Cantrell, Cosner (b6) 2001; 257 Smoller (b27) 1994 Blat, Brown (b20) 1986; 17 Wang (b26) 1993 Casal, Eilbeck, Lopez-Gomez (b18) 1994; 7 Laurin, Rousseau (b5) 2011; 251 Beddington (b8) 1975; 44 Schaefer, Wolff (b14) 1999 Wu (b28) 2000; 39 Yamada (b15) 2008 Beverton, Holt (b10) 1956 De la Sen (b12) 2008; 32 Li, Ghoreishi (b23) 1991; 40 Hwang (b7) 2002; 281 Li, Li, Yang (b21) 2016; 27 Skalski, Gilliam (b4) 2001; 82 Nie, Wu (b25) 2009; 10 Tang, Cheke, Xiao (b11) 2006; 65 Wang (b16) 2010 Gui, Lou (b19) 1994; 47 Gause, Smaragdova, Witt (b2) 1936; 5 Meng, Yang (b22) 2019; 45 Ruan, Xiao (b3) 2000; 61 De la Sen, Alonso-Quesada (b13) 2009; 215 Du, Lou (b24) 1997; 349 Du (10.1016/j.nonrwa.2022.103766_b24) 1997; 349 Casal (10.1016/j.nonrwa.2022.103766_b18) 1994; 7 Skalski (10.1016/j.nonrwa.2022.103766_b4) 2001; 82 Beddington (10.1016/j.nonrwa.2022.103766_b8) 1975; 44 Nie (10.1016/j.nonrwa.2022.103766_b25) 2009; 10 De la Sen (10.1016/j.nonrwa.2022.103766_b12) 2008; 32 Wang (10.1016/j.nonrwa.2022.103766_b16) 2010 Gui (10.1016/j.nonrwa.2022.103766_b19) 1994; 47 Wu (10.1016/j.nonrwa.2022.103766_b28) 2000; 39 Gause (10.1016/j.nonrwa.2022.103766_b2) 1936; 5 Beverton (10.1016/j.nonrwa.2022.103766_b10) 1956 Gause (10.1016/j.nonrwa.2022.103766_b1) 1936 Laurin (10.1016/j.nonrwa.2022.103766_b5) 2011; 251 Yamada (10.1016/j.nonrwa.2022.103766_b15) 2008 Li (10.1016/j.nonrwa.2022.103766_b21) 2016; 27 Cantrell (10.1016/j.nonrwa.2022.103766_b6) 2001; 257 Schaefer (10.1016/j.nonrwa.2022.103766_b14) 1999 Li (10.1016/j.nonrwa.2022.103766_b23) 1991; 40 Ruan (10.1016/j.nonrwa.2022.103766_b3) 2000; 61 De la Sen (10.1016/j.nonrwa.2022.103766_b13) 2009; 215 Wang (10.1016/j.nonrwa.2022.103766_b26) 1993 Tang (10.1016/j.nonrwa.2022.103766_b11) 2006; 65 Smoller (10.1016/j.nonrwa.2022.103766_b27) 1994 Pao (10.1016/j.nonrwa.2022.103766_b17) 1992 DeAngelis (10.1016/j.nonrwa.2022.103766_b9) 1975; 56 Blat (10.1016/j.nonrwa.2022.103766_b20) 1986; 17 Meng (10.1016/j.nonrwa.2022.103766_b22) 2019; 45 Hwang (10.1016/j.nonrwa.2022.103766_b7) 2002; 281 |
References_xml | – year: 1992 ident: b17 article-title: Nonlinear Parabolic and Elliptic Equations – volume: 17 start-page: 1339 year: 1986 end-page: 1353 ident: b20 article-title: Global bifurcation of positive solutions in some systems of ellipticequations publication-title: SIAM J. Math. Anal. – volume: 10 start-page: 154 year: 2009 end-page: 171 ident: b25 article-title: Multiplicity and stability of a predator–prey model with non-monotonic conversion rate publication-title: Nonlinear Anal. RWA – year: 2010 ident: b16 article-title: Nonlinear Elliptic Equations – volume: 39 start-page: 817 year: 2000 end-page: 835 ident: b28 article-title: Global bifurcation of coexistence state for the competition model in the chemostat publication-title: Nonlinear Anal. TMA – volume: 349 start-page: 2443 year: 1997 end-page: 2475 ident: b24 article-title: Some uniqueness and exact multiplicity results for a predator–prey model publication-title: Trans. Amer. Math. Soc. – volume: 215 start-page: 2616 year: 2009 end-page: 2633 ident: b13 article-title: Control issues for the Beverton–Holt equation in ecologyby locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases publication-title: Appl. Math. Comput. – volume: 7 start-page: 411 year: 1994 end-page: 439 ident: b18 article-title: Existence and uniqueness of coexistence statesfor a predator–prey model with diffusion publication-title: Differential Integral Equations – start-page: 372 year: 1956 end-page: 441 ident: b10 article-title: The theory of fishing publication-title: Sea Fisheries;their Investigation in the United Kingdom – volume: 61 start-page: 1445 year: 2000 end-page: 1472 ident: b3 article-title: Global analysis in a predator–prey system with nonmonotonic functonal reponse publication-title: SIAM J. Appl. Math. – volume: 281 start-page: 395 year: 2002 end-page: 401 ident: b7 article-title: Global analysis of the predator–prey system with Beddington-De Angelis functional response publication-title: J. Math. Anal. Appl. – volume: 257 start-page: 206 year: 2001 end-page: 222 ident: b6 article-title: On the dynamics of predator–prey models with Bedding’ton-De Angelis functional response publication-title: J. Math. Anal. Appl. – volume: 65 start-page: 2311 year: 2006 end-page: 2341 ident: b11 article-title: Optimal implusive harvesting on non-autonomous Beverton–Holt difference equations publication-title: Nonlinear Anal. – volume: 56 start-page: 881 year: 1975 end-page: 892 ident: b9 article-title: A model for trophic interaction publication-title: Ecology – volume: 32 start-page: 2312 year: 2008 end-page: 2328 ident: b12 article-title: The generalized Beverton–Holt equation and the control of populations publication-title: Appl. Math. Model. – volume: 82 start-page: 3083 year: 2001 end-page: 3092 ident: b4 article-title: Functional response with predator interference: Viable alternatives to the Holling type II model publication-title: Ecology – volume: 44 start-page: 331 year: 1975 end-page: 340 ident: b8 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J. Anim. Ecol. – volume: 27 start-page: 261 year: 2016 end-page: 282 ident: b21 article-title: Existence and asymptotic behavior of positive solutions for aone-prey and two-competing-predators system with diffusion publication-title: Nonlinear Anal. RWA – year: 1936 ident: b1 article-title: The Struggle for Existence, Williams and Wilkins, Baltimore – volume: 251 start-page: 2980 year: 2011 end-page: 2986 ident: b5 article-title: Organizing center for the bifurcation analysis of a generalized Gause model with prey havesting and Holling response function of type III publication-title: J. Differential Equations – year: 1994 ident: b27 article-title: Shock Waves and Reaction-Diffusion Equations – volume: 40 start-page: 281 year: 1991 end-page: 295 ident: b23 article-title: On positive solutions of general nonlinear elliptic symbiotic interacting systems publication-title: Appl. Anal. – start-page: 411 year: 2008 end-page: 501 ident: b15 article-title: Positive solutions for Lotka–Volterra systems with cross-diffsion publication-title: Handbook OfDifferential Equations: Stationary Partial Differential Equations, Vol. VI – volume: 5 start-page: 1 year: 1936 end-page: 18 ident: b2 article-title: Further studies of intteraction between predator and prey publication-title: J. Anim. Ecol. – volume: 45 start-page: 401 year: 2019 end-page: 413 ident: b22 article-title: Steady state in a cross-diffusion predator–prey model with the Beddington–DeAngelis functional response publication-title: Nonlinear Anal. RWA – volume: 47 start-page: 1571 year: 1994 end-page: 1594 ident: b19 article-title: Uniqueness and nonuniqueness of coexistence states in the Lotka–Volterracompetition model publication-title: Comm. Pure Appl. Math. – year: 1999 ident: b14 article-title: Topological Vector Spaces – year: 1993 ident: b26 article-title: Nonlinear Parabolic Equation – volume: 47 start-page: 1571 year: 1994 ident: 10.1016/j.nonrwa.2022.103766_b19 article-title: Uniqueness and nonuniqueness of coexistence states in the Lotka–Volterracompetition model publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160471203 – volume: 7 start-page: 411 year: 1994 ident: 10.1016/j.nonrwa.2022.103766_b18 article-title: Existence and uniqueness of coexistence statesfor a predator–prey model with diffusion publication-title: Differential Integral Equations doi: 10.57262/die/1369330437 – volume: 349 start-page: 2443 year: 1997 ident: 10.1016/j.nonrwa.2022.103766_b24 article-title: Some uniqueness and exact multiplicity results for a predator–prey model publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-97-01842-4 – volume: 17 start-page: 1339 year: 1986 ident: 10.1016/j.nonrwa.2022.103766_b20 article-title: Global bifurcation of positive solutions in some systems of ellipticequations publication-title: SIAM J. Math. Anal. doi: 10.1137/0517094 – year: 1999 ident: 10.1016/j.nonrwa.2022.103766_b14 – volume: 215 start-page: 2616 year: 2009 ident: 10.1016/j.nonrwa.2022.103766_b13 article-title: Control issues for the Beverton–Holt equation in ecologyby locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.09.003 – volume: 40 start-page: 281 year: 1991 ident: 10.1016/j.nonrwa.2022.103766_b23 article-title: On positive solutions of general nonlinear elliptic symbiotic interacting systems publication-title: Appl. Anal. doi: 10.1080/00036819108840010 – volume: 39 start-page: 817 year: 2000 ident: 10.1016/j.nonrwa.2022.103766_b28 article-title: Global bifurcation of coexistence state for the competition model in the chemostat publication-title: Nonlinear Anal. TMA doi: 10.1016/S0362-546X(98)00250-8 – volume: 65 start-page: 2311 year: 2006 ident: 10.1016/j.nonrwa.2022.103766_b11 article-title: Optimal implusive harvesting on non-autonomous Beverton–Holt difference equations publication-title: Nonlinear Anal. doi: 10.1016/j.na.2006.02.049 – volume: 44 start-page: 331 year: 1975 ident: 10.1016/j.nonrwa.2022.103766_b8 article-title: Mutual interference between parasites or predators and its effect on searching efficiency publication-title: J. Anim. Ecol. doi: 10.2307/3866 – start-page: 411 year: 2008 ident: 10.1016/j.nonrwa.2022.103766_b15 article-title: Positive solutions for Lotka–Volterra systems with cross-diffsion – volume: 10 start-page: 154 year: 2009 ident: 10.1016/j.nonrwa.2022.103766_b25 article-title: Multiplicity and stability of a predator–prey model with non-monotonic conversion rate publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2007.08.020 – volume: 32 start-page: 2312 year: 2008 ident: 10.1016/j.nonrwa.2022.103766_b12 article-title: The generalized Beverton–Holt equation and the control of populations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2007.09.007 – volume: 56 start-page: 881 year: 1975 ident: 10.1016/j.nonrwa.2022.103766_b9 article-title: A model for trophic interaction publication-title: Ecology doi: 10.2307/1936298 – year: 1992 ident: 10.1016/j.nonrwa.2022.103766_b17 – volume: 257 start-page: 206 year: 2001 ident: 10.1016/j.nonrwa.2022.103766_b6 article-title: On the dynamics of predator–prey models with Bedding’ton-De Angelis functional response publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7343 – year: 1993 ident: 10.1016/j.nonrwa.2022.103766_b26 – volume: 251 start-page: 2980 year: 2011 ident: 10.1016/j.nonrwa.2022.103766_b5 article-title: Organizing center for the bifurcation analysis of a generalized Gause model with prey havesting and Holling response function of type III publication-title: J. Differential Equations doi: 10.1016/j.jde.2011.04.017 – year: 1994 ident: 10.1016/j.nonrwa.2022.103766_b27 – volume: 27 start-page: 261 year: 2016 ident: 10.1016/j.nonrwa.2022.103766_b21 article-title: Existence and asymptotic behavior of positive solutions for aone-prey and two-competing-predators system with diffusion publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2015.07.010 – volume: 5 start-page: 1 year: 1936 ident: 10.1016/j.nonrwa.2022.103766_b2 article-title: Further studies of intteraction between predator and prey publication-title: J. Anim. Ecol. doi: 10.2307/1087 – start-page: 372 year: 1956 ident: 10.1016/j.nonrwa.2022.103766_b10 article-title: The theory of fishing – volume: 45 start-page: 401 year: 2019 ident: 10.1016/j.nonrwa.2022.103766_b22 article-title: Steady state in a cross-diffusion predator–prey model with the Beddington–DeAngelis functional response publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2018.07.012 – volume: 61 start-page: 1445 issue: 4 year: 2000 ident: 10.1016/j.nonrwa.2022.103766_b3 article-title: Global analysis in a predator–prey system with nonmonotonic functonal reponse publication-title: SIAM J. Appl. Math. – year: 2010 ident: 10.1016/j.nonrwa.2022.103766_b16 – year: 1936 ident: 10.1016/j.nonrwa.2022.103766_b1 – volume: 82 start-page: 3083 year: 2001 ident: 10.1016/j.nonrwa.2022.103766_b4 article-title: Functional response with predator interference: Viable alternatives to the Holling type II model publication-title: Ecology doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 – volume: 281 start-page: 395 year: 2002 ident: 10.1016/j.nonrwa.2022.103766_b7 article-title: Global analysis of the predator–prey system with Beddington-De Angelis functional response publication-title: J. Math. Anal. Appl. doi: 10.1016/S0022-247X(02)00395-5 |
SSID | ssj0017131 |
Score | 2.406004 |
Snippet | In this paper, a predator–prey diffusive model, subject to homogeneous Dirichlet boundary conditions, with Beddington–DeAngelis functional response and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103766 |
SubjectTerms | Existence Numerical simulations Positive solutions Predator–prey diffusive model Stability |
Title | Dynamics of a predator–prey model with nonlinear growth rate and B–D functional response |
URI | https://dx.doi.org/10.1016/j.nonrwa.2022.103766 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPrE-Sg5e13Y32dextpb6aBG10IOwJJtEKlLLtiJexP_gP_SXOLPZLQqi4GmXbAbCJDvzTZj5hpBDo5hgMZeOUb50OITMjtBCOmEgOW_KqGk0Fif3B0FvyM9G_qhC2mUtDKZVFrbf2vTcWhcjjUKbjel43LjGoiEXCci9HOcj4yfnIZ7yo9dFmocLQZhbVhjh7LJ8Ls_xggg7e0b2Ic_Lq89zrsQf3NMXl9NdI6sFVqQtu5x1UtGTDbLSXxCtzjbJbcd2lJ_RR0MFnWZaYRT98fYOry8073ND8a6VTiwnhsjoHUTeMIAcEVRMFD2G2R2KDs7eC9LM5s3qLTLsnty0e07RMMFJPRbMHZb6Av7YQGmpIgAmMTYN1KHiTPsi8HQaG_huIg6YzaR-nIIpdAHiSRl4iinJtkkVVqN3CG0axoRkOoyk4sr1BIukRpJf4yrAPKJGWKmnJC3YxLGpxUNSpo3dJ1a7CWo3sdqtEWchNbVsGn_MD8stSL6digQM_q-Su_-W3CPL2FLeZufsk-o8e9IHADzmsp6frDpZarWvLi7xeXreG3wCUrXc3A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPrMwevS7ubfR5ra1nt42ILPQhLskmkIrVsK-LN_-A_9Jc42ewWBVHwtmQzEGazM98kM98AXChBGY1cbinhccvFkNliknEr8LnrNnnYVFIXJw-Gfjx2bybepALtshZGp1UWtt_Y9NxaFyONQpuN-XTauNVFQ7YmIHdynE_XoKbZqbwq1FrXvXi4ukzAOMwui4y0QFlBl6d5YZCdvWgCIsfJC9BzusQfPNQXr9Pdhq0CLpKWWdEOVORsFzYHK67VxR7cdUxT-QV5UoSReSaFDqQ_3t7x8ZXkrW6IPm4lM0OLwTJyj8E3DmiaCMJmglzi7A7RPs4cDZLMpM7KfRh3r0bt2Cp6JlipQ_2lRVOP4U_rC8lFiNgk0n0DZSBcKj3mOzKNFL5XoYuwTaVelKI1tBHlce47ggpOD6CKq5GHQJqKUsapDEIuXGE7jIZcap5fZQuEPawOtNRTkhaE4rqvxWNSZo49JEa7idZuYrRbB2slNTeEGn_MD8pPkHzbGAna_F8lj_4teQ7r8WjQT_rXw94xbOgO8yZZ5wSqy-xZniIOWfKzYp99AvxH3fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+a+predator%E2%80%93prey+model+with+nonlinear+growth+rate+and+B%E2%80%93D+functional+response&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Feng%2C+Xiaozhou&rft.au=Sun%2C+Cong&rft.au=Yang%2C+Wenbin&rft.au=Li%2C+Changtong&rft.date=2023-04-01&rft.issn=1468-1218&rft.volume=70&rft.spage=103766&rft_id=info:doi/10.1016%2Fj.nonrwa.2022.103766&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2022_103766 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |