Divided Differences, Square Functions, and a Law of the Iterated Logarithm

The main purpose of the paper is to show that differentiability properties of a measurable function defined in the euclidean space can be described using square functions which involve its second symmetric divided differences. Classical results of Marcinkiewicz, Stein and Zygmund describe, up to set...

Full description

Saved in:
Bibliographic Details
Published inReal analysis exchange Vol. 43; no. 1; pp. 155 - 186
Main Author Nicolau, Artur
Format Journal Article
LanguageEnglish
Published East Lansing Michigan State University Press 01.01.2018
Subjects
Online AccessGet full text
ISSN0147-1937
1930-1219
DOI10.14321/realanalexch.43.1.0155

Cover

Abstract The main purpose of the paper is to show that differentiability properties of a measurable function defined in the euclidean space can be described using square functions which involve its second symmetric divided differences. Classical results of Marcinkiewicz, Stein and Zygmund describe, up to sets of Lebesgue measure zero, the set of points where a functionfis differentiable in terms of a certain square functiong(f). It is natural to ask for the behavior of the divided differences at the complement of this set, that is, on the set of points wherefis not differentiable. In the nineties, Anderson and Pitt proved that the growth of the divided differences of a function in the Zygmund class obeys a version of the classical Kolmogorov's Law of the Iterated Logarithm (LIL). A square function, which is the conical analogue ofg(f) will be used to state and prove a general version of the LIL of Anderson and Pitt as well as to prove analogues of the classical results of Marcinkiewicz, Stein and Zygmund. Sobolev spaces can also be described using this new square function. Mathematical Reviews subject classification: Primary: 26A24, 60G46 Key words: Differentiability, Dyadic Martingales, Quadratic Variation, Sobolev Spaces
AbstractList The main purpose of the paper is to show that differentiability properties of a measurable function defined in the euclidean space can be described using square functions which involve its second symmetric divided differences. Classical results of Marcinkiewicz, Stein and Zygmund describe, up to sets of Lebesgue measure zero, the set of points where a functionfis differentiable in terms of a certain square functiong(f). It is natural to ask for the behavior of the divided differences at the complement of this set, that is, on the set of points wherefis not differentiable. In the nineties, Anderson and Pitt proved that the growth of the divided differences of a function in the Zygmund class obeys a version of the classical Kolmogorov's Law of the Iterated Logarithm (LIL). A square function, which is the conical analogue ofg(f) will be used to state and prove a general version of the LIL of Anderson and Pitt as well as to prove analogues of the classical results of Marcinkiewicz, Stein and Zygmund. Sobolev spaces can also be described using this new square function. Mathematical Reviews subject classification: Primary: 26A24, 60G46 Key words: Differentiability, Dyadic Martingales, Quadratic Variation, Sobolev Spaces
The main purpose of the paper is to show that differentiability properties of a measurable function defined in the euclidean space can be described using square functions which involve its second symmetric divided differences. Classical results of Marcinkiewicz, Stein and Zygmund describe, up to sets of Lebesgue measure zero, the set of points where a function f is differentiable in terms of a certain square function g(f). It is natural to ask for the behavior of the divided differences at the complement of this set, that is, on the set of points where f is not differentiable. In the nineties, Anderson and Pitt proved that the growth of the divided differences of a function in the Zygmund class obeys a version of the classical Kolmogorov's Law of the Iterated Logarithm (LIL). A square function, which is the conical analogue of g(f) will be used to state and prove a general version of the LIL of Anderson and Pitt as well as to prove analogues of the classical results of Marcinkiewicz, Stein and Zygmund. Sobolev spaces can also be described using this new square function.
Author Artur Nicolau
Author_xml – sequence: 1
  givenname: Artur
  surname: Nicolau
  fullname: Nicolau, Artur
BookMark eNqNkFtLwzAYhoNMcJv-BgteamtOPV14IZvTScEL9Tp8TVPX0TVbknr490YrIoLgVeDlfd6PPBM06nSnEDomOCKcUXJuFLTQQate5SriLCIRJnG8h8YkZzgklOQjNMaEp6EP0gM0sXaNMeMpjsfodt48N5WqgnlT18qoTip7FtzvejAqWPSddI3ufAJdFUBQwEug68CtVLB0yoDzYKGfwDRutTlE-zW0Vh19vVP0uLh6mN2Exd31cnZZhJKyxIUsiasMaMIxcJKSjGIcV0wSlmUMM5rnPoeMp6qMWQJ5VaqUlklc5hIntf8Ym6KTYXdr9K5X1om17o0XYAUl2G_yjGS-lQ4tabS1RtVia5oNmDdBsPgUJ36KE5wJIvCwf_GLlI2DDw_OQNP-gz8d-LV12nyf_aP9DuUwiPI
CitedBy_id crossref_primary_10_1112_jlms_12267
ContentType Journal Article
Copyright 2018 Real Analysis Exchange
Copyright Michigan State University Press 2018
Copyright_xml – notice: 2018 Real Analysis Exchange
– notice: Copyright Michigan State University Press 2018
DBID AAYXX
CITATION
4T-
JQ2
DOI 10.14321/realanalexch.43.1.0155
DatabaseName CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitle CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitleList
Docstoc
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1930-1219
EndPage 186
ExternalDocumentID 10_14321_realanalexch_43_1_0155
10.14321/realanalexch.43.1.0155
GroupedDBID -DZ
-ET
123
29P
70C
8R4
8R5
AAOJF
ABDBF
ABIFP
ACGOD
ACIWK
AEEGL
AESBA
AFFOW
AHIZY
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
E3Z
EAP
EBS
EJD
EMI
EMK
EPL
ESX
HDK
OK1
PUASD
RBF
RPE
SJN
TUS
TWZ
WS9
YNT
ZWISI
~8M
88I
8FE
8FG
8G5
AAYXX
ABJCF
ABUWG
AFFNX
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
K6V
K7-
L6V
M2O
M2P
M7S
P62
PADUT
PHGZM
PHGZT
PQQKQ
PROAC
PTHSS
Q2X
4T-
ACUHS
JQ2
ID FETCH-LOGICAL-c236t-365d8a2640a417182005d3c13883032990a4a847eb536a9dbe72b65b9c06f1553
ISSN 0147-1937
IngestDate Fri Jul 25 19:48:15 EDT 2025
Thu Apr 24 22:56:34 EDT 2025
Tue Jul 01 01:45:52 EDT 2025
Fri May 30 12:01:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-365d8a2640a417182005d3c13883032990a4a847eb536a9dbe72b65b9c06f1553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2104174818
PQPubID 28230
PageCount 32
ParticipantIDs proquest_journals_2104174818
crossref_primary_10_14321_realanalexch_43_1_0155
crossref_citationtrail_10_14321_realanalexch_43_1_0155
jstor_primary_realanalexch_43_1_0155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180101
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180101
  day: 1
PublicationDecade 2010
PublicationPlace East Lansing
PublicationPlace_xml – name: East Lansing
PublicationTitle Real analysis exchange
PublicationYear 2018
Publisher Michigan State University Press
Publisher_xml – name: Michigan State University Press
SSID ssj0034705
Score 2.0421047
Snippet The main purpose of the paper is to show that differentiability properties of a measurable function defined in the euclidean space can be described using...
SourceID proquest
crossref
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 155
SubjectTerms Euclidean space
Graphs
Harmonic functions
Integers
Lebesgue measures
Logarithms
Martingales
Mathematical functions
Mathematical theorems
Natural logarithms
Sobolev spaces
Symmetry
Title Divided Differences, Square Functions, and a Law of the Iterated Logarithm
URI https://www.jstor.org/stable/10.14321/realanalexch.43.1.0155
https://www.proquest.com/docview/2104174818
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8ABjS8x2JAPPS4l_k6O20o1KsYBWqm3yE4cOEC7tak07a_nOXaylBWVcomqKO8l9c9-7-fkfSDUl4oaqXQaaVrmEefUgh0sWVSI2JTGWMutSxS--iIvp3w8E7P71nd1dkllBvnd1ryS_0EVzgGuLkt2D2RbpXACfgO-cASE4fhPGA9dLhUwxmHochLW_LebtYvnGoHLqu_dRGjq-mtACAr4VJdTBuHPi--wX65-_Ory1K-2riEQCpbY27xJQgizAxyVn0R63X1v0DVysCtSERA31bWCvljSBtrepBFfRveBqeWMOlu7rEMwwZnBkww4G5BBHCQ2i1v_4XTaUEC3CXGqsq6ijLOMZE7RY3RAlSKihw7Ozofno8bLMq6a8FT_X0LsnlP1YfszbTAPH3z6wAHXrGJyiJ6F7QA-89g-R4_s_AV6etXW0l29ROOAMu6gfIo9xrjF-BQDwlhjQBgvSgzyuEEYtwi_QtPRx8nFZRQ6YEQ5ZbKKmBRFooGzxpoT5Wrtx6JgOWFJAtTDMQnNNfALawSTOi2MdUtPmDSPZek6Qr1Gvflibt8gTHkprSoK8CqCS1kkpARzTkWRAo1JiTlCshmdLA_l4V2Xkp_ZDoSOUNwKXvsKKbtF-vXwt9f_7bLjBp0srLpVRkkMQ8GBZ77d_8bv0BO3FPwrtGPUq5ZrewKksjLvw_z6DZCseNc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Divided+Differences%2C+Square+Functions%2C+and+a+Law+of+the+Iterated+Logarithm&rft.jtitle=Real+analysis+exchange&rft.au=Artur+Nicolau&rft.date=2018&rft.issn=0147-1937&rft.volume=43&rft.issue=1&rft.spage=155&rft_id=info:doi/10.14321%2Frealanalexch.43.1.0155&rft.externalDBID=n%2Fa&rft.externalDocID=10_14321_realanalexch_43_1_0155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-1937&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-1937&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-1937&client=summon