Treatment of textile wastewater by sulfate radical based advanced oxidation processes
[Display omitted] •Generation of SO4•- via different methods, their mechanisms and oxidative pathways.•Systematically reviewed the SR-AOPs based treatments of textile wastewater.•Comparison of the performance of SR-AOPs and other •OH radicals based AOPs.•Studies on the pilot-scale and the full-scale...
Saved in:
Published in | Separation and purification technology Vol. 293; p. 121115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2022.121115 |
Cover
Abstract | [Display omitted]
•Generation of SO4•- via different methods, their mechanisms and oxidative pathways.•Systematically reviewed the SR-AOPs based treatments of textile wastewater.•Comparison of the performance of SR-AOPs and other •OH radicals based AOPs.•Studies on the pilot-scale and the full-scale applications of SR-AOPs are summarized.
The global textile industry is an ever-growing market, and the multi-stage operations of the textile manufacturing process produce an enormous quantity of wastewater encompassing refractory organic chemicals, necessitating the efficient, scalable, and economically viable advanced treatment methodologies. Among other advanced oxidation processes (AOPs), sulfate radicals based AOPs (SR-AOPs) gaining much attention in removing wide range of persistent organics in recent years, owing to its efficacy, adaptability, and versatility. SR-AOPs possess series of advantages over •OH radicals based AOPs such as high reactivity in wider pH range, selectivity towards contaminants, and numerous methods to activate its precursors persulfate (PS, S2O82−) and peroxymonosulfate (PMS, HSO5−) to produce sulfate radicals (SO4•-). In this review, the following aspects of the SR-AOPs are discussed for treating the textile wastewaters. (a) different methods and its mechanisms of PS and PMS activation including (i) homogenous and heterogenous metal activated processes such as metal ions, zero valent metals, metal oxides/ sulfides, and, metal organic frameworks, (ii) energy activated processes such as radiation (ultraviolet (UV), ultrasound (US) and microwave), and thermal activation, (iii) electrochemical based activation and (iv) carbocatalysis are discussed, (b) various reactive molecules and radicals species formed during the activation of PS and PMS, and its oxidative pathways and reactivities are elaborated, (c) performance of various SR-AOPs in treating textile wastewaters under different operating conditions, wastewater compositions and other influencing factors are deliberated, (d) comparison of the performances of SR-AOPs over HO• radicals based AOPs is discussed in treating the textile wastewaters and, (e) studies on the pilot-scale and the full-scale applications of SR-AOPs are summarized. |
---|---|
AbstractList | [Display omitted]
•Generation of SO4•- via different methods, their mechanisms and oxidative pathways.•Systematically reviewed the SR-AOPs based treatments of textile wastewater.•Comparison of the performance of SR-AOPs and other •OH radicals based AOPs.•Studies on the pilot-scale and the full-scale applications of SR-AOPs are summarized.
The global textile industry is an ever-growing market, and the multi-stage operations of the textile manufacturing process produce an enormous quantity of wastewater encompassing refractory organic chemicals, necessitating the efficient, scalable, and economically viable advanced treatment methodologies. Among other advanced oxidation processes (AOPs), sulfate radicals based AOPs (SR-AOPs) gaining much attention in removing wide range of persistent organics in recent years, owing to its efficacy, adaptability, and versatility. SR-AOPs possess series of advantages over •OH radicals based AOPs such as high reactivity in wider pH range, selectivity towards contaminants, and numerous methods to activate its precursors persulfate (PS, S2O82−) and peroxymonosulfate (PMS, HSO5−) to produce sulfate radicals (SO4•-). In this review, the following aspects of the SR-AOPs are discussed for treating the textile wastewaters. (a) different methods and its mechanisms of PS and PMS activation including (i) homogenous and heterogenous metal activated processes such as metal ions, zero valent metals, metal oxides/ sulfides, and, metal organic frameworks, (ii) energy activated processes such as radiation (ultraviolet (UV), ultrasound (US) and microwave), and thermal activation, (iii) electrochemical based activation and (iv) carbocatalysis are discussed, (b) various reactive molecules and radicals species formed during the activation of PS and PMS, and its oxidative pathways and reactivities are elaborated, (c) performance of various SR-AOPs in treating textile wastewaters under different operating conditions, wastewater compositions and other influencing factors are deliberated, (d) comparison of the performances of SR-AOPs over HO• radicals based AOPs is discussed in treating the textile wastewaters and, (e) studies on the pilot-scale and the full-scale applications of SR-AOPs are summarized. |
ArticleNumber | 121115 |
Author | Divyapriya, G. Nidheesh, P.V. Hamdani, Mohamed Ezzahra Titchou, Fatima |
Author_xml | – sequence: 1 givenname: P.V. surname: Nidheesh fullname: Nidheesh, P.V. email: pv_nidheesh@neeri.res.in, nidheeshpv129@gmail.com organization: CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India – sequence: 2 givenname: G. surname: Divyapriya fullname: Divyapriya, G. organization: Multi-Scale Robotics Lab (MSRL), Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092, Switzerland – sequence: 3 givenname: Fatima surname: Ezzahra Titchou fullname: Ezzahra Titchou, Fatima organization: Ibn Zohr University, Faculty of Sciences, Chemical department, BO 8106 –Dakhla district, Agadir, Morocco – sequence: 4 givenname: Mohamed surname: Hamdani fullname: Hamdani, Mohamed organization: Ibn Zohr University, Faculty of Sciences, Chemical department, BO 8106 –Dakhla district, Agadir, Morocco |
BookMark | eNqFkMtqwzAQRUVJoUnaP-hCP2BXD8t2uiiU0BcEuknWQpZGoODYRlJef1-l7qqLdjV3GM6FOTM06foOELqnJKeElg_bPMAw7H3OCGM5ZZRScYWmtK54xqtFMUmZ1zwTdVneoFkIW0JoRWs2RZu1BxV30EXcWxzhFF0L-KhChKOK4HFzxmHf2pSxV8Zp1eJGBTBYmYPqdAr9yRkVXd_hwfcaQoBwi66tagPc_cw52ry-rJfv2erz7WP5vMo042XMuGiAGcVKQRpBispwqNPCq1IVRhAAI6xdFLZh6V5TBSUjlvKFAGi40JbPUTH2at-H4MHKwbud8mdJibyokVs5qpEXNXJUk7DHX5h28fuF6JVr_4OfRhjSYwcHXgbt4GLCedBRmt79XfAF7K6GIw |
CitedBy_id | crossref_primary_10_1016_j_psep_2024_04_108 crossref_primary_10_1016_j_psep_2023_01_012 crossref_primary_10_1016_j_colsurfa_2022_130149 crossref_primary_10_1016_j_seppur_2023_124904 crossref_primary_10_1021_acs_langmuir_4c02692 crossref_primary_10_5004_dwt_2023_30240 crossref_primary_10_1016_j_jhazmat_2022_129744 crossref_primary_10_1016_j_cej_2024_157010 crossref_primary_10_1016_j_mtcomm_2022_105107 crossref_primary_10_1016_j_pnsc_2023_10_002 crossref_primary_10_2166_wpt_2024_184 crossref_primary_10_1016_j_seppur_2024_128264 crossref_primary_10_1016_j_jece_2022_109203 crossref_primary_10_1016_j_dwt_2024_100928 crossref_primary_10_1016_j_chemosphere_2022_137202 crossref_primary_10_1016_j_ijbiomac_2023_128433 crossref_primary_10_1007_s13369_024_09554_w crossref_primary_10_1680_jgere_23_00066 crossref_primary_10_3390_su152115266 crossref_primary_10_1016_j_ijbiomac_2023_127347 crossref_primary_10_1016_j_molliq_2023_123747 crossref_primary_10_1016_j_envres_2022_114786 crossref_primary_10_1016_j_ces_2024_121111 crossref_primary_10_1007_s10661_024_13374_8 crossref_primary_10_1016_j_molliq_2024_124852 crossref_primary_10_3390_ma18010151 crossref_primary_10_1016_j_seppur_2023_124110 crossref_primary_10_1016_j_chemosphere_2024_141945 crossref_primary_10_1016_j_envres_2022_114789 crossref_primary_10_1002_appl_202300055 crossref_primary_10_1016_j_desal_2024_117779 crossref_primary_10_1016_j_jhazmat_2022_130216 crossref_primary_10_1016_j_seppur_2023_123147 crossref_primary_10_1016_j_seppur_2023_124873 crossref_primary_10_1016_j_cej_2024_152913 crossref_primary_10_1016_j_scitotenv_2023_169582 crossref_primary_10_3390_catal13010195 crossref_primary_10_1016_j_jwpe_2024_105221 crossref_primary_10_1007_s10311_024_01798_0 crossref_primary_10_1016_j_cjche_2024_04_007 crossref_primary_10_1016_j_jssc_2023_124409 crossref_primary_10_1016_j_fuel_2025_134537 crossref_primary_10_2166_wst_2023_069 crossref_primary_10_1016_j_jcis_2024_08_155 crossref_primary_10_1016_j_cej_2023_141846 crossref_primary_10_1016_j_memsci_2024_123514 crossref_primary_10_1016_j_psep_2023_11_047 crossref_primary_10_1016_j_psep_2023_11_045 crossref_primary_10_1016_j_seppur_2024_128367 crossref_primary_10_1016_j_cherd_2024_11_011 crossref_primary_10_1016_j_seppur_2023_124002 crossref_primary_10_1016_j_mtchem_2023_101633 crossref_primary_10_1016_j_seppur_2022_121764 crossref_primary_10_2166_wrd_2023_075 crossref_primary_10_1002_wer_10862 crossref_primary_10_1016_j_cej_2023_146565 crossref_primary_10_1016_j_jenvman_2024_122514 crossref_primary_10_2478_acee_2024_0010 crossref_primary_10_1016_j_envres_2023_116962 crossref_primary_10_1016_j_envres_2023_116842 crossref_primary_10_1016_j_jenvman_2024_122873 crossref_primary_10_3390_w16213024 crossref_primary_10_1016_j_diamond_2023_110090 crossref_primary_10_1038_s41545_024_00330_9 crossref_primary_10_1007_s12274_023_5781_0 crossref_primary_10_1007_s13399_023_04375_7 crossref_primary_10_1155_abb_9325665 crossref_primary_10_1016_j_heliyon_2023_e22444 crossref_primary_10_1016_j_jclepro_2024_142155 crossref_primary_10_1016_j_jece_2024_112865 crossref_primary_10_1016_j_coche_2022_100867 crossref_primary_10_1016_j_ecmx_2022_100344 crossref_primary_10_1016_j_scitotenv_2023_162023 crossref_primary_10_1016_j_seppur_2024_126454 crossref_primary_10_1016_j_seppur_2024_130551 crossref_primary_10_1016_j_jcis_2024_04_177 crossref_primary_10_1016_j_seppur_2023_124135 crossref_primary_10_1016_j_seppur_2023_123565 crossref_primary_10_1039_D2RA07640C crossref_primary_10_2166_wst_2024_016 crossref_primary_10_1016_j_chemosphere_2024_142276 crossref_primary_10_1007_s44371_024_00059_x crossref_primary_10_1016_j_cej_2023_142753 crossref_primary_10_1016_j_cej_2023_147525 crossref_primary_10_1016_j_cherd_2023_07_013 crossref_primary_10_1016_j_inoche_2022_109914 crossref_primary_10_1016_j_eti_2024_103932 crossref_primary_10_1016_j_jwpe_2025_107064 crossref_primary_10_35812_CelluloseChemTechnol_2024_58_96 crossref_primary_10_1016_j_jwpe_2024_105600 crossref_primary_10_1016_j_envres_2023_117220 crossref_primary_10_1007_s11356_023_27422_2 crossref_primary_10_1016_j_cej_2024_156402 crossref_primary_10_1016_j_cej_2024_153378 crossref_primary_10_1016_j_ces_2023_119463 crossref_primary_10_1016_j_scitotenv_2022_159762 crossref_primary_10_1016_j_apsusc_2024_160066 crossref_primary_10_1016_j_jhazmat_2023_132840 crossref_primary_10_1016_j_seppur_2023_123694 crossref_primary_10_1007_s13399_024_05350_6 crossref_primary_10_1016_j_jwpe_2023_104462 crossref_primary_10_1016_j_watres_2024_122656 crossref_primary_10_1016_j_chemosphere_2024_141477 crossref_primary_10_1038_s41545_024_00391_w crossref_primary_10_1016_j_jece_2024_114263 crossref_primary_10_1016_j_jenvman_2023_117983 crossref_primary_10_1016_j_seppur_2022_122077 crossref_primary_10_1007_s10570_023_05530_z crossref_primary_10_1016_j_cej_2024_158378 crossref_primary_10_1016_j_chemosphere_2023_140915 crossref_primary_10_1016_j_seppur_2025_131515 crossref_primary_10_1039_D4NJ01537A crossref_primary_10_3390_molecules29174059 crossref_primary_10_1016_j_seppur_2023_126055 crossref_primary_10_1016_j_materresbull_2024_113143 crossref_primary_10_1016_j_chemosphere_2023_140117 crossref_primary_10_1016_j_memsci_2024_123094 crossref_primary_10_1016_j_seppur_2023_124607 crossref_primary_10_1002_app_54033 crossref_primary_10_1016_j_envres_2023_116998 crossref_primary_10_1007_s11356_024_32729_9 crossref_primary_10_1016_j_jenvman_2023_118501 crossref_primary_10_1016_j_jwpe_2025_107088 crossref_primary_10_1016_j_seppur_2024_127085 crossref_primary_10_2139_ssrn_4158396 crossref_primary_10_1016_j_rechem_2023_101027 crossref_primary_10_1016_j_ceja_2023_100515 crossref_primary_10_1007_s11164_023_04964_1 crossref_primary_10_1007_s11356_024_34699_4 crossref_primary_10_1016_j_chemosphere_2023_139449 crossref_primary_10_1039_D2NJ04715B crossref_primary_10_1016_j_efmat_2024_12_002 crossref_primary_10_1016_j_jallcom_2023_172898 crossref_primary_10_1021_acs_jchemed_4c01190 crossref_primary_10_1016_j_jclepro_2023_138375 crossref_primary_10_1016_j_jece_2024_114168 crossref_primary_10_1021_acsomega_3c06278 crossref_primary_10_1007_s10311_023_01610_5 crossref_primary_10_1016_j_envres_2023_116486 crossref_primary_10_1016_j_jwpe_2024_105272 crossref_primary_10_1016_j_desal_2024_117482 crossref_primary_10_1016_j_cej_2023_144469 crossref_primary_10_1016_j_inoche_2024_112563 crossref_primary_10_1016_j_matchemphys_2024_129662 crossref_primary_10_1098_rsos_232033 crossref_primary_10_1039_D4CE00131A crossref_primary_10_1016_j_apmt_2024_102390 crossref_primary_10_1016_j_chemosphere_2023_140142 crossref_primary_10_1016_j_coco_2024_101921 crossref_primary_10_1021_acs_langmuir_4c02718 crossref_primary_10_1007_s11696_024_03325_5 crossref_primary_10_1016_j_scp_2024_101716 crossref_primary_10_3390_catal13111440 crossref_primary_10_1016_j_jece_2024_113191 crossref_primary_10_1016_j_teadva_2023_200087 crossref_primary_10_1007_s12221_024_00494_8 |
Cites_doi | 10.1016/j.seppur.2016.03.026 10.1016/j.seppur.2013.04.026 10.1016/j.scitotenv.2016.07.032 10.1016/j.scitotenv.2021.152050 10.1016/j.watres.2017.02.016 10.1016/j.seppur.2015.04.031 10.1016/j.seppur.2021.119999 10.1016/j.cej.2020.126232 10.1016/j.chemosphere.2014.12.053 10.1016/j.cej.2019.122149 10.1016/j.scitotenv.2021.145522 10.1016/j.chemosphere.2017.12.195 10.1016/j.wasman.2020.03.005 10.1021/es903411a 10.1016/j.cej.2021.133802 10.1016/j.apsusc.2016.02.037 10.1016/j.envint.2019.104918 10.1016/j.chemosphere.2018.02.155 10.1016/j.cej.2020.126158 10.1021/acs.est.9b07082 10.1080/10643389.2014.900242 10.5004/dwt.2020.26363 10.1016/j.cej.2018.04.074 10.1016/j.biortech.2016.01.006 10.1016/j.seppur.2015.01.022 10.1016/j.cej.2012.05.040 10.1016/j.ecoenv.2019.04.015 10.1016/j.envdev.2018.03.005 10.1016/j.ultsonch.2016.03.011 10.13171/mjc10102001201163mh 10.1080/01496395.2021.1982978 10.1021/es4048126 10.1080/19443994.2015.1033476 10.1016/j.jclepro.2018.05.207 10.1016/j.cej.2020.128081 10.1016/j.cej.2020.127083 10.1016/j.scitotenv.2021.145311 10.1016/j.jwpe.2020.101623 10.1021/es400728c 10.1016/j.seppur.2020.116839 10.1021/acs.accounts.1c00269 10.1016/j.apcatb.2004.05.025 10.1016/j.jphotochem.2020.112397 10.1016/j.chemosphere.2016.02.055 10.1016/j.jenvman.2016.04.034 10.1016/j.envres.2020.109367 10.1016/j.molliq.2020.113002 10.1016/j.chemosphere.2017.09.042 10.1016/j.wri.2020.100134 10.1039/C7RA03287K 10.1515/revce-2016-0019 10.1016/j.jclepro.2018.10.081 10.1080/00986445.2020.1864626 10.1016/j.cej.2019.123265 10.1016/j.cattod.2018.11.029 10.1016/j.biortech.2012.09.001 10.1016/j.cej.2017.11.059 10.1016/j.cej.2018.04.093 10.1016/j.scitotenv.2018.02.279 10.1016/j.seppur.2020.116931 10.1002/ep.13531 10.1016/j.apcatb.2015.07.024 10.1016/j.saa.2015.05.029 10.1016/j.molcata.2015.02.007 10.1016/j.jclepro.2019.119032 10.1016/j.cossms.2021.100921 10.1016/j.chemosphere.2018.12.156 10.1016/j.micromeso.2012.06.009 10.1016/j.cej.2021.133213 10.1016/j.jhazmat.2015.04.014 10.1016/j.cej.2018.12.057 10.1016/j.jenvman.2016.07.090 10.1039/C5RA19987E 10.1016/j.jhazmat.2012.05.074 10.1016/j.scitotenv.2020.141541 10.1007/s11356-017-0481-5 10.1515/reveh-2018-0013 10.1016/j.cej.2018.12.139 10.1016/j.jconhyd.2009.02.008 10.1016/j.fuel.2015.06.100 10.1016/j.seppur.2016.05.039 10.1016/j.apcatb.2017.07.072 10.1016/j.cej.2017.09.102 10.1016/j.watres.2015.03.024 10.1016/j.cej.2018.09.203 10.1016/j.jhazmat.2020.122804 10.1016/j.cej.2018.01.034 10.1007/s42250-019-00094-7 10.1007/s11356-012-1385-z 10.1016/j.watres.2018.01.050 10.1016/j.cej.2016.12.089 10.1021/acs.est.1c06651 10.1016/j.resconrec.2006.06.004 10.1007/s11157-020-09543-z 10.1016/j.cej.2019.122447 10.1016/j.chemosphere.2006.05.026 10.2166/wst.2015.509 10.1016/j.biortech.2014.07.062 10.1016/j.carbon.2016.06.016 10.1016/j.jenvman.2011.09.012 10.1016/j.apcata.2017.09.021 10.1080/01496395.2019.1671866 10.1016/j.coche.2017.12.005 10.1016/j.cej.2016.10.138 10.3390/w10121828 10.1016/j.scitotenv.2020.139034 10.1016/j.apcatb.2020.118857 10.1016/j.jcis.2020.03.041 10.3390/catal10111299 10.1016/j.chemosphere.2020.126655 10.1016/j.jclepro.2021.128202 10.2166/wrd.2016.187 10.3389/fchem.2020.592056 10.1016/j.jenvman.2014.08.008 10.1016/j.jenvman.2019.06.039 10.1016/j.jclepro.2020.122636 10.1016/j.watres.2015.01.040 10.1016/j.chemosphere.2019.124419 10.1016/j.seppur.2020.118290 10.2166/wst.2020.176 10.1016/j.matpr.2019.08.083 10.1016/j.cej.2018.01.049 10.1016/j.cej.2021.133002 10.1149/2.1111805jes 10.1016/j.jenvman.2019.109926 10.1016/j.biortech.2005.05.001 10.1016/j.envint.2019.105141 10.1016/j.electacta.2014.10.104 10.1016/j.jwpe.2014.05.006 10.1016/j.jwpe.2021.102040 10.1016/j.seppur.2019.115732 10.1016/j.cej.2016.08.129 10.1002/celc.201900159 10.1016/j.eti.2020.101183 10.1016/j.cej.2020.127921 10.1021/es5061512 10.1080/10643389.2010.507698 10.1080/01496395.2018.1473880 10.1016/j.scitotenv.2020.137831 10.1016/j.jece.2019.103248 10.1016/j.gsd.2021.100575 10.1016/j.cej.2017.03.084 10.1016/j.jhazmat.2010.03.039 10.1016/j.cej.2014.11.128 10.1016/j.envres.2021.112353 10.1016/j.seppur.2010.01.012 10.1016/j.jhazmat.2017.01.046 10.1016/j.cej.2021.134191 10.1016/j.cej.2013.07.108 10.1016/j.chemosphere.2018.09.124 10.1016/j.cep.2021.108631 10.1007/s12010-012-9716-6 10.1080/10643380903218376 10.1016/j.ultsonch.2016.08.015 10.1016/j.watres.2008.10.045 10.1016/j.jece.2014.08.003 10.1016/j.colsurfa.2014.03.105 10.1016/j.jenvman.2017.11.006 10.1016/j.seppur.2020.117570 10.1016/j.cej.2021.132323 10.1149/2.0361508jes 10.1016/j.jece.2021.105414 10.1016/j.chemosphere.2013.12.037 10.1016/j.matlet.2019.127099 10.1111/wej.12718 10.1007/s13369-019-04159-0 10.3390/w12030733 10.1016/j.jhazmat.2018.06.012 10.1016/j.watres.2009.02.029 10.1016/j.biortech.2017.06.154 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2022.121115 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2022_121115 S1383586622006724 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c236t-35be2da2650b5047d3e8265376a4d50eed5ff94fb20b581ae620f1395eeb35cf3 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Tue Jul 01 00:32:58 EDT 2025 Thu Apr 24 22:57:07 EDT 2025 Fri Feb 23 02:41:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Advanced oxidation processes Textile wastewater treatment Sulfate radical Persulfate activation Peroxymonosulfate activation Oxidation of dye molecules |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c236t-35be2da2650b5047d3e8265376a4d50eed5ff94fb20b581ae620f1395eeb35cf3 |
ParticipantIDs | crossref_primary_10_1016_j_seppur_2022_121115 crossref_citationtrail_10_1016_j_seppur_2022_121115 elsevier_sciencedirect_doi_10_1016_j_seppur_2022_121115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jegatheesan, Pramanik, Chen, Navaratna, Chang, Shu (b0010) 2016; 204 Ranganathan, Karunagaran, Sharma (b0025) 2007; 50 Thamaraiselvan, Noel (b0150) 2015; 45 Zhao, Zhan, Wang, Yu, Sun, Chen, He, Liu, Shi (b0360) 2021 Wacławek, Grübel, Černík (b0805) 2015; 149 Rodríguez-Chueca, Laski, García-Cañibano, Martín de Vidales, Encinas, Kuch, Marugán (b0855) 2018; 630 Duan, Sun, Ao, Zhou, Wang, Wang (b0730) 2016; 107 Yabalak, Ozay, Vatanpour, Dizge (b0475) 2021; 35 Lv, Zhao, Cao, Qian, Wang, Zhao (b0625) 2015; 400 Bougdour, Tiskatine, Bakas, Assabbane (b0050) 2020; 3 Rodríguez, Lorenzo, Santos, Romero (b0450) 2020; 255 Ducousso, Weiss-Hortala, Nzihou, Castaldi (b0770) 2015; 159 Mukhopadhyay, Tripathy, Debnath, Kumar (b0650) 2021; 26 dos Santos, Brillas, Cabot, Sirés (b0695) 2020; 747 Quan, Zhang, Xu (b0045) 2015; 78 Liang, Liang, Chen (b0530) 2009; 106 G. Divyapriya, P.V. Nidheesh, Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications, Curr. Opin. Solid State Mater. Sci. 25 (2021) 100921. https://doi.org/10.1016/j.cossms.2021.100921. Rastogi, Al-Abed, Dionysiou (b0540) 2009; 43 M. Reza Samarghandi, K. Tari, A. Shabanloo, M. Salari, H. Zolghadr Nasab, Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater, Sep. Purif. Technol. 247 (2020) 116931. https://doi.org/10.1016/j.seppur.2020.116931. Bougdour, Tiskatine, Bakas, Assabbane (b0455) 2020; 22 Yang, Ma, Chen, Yao, Sun, Wang, Yi, Hou, Li, Wang (b0405) 2019; 378 Zhou, Cheng, Ma, Peng, Kong, Komarneni (b0610) 2021; 261 Wang, Wang (b0345) 2021; 315 Manos, Miserli, Konstantinou (b0790) 2020; 10 Titchou, Zazou, Afanga, El Gaayda, Ait Akbour, Nidheesh, Hamdani (b0100) 2021; 169 Nidheesh, Couras, Karim, Nadais (b0060) 2022; 209 Zhang, He, Wu, Fu (b0710) 2015; 162 Oh, Lim (b0545) 2019; 358 Liu, Ding, Weng, Hwang, Lin (b0565) 2016; 169 Chen, Huang (b0295) 2015; 125 Rivera, Rodríguez, Rivero, Cruz-Díaz (b0720) 2018; 16 Ganiyu, Martínez-Huitle (b0320) 2019; 6 Lu, Wang, Xu, Liu, Qian (b0575) 2016; 57 Rehman, Sayed, Khan, Shah, Khan, Dionysiou (b0660) 2018; 357 Syam Babu, Anantha Singh, Nidheesh, Suresh Kumar (b0160) 2020; 55 Du, Zhang, Hussain, Huang, Huang (b0580) 2017; 313 Khatri, Nidheesh, Anantha Singh, Suresh Kumar (b0255) 2018; 348 Lin, Wu, Zhang (b0415) 2013; 117 Nidheesh (b0860) 2017; 24 Dasgupta, Sikder, Chakraborty, Curcio, Drioli (b0030) 2015; 147 Nidheesh, Zhou, Oturan (b0175) 2018; 197 Asgari, Shabanloo, Salari, Eslami (b0460) 2020; 184 Ahmad, Teel, Watts (b0265) 2013; 47 Ushani, Lu, Wang, Zhang, Dai, Tan, Wang, Li, Niu, Cai, Wang, Zhen (b0400) 2020; 402 Li, Guo, Liu, Wang, Liu (b0630) 2016; 369 Giannakis, Lin, Ghanbari (b0350) 2021; 406 Fadaei, Noorisepehr, Pourzamani, Salari, Moradnia, Darvishmotevalli, Mengelizadeh (b0440) 2021; 9 Miao, Liu, Wei, Hu, Zheng, Zhu, Liu, Zhou, Yu, Ma (b0715) 2020; 81 Hu, Long (b0800) 2016; 181 Fang, Liu, Gao, Dionysiou, Zhou (b0775) 2015; 49 Yuan, Bolan, Prévoteau, Vithanage, Biswas, Ok, Wang (b0760) 2017; 246 Gągol, Przyjazny, Boczkaj (b0090) 2018; 338 Gordon, Kazemian, Rohani (b0620) 2012; 162 Silveira, Paz, Garcia-Muñoz, Zazo, Casas (b0645) 2017; 219 Luo, Wu, Gan, Cheng, Ma, Tan, Gao, Zhou, Wang, Zhang, Ma (b0690) 2020; 244 Devi, Saroha (b0755) 2014; 169 Brito, Ferreira, Marcionilio, de Moura Santos, Léon, Ganiyu, Martínez-Huitle (b0705) 2018; 165 Sarayu, Sandhya (b0195) 2012; 167 Chakma, Praneeth, Moholkar (b0670) 2017; 38 Titchou, Zazou, Afanga, El Gaayda, Akbour, Hamdani (b0170) 2021; 13 Pesqueira, Marugán, Pereira, Silva (b0870) 2022; 808 Zhu, Cheng, Ma, Qin, Kong, Komarneni (b0605) 2020; 261 Wu, Gu, Lu, Qiu, Sui, Zang, Miao, Xu (b0515) 2015; 147 P.V. Nidheesh, J. Khatri, T.S. Anantha Singh, R. Gandhimathi, S.T. Ramesh, Review of zero-valent aluminium based water and wastewater treatment methods, Chemosphere. 200 (2018) 621–631. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.155. Devi, Das, Dalai (b0765) 2016; 571 Gong (b0555) 2016; 6 An, Westerhoff, Zheng, Wu, Yang, Chiu (b0890) 2015; 73 F.E. Titchou, H. Zazou, H. Afanga, E.G. Jamila, R. Ait Akbour, M. Hamdani, M.A. Oturan, Comparative study of the removal of direct red 23 by anodic oxidation, electro-fenton, photo-anodic oxidation and photoelectro-fenton in chloride and sulfate media, Environ. Res. (2021) 112353. https://doi.org/10.1016/j.envres.2021.112353. Niu, Wang, Zhang, Zeng, Huang, Ruan, Li (b0525) 2012; 126 Titchou, Zazou, Afanga, Gaayda, Ait Akbour, Nidheesh, Hamdani (b0180) 2021; 41 Zheng, Niu, Zhang, Lv, Ye, Ma, Lin, Fu (b0550) 2022; 429 Matzek, Carter (b0230) 2016; 151 Dai, Zhou, Wang (b0355) 2021; 417 Lin, Deng (b0330) 2021; 55 Ghanbari, Moradi, Manshouri (b0425) 2014; 2 Titchou, Afanga, Zazou, Ait Akbour, Hamdani (b0165) 2020; 10 Lee, von Gunten, Kim (b0335) 2020; 54 Fedorov, Dinesh, Sun, Darvishi Cheshmeh Soltani, Wang, Sonawane, Boczkaj (b0365) 2022; 432 Xia, Zhu, Li, Yang, Wei, Li, Jiang, Zhang, Zhao (b0785) 2020; 8 Tian, Hu, Li, Zheng, Xin, Zhang (b0380) 2021 Paździor, Bilińska, Ledakowicz (b0035) 2019; 376 Gao, Li, Yao, Li, Liu, Zhang (b0420) 2017; 329 Jorfi, Ghaedrahmat (b0470) 2021; 40 Holkar, Jadhav, Pinjari, Mahamuni, Pandit (b0200) 2016; 182 Crini (b0065) 2006; 96 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (b0815) 2010; 179 Patel (b0130) 2018; 53 Ding, Gutierrez, Croue, Li, Wang, Wang (b0665) 2020; 253 Li, Tang, Yuan, Tang, Zhang, Li, Rao (b0700) 2019; 177 Sathya, Keerthi, Nithya, Balasubramanian (b0140) 2019; 246 Liang, Guo (b0535) 2010; 44 M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng. 7 (2019) 103248. https://doi.org/10.1016/j.jece.2019.103248. M. Mahdi Ahmed, S. Barbati, P. Doumenq, S. Chiron, Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination, Chem. Eng. J. 197 (2012) 440–447. https://doi.org/10.1016/j.cej.2012.05.040. N.R.J. Hynes, J.S. Kumar, H. Kamyab, J.A.J. Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene, B. Suresh Kumar, Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review, J. Clean. Prod. 272 (2020) 122636. https://doi.org/10.1016/j.jclepro.2020.122636. D. Syam Babu, P.V. Nidheesh, Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process, Sep. Purif. Technol. 282 (2022) 119999. https://doi.org/10.1016/j.seppur.2021.119999. Gągol, Cako, Fedorov, Soltani, Przyjazny, Boczkaj (b0825) 2020; 307 Cheng, Guo, Zhang, Wu, Liu (b0280) 2017; 113 Rodriguez, Vasquez, Costa, Romero, Santos (b0510) 2014; 101 Yuan, Jiang, Wang, Gao, Liu, Li, Boczkaj (b0585) 2020; 571 Zhou, Zhang, Liang, Zhang, Liu, Liu (b0490) 2016; 73 Cai, Liu, Zhang, Zheng, Zhang (b0600) 2016; 165 Guo, Wu, Chen, Fang (b0115) 2022; 55 Johin, Nidheesh, Sivasankar (b0300) 2019; 44 Fernandes, Makoś, Khan, Boczkaj (b0845) 2019; 208 Grilla, Matthaiou, Frontistis, Oller, Polo, Malato, Mantzavinos (b0840) 2019; 328 Mokhtar, Lau, Ismail (b0020) 2014; 2 C. Yu, Z. Xiong, H. Zhou, P. Zhou, H. Zhang, R. Huang, G. Yao, B. Lai, Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects, Chem. Eng. J. (2021) 133802. https://doi.org/10.1016/j.cej.2021.133802. Wang, Xu (b0110) 2012; 42 Xiao, Luo, Wei, Luo, Spinney, Yang, Dionysiou (b0275) 2018; 19 Harikishore Kumar Reddy, Lee (b0750) 2014; 454 Soleymani, Moradi (b0500) 2018; 347 Wang, Wang (b0340) 2020; 401 Ganiyu, Martínez-Huitle, Rodrigo (b0865) 2020; 270 Wang, Wang, Wang, Xiao, Zhou, Su, Cai, Sun (b0075) 2020; 730 Hossain, Sarker, Khan (b0040) 2018; 26 Hou, He, Zhang, Yu, Feng, Li (b0385) 2021; 770 Kiani, Mirzaei, Ghanbari, Feizi, Mehdipour (b0430) 2020; 38 Titchou, Zazou, Afanga, El Gaayda, Ait Akbour, Lesage, Rivallin, Cretin, Hamdani (b0190) 2022; 57 Zhang, Qin, Zhang, Zhang, Yuan (b0595) 2020; 82 Nidheesh, Rajan (b0105) 2016; 6 Verma, Dash, Bhunia (b0055) 2012; 93 Rayaroth, Aravindakumar, Shah, Boczkaj (b0820) 2022; 430 Shang, Dong, Li, Song, Zhang, Jiang, Feiyun (b0875) 2019; 361 Wu, Xu, Jiang, Zhang, Song, Zhao, Yang (b0850) 2017; 7 Pattnaik, Dangayach, Bhardwaj (b0120) 2018; 33 Kang, Duan, Wang, Sun, Tan, Tade, Wang (b0495) 2018; 332 Zhao, Mao, Zhou, Wei, Liu, Yang, Luo, Zhang, Chen, Chen, Tang (b0735) 2017; 189 Zhang, Shao, Shi, Yang (b0740) 2013; 232 Shah, Khan, Sayed, Khan, Iqbal, Imran, Murtaza, Zakir, Polychronopoulou (b0835) 2020; 246 Nidheesh, Gandhimathi, Ramesh (b0085) 2013; 20 Donkadokula, Kola, Naz, Saroj (b0205) 2020; 19 De Gisi, Lofrano, Grassi, Notarnicola (b0080) 2016; 9 Cako, Gunasekaran, Cheshmeh Soltani, Boczkaj (b0640) 2020; 24 Wang, Wang (b0235) 2018; 334 Ghanbari, Ahmadi, Gohari (b0435) 2019; 228 Guerra-Rodríguez, Rodríguez, Singh, Rodríguez-Chueca (b0240) 2018; 10 Wang, Chen, Wang, Yan, Liu (b0410) 2021; 772 Fernandes, Makoś, Boczkaj (b0285) 2018; 195 Yang, Xiao, Zhang, Chen, Li (b0725) 2015; 143 Yang, Sheng, Wang, Yuan, Xue, Wang, Liu, Liu (b0685) 2019; 130 Chan, Chu (b0680) 2009; 43 Fedorov, Plata-Gryl, Khan, Boczkaj (b0375) 2020; 397 Fang, Dionysiou, Wang, Al-Abed, Zhou (b0675) 2012; 227–228 A. Popat, P.V. Nidheesh, T.S. Anantha Singh, M. Suresh Kumar, Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes, Chemosphere. 237 (2019) 124419. https://doi.org/10.1016/j.chemosphere.2019.124419. Antony, Niveditha, Gandhimathi, Ramesh, Nidheesh (b0260) 2020; 106 Pervez, He, Zarra, Naddeo, Zhao (b0445) 2020; 12 Liang, Wang, Bruell (b0810) 2007; 66 Amor, Fernandes, Lucas, Peres (b0395) 2021; 21 Pu, Guan, Ma, Wan, Wang, Brusseau, Chi (b0635) 2018; 549 Li, Jin, Megharaj, Naidu, Chen (b0615) 2015; 264 Kant (b0005) 2012; 04 Naje, Chelliapan, Zakaria, Ajeel, Alaba (b0155) 2017; 33 Yao, Cai, Wu, Wei, Li, Chen, Wang (b0830) 2015; 296 Singh, Arora (b0070) 2011; 41 Xu, Li (b0505) 2010; 72 Yuan, Jiang, Gao, Wang, Wang, Boczkaj, Liu, Ma, Li (b0590) 2020; 380 Ao, Liu 10.1016/j.seppur.2022.121115_b0795 Wang (10.1016/j.seppur.2022.121115_b0340) 2020; 401 Rodríguez-Chueca (10.1016/j.seppur.2022.121115_b0855) 2018; 630 Wu (10.1016/j.seppur.2022.121115_b0515) 2015; 147 Ranganathan (10.1016/j.seppur.2022.121115_b0025) 2007; 50 Holkar (10.1016/j.seppur.2022.121115_b0200) 2016; 182 Yang (10.1016/j.seppur.2022.121115_b0685) 2019; 130 10.1016/j.seppur.2022.121115_b0310 Gągol (10.1016/j.seppur.2022.121115_b0825) 2020; 307 Patel (10.1016/j.seppur.2022.121115_b0130) 2018; 53 Singh (10.1016/j.seppur.2022.121115_b0070) 2011; 41 Pattnaik (10.1016/j.seppur.2022.121115_b0120) 2018; 33 Grilla (10.1016/j.seppur.2022.121115_b0840) 2019; 328 Dasgupta (10.1016/j.seppur.2022.121115_b0030) 2015; 147 Harikishore Kumar Reddy (10.1016/j.seppur.2022.121115_b0750) 2014; 454 Titchou (10.1016/j.seppur.2022.121115_b0170) 2021; 13 10.1016/j.seppur.2022.121115_b0305 Soleymani (10.1016/j.seppur.2022.121115_b0500) 2018; 347 Yang (10.1016/j.seppur.2022.121115_b0815) 2010; 179 Rodriguez (10.1016/j.seppur.2022.121115_b0510) 2014; 101 Boczkaj (10.1016/j.seppur.2022.121115_b0095) 2017; 320 Giannakis (10.1016/j.seppur.2022.121115_b0350) 2021; 406 Yabalak (10.1016/j.seppur.2022.121115_b0475) 2021; 35 10.1016/j.seppur.2022.121115_b0145 Anipsitakis (10.1016/j.seppur.2022.121115_b0215) 2004; 54 Rastogi (10.1016/j.seppur.2022.121115_b0540) 2009; 43 Davis (10.1016/j.seppur.2022.121115_b0325) 2014; 150 Devi (10.1016/j.seppur.2022.121115_b0765) 2016; 571 Chakma (10.1016/j.seppur.2022.121115_b0670) 2017; 38 Zhang (10.1016/j.seppur.2022.121115_b0740) 2013; 232 Sathya (10.1016/j.seppur.2022.121115_b0140) 2019; 246 Titchou (10.1016/j.seppur.2022.121115_b0190) 2022; 57 Luo (10.1016/j.seppur.2022.121115_b0690) 2020; 244 Li (10.1016/j.seppur.2022.121115_b0700) 2019; 177 Li (10.1016/j.seppur.2022.121115_b0630) 2016; 369 Darvishi Cheshmeh Soltani (10.1016/j.seppur.2022.121115_b0465) 2016; 32 Titchou (10.1016/j.seppur.2022.121115_b0165) 2020; 10 Cako (10.1016/j.seppur.2022.121115_b0640) 2020; 24 Nidheesh (10.1016/j.seppur.2022.121115_b0175) 2018; 197 Tian (10.1016/j.seppur.2022.121115_b0380) 2021 Mokhtar (10.1016/j.seppur.2022.121115_b0020) 2014; 2 Fadaei (10.1016/j.seppur.2022.121115_b0440) 2021; 9 Rivera (10.1016/j.seppur.2022.121115_b0720) 2018; 16 Pesqueira (10.1016/j.seppur.2022.121115_b0870) 2022; 808 Hu (10.1016/j.seppur.2022.121115_b0800) 2016; 181 Pu (10.1016/j.seppur.2022.121115_b0635) 2018; 549 Fang (10.1016/j.seppur.2022.121115_b0675) 2012; 227–228 Fang (10.1016/j.seppur.2022.121115_b0780) 2014; 48 Syam Babu (10.1016/j.seppur.2022.121115_b0160) 2020; 55 Zhu (10.1016/j.seppur.2022.121115_b0605) 2020; 261 10.1016/j.seppur.2022.121115_b0290 Fang (10.1016/j.seppur.2022.121115_b0775) 2015; 49 Rayaroth (10.1016/j.seppur.2022.121115_b0820) 2022; 430 Gągol (10.1016/j.seppur.2022.121115_b0090) 2018; 338 Lin (10.1016/j.seppur.2022.121115_b0330) 2021; 55 Yao (10.1016/j.seppur.2022.121115_b0830) 2015; 296 An (10.1016/j.seppur.2022.121115_b0890) 2015; 73 Chen (10.1016/j.seppur.2022.121115_b0295) 2015; 125 Lu (10.1016/j.seppur.2022.121115_b0575) 2016; 57 Kang (10.1016/j.seppur.2022.121115_b0495) 2018; 332 Peng (10.1016/j.seppur.2022.121115_b0520) 2017; 307 Zheng (10.1016/j.seppur.2022.121115_b0550) 2022; 429 Sabri (10.1016/j.seppur.2022.121115_b0655) 2020; 391 Shang (10.1016/j.seppur.2022.121115_b0875) 2019; 361 Johin (10.1016/j.seppur.2022.121115_b0300) 2019; 44 Paździor (10.1016/j.seppur.2022.121115_b0035) 2019; 376 Li (10.1016/j.seppur.2022.121115_b0615) 2015; 264 Thamaraiselvan (10.1016/j.seppur.2022.121115_b0150) 2015; 45 Ganiyu (10.1016/j.seppur.2022.121115_b0865) 2020; 270 Wojnárovits (10.1016/j.seppur.2022.121115_b0390) 2019; 220 Nidheesh (10.1016/j.seppur.2022.121115_b0105) 2016; 6 Dai (10.1016/j.seppur.2022.121115_b0355) 2021; 417 Quan (10.1016/j.seppur.2022.121115_b0045) 2015; 78 Cai (10.1016/j.seppur.2022.121115_b0600) 2016; 165 Titchou (10.1016/j.seppur.2022.121115_b0180) 2021; 41 Pervez (10.1016/j.seppur.2022.121115_b0445) 2020; 12 Gong (10.1016/j.seppur.2022.121115_b0555) 2016; 6 Niu (10.1016/j.seppur.2022.121115_b0525) 2012; 126 Raman (10.1016/j.seppur.2022.121115_b0135) 2016; 177 Hossain (10.1016/j.seppur.2022.121115_b0040) 2018; 26 Wang (10.1016/j.seppur.2022.121115_b0075) 2020; 730 10.1016/j.seppur.2022.121115_b0315 Ding (10.1016/j.seppur.2022.121115_b0665) 2020; 253 Kiani (10.1016/j.seppur.2022.121115_b0430) 2020; 38 Yang (10.1016/j.seppur.2022.121115_b0725) 2015; 143 Guo (10.1016/j.seppur.2022.121115_b0115) 2022; 55 Matzek (10.1016/j.seppur.2022.121115_b0230) 2016; 151 Liang (10.1016/j.seppur.2022.121115_b0530) 2009; 106 Wu (10.1016/j.seppur.2022.121115_b0850) 2017; 7 Nidheesh (10.1016/j.seppur.2022.121115_b0860) 2017; 24 Bougdour (10.1016/j.seppur.2022.121115_b0050) 2020; 3 Xiao (10.1016/j.seppur.2022.121115_b0275) 2018; 19 Oh (10.1016/j.seppur.2022.121115_b0545) 2019; 358 Miao (10.1016/j.seppur.2022.121115_b0715) 2020; 81 dos Santos (10.1016/j.seppur.2022.121115_b0695) 2020; 747 Hu (10.1016/j.seppur.2022.121115_b0745) 2020; 722 Zhou (10.1016/j.seppur.2022.121115_b0490) 2016; 73 Watts (10.1016/j.seppur.2022.121115_b0270) 2018; 133 Rodríguez (10.1016/j.seppur.2022.121115_b0450) 2020; 255 Sarayu (10.1016/j.seppur.2022.121115_b0195) 2012; 167 Antony (10.1016/j.seppur.2022.121115_b0260) 2020; 106 Lv (10.1016/j.seppur.2022.121115_b0625) 2015; 400 Mukhopadhyay (10.1016/j.seppur.2022.121115_b0650) 2021; 26 Wacławek (10.1016/j.seppur.2022.121115_b0805) 2015; 149 Ducousso (10.1016/j.seppur.2022.121115_b0770) 2015; 159 Fedorov (10.1016/j.seppur.2022.121115_b0375) 2020; 397 Shah (10.1016/j.seppur.2022.121115_b0835) 2020; 246 Amor (10.1016/j.seppur.2022.121115_b0395) 2021; 21 Zhang (10.1016/j.seppur.2022.121115_b0710) 2015; 162 Naje (10.1016/j.seppur.2022.121115_b0155) 2017; 33 Liang (10.1016/j.seppur.2022.121115_b0535) 2010; 44 Zhao (10.1016/j.seppur.2022.121115_b0735) 2017; 189 Nidheesh (10.1016/j.seppur.2022.121115_b0060) 2022; 209 Ike (10.1016/j.seppur.2022.121115_b0225) 2018; 338 Silveira (10.1016/j.seppur.2022.121115_b0645) 2017; 219 Liu (10.1016/j.seppur.2022.121115_b0565) 2016; 169 Wang (10.1016/j.seppur.2022.121115_b0110) 2012; 42 Crini (10.1016/j.seppur.2022.121115_b0065) 2006; 96 Yang (10.1016/j.seppur.2022.121115_b0405) 2019; 378 10.1016/j.seppur.2022.121115_b0185 Guerra-Rodríguez (10.1016/j.seppur.2022.121115_b0240) 2018; 10 Jorfi (10.1016/j.seppur.2022.121115_b0470) 2021; 40 De Gisi (10.1016/j.seppur.2022.121115_b0080) 2016; 9 Xu (10.1016/j.seppur.2022.121115_b0505) 2010; 72 Brito (10.1016/j.seppur.2022.121115_b0705) 2018; 165 Yuan (10.1016/j.seppur.2022.121115_b0585) 2020; 571 Cheng (10.1016/j.seppur.2022.121115_b0280) 2017; 113 Ghanbari (10.1016/j.seppur.2022.121115_b0435) 2019; 228 Ahmad (10.1016/j.seppur.2022.121115_b0265) 2013; 47 Ushani (10.1016/j.seppur.2022.121115_b0400) 2020; 402 Ganiyu (10.1016/j.seppur.2022.121115_b0320) 2019; 6 Fedorov (10.1016/j.seppur.2022.121115_b0370) 2021; 417 Lee (10.1016/j.seppur.2022.121115_b0335) 2020; 54 Jegatheesan (10.1016/j.seppur.2022.121115_b0010) 2016; 204 Ghanbari (10.1016/j.seppur.2022.121115_b0425) 2014; 2 Fedorov (10.1016/j.seppur.2022.121115_b0365) 2022; 432 Lin (10.1016/j.seppur.2022.121115_b0415) 2013; 117 10.1016/j.seppur.2022.121115_b0250 Yuan (10.1016/j.seppur.2022.121115_b0590) 2020; 380 Bougdour (10.1016/j.seppur.2022.121115_b0455) 2020; 22 Mirza (10.1016/j.seppur.2022.121115_b0015) 2020; 206 Fernandes (10.1016/j.seppur.2022.121115_b0845) 2019; 208 Liu (10.1016/j.seppur.2022.121115_b0560) 2018; 206 Chan (10.1016/j.seppur.2022.121115_b0680) 2009; 43 Wang (10.1016/j.seppur.2022.121115_b0410) 2021; 772 Gao (10.1016/j.seppur.2022.121115_b0420) 2017; 329 Zhao (10.1016/j.seppur.2022.121115_b0360) 2021 Rehman (10.1016/j.seppur.2022.121115_b0660) 2018; 357 Du (10.1016/j.seppur.2022.121115_b0580) 2017; 313 Zhou (10.1016/j.seppur.2022.121115_b0610) 2021; 261 Wang (10.1016/j.seppur.2022.121115_b0235) 2018; 334 Xiao (10.1016/j.seppur.2022.121115_b0485) 2020; 384 Liang (10.1016/j.seppur.2022.121115_b0810) 2007; 66 Kant (10.1016/j.seppur.2022.121115_b0005) 2012; 04 Verma (10.1016/j.seppur.2022.121115_b0055) 2012; 93 Karim (10.1016/j.seppur.2022.121115_b0245) 2020; 265 Hou (10.1016/j.seppur.2022.121115_b0385) 2021; 770 10.1016/j.seppur.2022.121115_b0125 10.1016/j.seppur.2022.121115_b0885 Huang (10.1016/j.seppur.2022.121115_b0220) 2019; 133 Nidheesh (10.1016/j.seppur.2022.121115_b0085) 2013; 20 Titchou (10.1016/j.seppur.2022.121115_b0100) 2021; 169 Khatri (10.1016/j.seppur.2022.121115_b0255) 2018; 348 10.1016/j.seppur.2022.121115_b0880 Duan (10.1016/j.seppur.2022.121115_b0730) 2016; 107 10.1016/j.seppur.2022.121115_b0480 Gordon (10.1016/j.seppur.2022.121115_b0620) 2012; 162 Fernandes (10.1016/j.seppur.2022.121115_b0285) 2018; 195 Yuan (10.1016/j.seppur.2022.121115_b0760) 2017; 246 Asgari (10.1016/j.seppur.2022.121115_b0460) 2020; 184 Zhang (10.1016/j.seppur.2022.121115_b0595) 2020; 82 Wang (10.1016/j.seppur.2022.121115_b0345) 2021; 315 Devi (10.1016/j.seppur.2022.121115_b0755) 2014; 169 Ao (10.1016/j.seppur.2022.121115_b0210) 2017; 313 Xia (10.1016/j.seppur.2022.121115_b0785) 2020; 8 Lin (10.1016/j.seppur.2022.121115_b0570) 2019; 214 Donkadokula (10.1016/j.seppur.2022.121115_b0205) 2020; 19 Manos (10.1016/j.seppur.2022.121115_b0790) 2020; 10 |
References_xml | – volume: 206 start-page: 565 year: 2018 end-page: 576 ident: b0560 article-title: Effective degradation of primary color direct azo dyes using Fe0 aggregates-activated persulfate process publication-title: J. Environ. Manage. – volume: 16 start-page: 1 year: 2018 end-page: 17 ident: b0720 article-title: Parametric Mathematical modelling of cristal Violet Dye electrochemical oxidation using a flow electrochemical reactor with BDD and DSA anodes in sulfate media publication-title: Int. J. Chem. React. Eng. – volume: 378 year: 2019 ident: b0405 article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water publication-title: Chem. Eng. J. – volume: 20 start-page: 2099 year: 2013 end-page: 2132 ident: b0085 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. – volume: 177 start-page: 77 year: 2019 end-page: 85 ident: b0700 article-title: Improved degradation of anthraquinone dye by electrochemical activation of PDS publication-title: Ecotoxicol. Environ. Saf. – volume: 19 start-page: 543 year: 2020 end-page: 560 ident: b0205 article-title: A review on advanced physico-chemical and biological textile dye wastewater treatment techniques publication-title: Rev. Environ. Sci. Biotechnol. – volume: 208 start-page: 54 year: 2019 end-page: 64 ident: b0845 article-title: Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes publication-title: J. Clean. Prod. – volume: 357 start-page: 506 year: 2018 end-page: 514 ident: b0660 article-title: Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study publication-title: J. Hazard. Mater. – volume: 45 start-page: 1007 year: 2015 end-page: 1040 ident: b0150 article-title: Membrane processes for dye wastewater treatment: recent progress in fouling control publication-title: Crit. Rev. Environ. Sci. Technol. – year: 2021 ident: b0380 article-title: Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment publication-title: Chin. Chem. Lett. – volume: 9 start-page: 105414 year: 2021 ident: b0440 article-title: Heterogeneous activation of peroxymonosulfate with Fe publication-title: J. Environ. Chem. Eng. – volume: 9 start-page: 10 year: 2016 end-page: 40 ident: b0080 article-title: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review publication-title: Sustain. Mater. Technol. – volume: 2 start-page: 71 year: 2014 end-page: 78 ident: b0020 article-title: The potential of membrane distillation in recovering water from hot dyeing solution publication-title: J. Water Process Eng. – volume: 6 start-page: 553 year: 2016 end-page: 561 ident: b0555 article-title: Degradation of dye wastewater by persulfate activated with Fe3O4/graphene nanocomposite publication-title: J. Water Reuse Desalination – volume: 417 year: 2021 ident: b0355 article-title: Co/N co-doped carbonaceous polyhedron as efficient peroxymonosulfate activator for degradation of organic pollutants: role of cobalt publication-title: Chem. Eng. J. – volume: 33 start-page: 1 year: 2017 end-page: 30 ident: b0155 article-title: A review of electrocoagulation technology for the treatment of textile wastewater publication-title: Rev. Chem. Eng. – volume: 101 start-page: 86 year: 2014 end-page: 92 ident: b0510 article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI) publication-title: Chemosphere – volume: 307 start-page: 750 year: 2017 end-page: 755 ident: b0520 article-title: Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil publication-title: Chem. Eng. J. – volume: 53 start-page: 2797 year: 2018 end-page: 2812 ident: b0130 article-title: Charcoal as an adsorbent for textile wastewater treatment publication-title: Sep. Sci. Technol. – volume: 55 start-page: 15010 year: 2021 end-page: 15012 ident: b0330 article-title: Is sulfate radical a ROS? publication-title: Environ. Sci. Technol. – volume: 332 start-page: 398 year: 2018 end-page: 408 ident: b0495 article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability publication-title: Chem. Eng. J. – reference: P. Chanikya, P.V. Nidheesh, D. Syam Babu, A. Gopinath, M. Suresh Kumar, Treatment of dyeing wastewater by combined sulfate radical based electrochemical advanced oxidation and electrocoagulation processes, Sep. Purif. Technol. 254 (2021) 117570. https://doi.org/10.1016/j.seppur.2020.117570. – reference: D. Syam Babu, P.V. Nidheesh, Treatment of arsenite contaminated water by electrochemically activated persulfate oxidation process, Sep. Purif. Technol. 282 (2022) 119999. https://doi.org/10.1016/j.seppur.2021.119999. – volume: 246 start-page: 271 year: 2017 end-page: 281 ident: b0760 article-title: Applications of biochar in redox-mediated reactions publication-title: Bioresour. Technol. – volume: 261 year: 2020 ident: b0605 article-title: Bi2MoO6 microspheres for the degradation of orange II by heterogeneous activation of persulfate under visible light publication-title: Mater. Lett. – volume: 549 start-page: 82 year: 2018 end-page: 92 ident: b0635 article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution publication-title: Appl. Catal. Gen. – volume: 400 start-page: 81 year: 2015 end-page: 89 ident: b0625 article-title: Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework publication-title: J. Mol. Catal. Chem. – volume: 165 start-page: 42 year: 2016 end-page: 52 ident: b0600 article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate publication-title: Sep. Purif. Technol. – volume: 78 start-page: 74 year: 2015 end-page: 83 ident: b0045 article-title: In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation publication-title: Water Res. – volume: 10 start-page: 1 year: 2020 end-page: 44 ident: b0790 article-title: Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems publication-title: Catalysts – reference: P.V. Nidheesh, J. Khatri, T.S. Anantha Singh, R. Gandhimathi, S.T. Ramesh, Review of zero-valent aluminium based water and wastewater treatment methods, Chemosphere. 200 (2018) 621–631. https://doi.org/10.1016/J.CHEMOSPHERE.2018.02.155. – volume: 22 start-page: 69 year: 2020 end-page: 72 ident: b0455 article-title: Photocatalytic degradation of industrial textile wastewater using S2O82/Fe2+ process publication-title: Mater. Today Proc. – volume: 159 start-page: 491 year: 2015 end-page: 499 ident: b0770 article-title: Reactivity enhancement of gasification biochars for catalytic applications publication-title: Fuel. – volume: 55 start-page: 286 year: 2022 end-page: 297 ident: b0115 article-title: UV/chlorine process: an efficient advanced oxidation process with multiple radicals and functions in water treatment publication-title: Acc. Chem. Res. – volume: 130 start-page: 104918 year: 2019 ident: b0685 article-title: An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants publication-title: Environ. Int. – volume: 264 start-page: 587 year: 2015 end-page: 594 ident: b0615 article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system publication-title: Chem. Eng. J. – volume: 04 start-page: 22 year: 2012 end-page: 26 ident: b0005 article-title: Textile dyeing industry an environmental hazard publication-title: Nat. Sci. – volume: 228 start-page: 115732 year: 2019 ident: b0435 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: the effect of UV and US irradiation and application for real wastewater publication-title: Sep. Purif. Technol. – volume: 73 start-page: 493 year: 2016 end-page: 500 ident: b0490 article-title: Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple publication-title: Water Sci. Technol. – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: b0775 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 7 start-page: 44059 year: 2017 end-page: 44067 ident: b0850 article-title: Evaluation and optimization of a pilot-scale catalytic ozonation–persulfate oxidation integrated process for the pretreatment of dry-spun acrylic fiber wastewater publication-title: RSC Adv. – volume: 197 start-page: 210 year: 2018 end-page: 227 ident: b0175 article-title: An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes publication-title: Chemosphere – volume: 315 year: 2021 ident: b0345 article-title: Toxicity changes of wastewater during various advanced oxidation processes treatment: an overview publication-title: J. Clean. Prod. – volume: 348 start-page: 67 year: 2018 end-page: 73 ident: b0255 article-title: Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater publication-title: Chem. Eng. J. – volume: 220 start-page: 1014 year: 2019 end-page: 1032 ident: b0390 article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review publication-title: Chemosphere. – volume: 143 start-page: 19 year: 2015 end-page: 26 ident: b0725 article-title: Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution publication-title: Sep. Purif. Technol. – volume: 12 start-page: 733 year: 2020 ident: b0445 article-title: New sustainable approach for the production of Fe3O4/Graphene oxide-activated persulfate system for dye removal in real wastewater publication-title: Water Switz. – volume: 244 start-page: 116839 year: 2020 ident: b0690 article-title: Oxidation of Congo red by thermally activated persulfate process: kinetics and transformation pathway publication-title: Sep. Purif. Technol. – volume: 41 year: 2021 ident: b0180 article-title: An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes publication-title: J. Water Process Eng. – volume: 72 start-page: 105 year: 2010 end-page: 111 ident: b0505 article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. – volume: 246 year: 2020 ident: b0835 article-title: Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: a semi-pilot scale study publication-title: J. Clean. Prod. – volume: 147 start-page: 55 year: 2015 end-page: 72 ident: b0030 article-title: Remediation of textile effluents by membrane based treatment techniques: a state of the art review publication-title: J. Environ. Manage. – volume: 43 start-page: 684 year: 2009 end-page: 694 ident: b0540 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. – volume: 107 start-page: 371 year: 2016 end-page: 378 ident: b0730 article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation publication-title: Carbon – volume: 296 start-page: 128 year: 2015 end-page: 137 ident: b0830 article-title: Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water publication-title: J. Hazard. Mater. – volume: 338 start-page: 599 year: 2018 end-page: 627 ident: b0090 article-title: Wastewater treatment by means of advanced oxidation processes based on cavitation – a review publication-title: Chem. Eng. J. – volume: 40 start-page: 4 year: 2021 end-page: 10 ident: b0470 article-title: Evaluating the efficiency of advanced oxidation processes for textile wastewater treatment: electro-kinetic, sonochemical and persulfate publication-title: Environ. Prog. Sustain. Energy – volume: 253 year: 2020 ident: b0665 article-title: Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison publication-title: Chemosphere. – volume: 432 start-page: 134191 year: 2022 ident: b0365 article-title: Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon – a review publication-title: Chem. Eng. J. – volume: 184 year: 2020 ident: b0460 article-title: Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: modeling by response surface methodology and artificial neural network publication-title: Environ. Res. – volume: 32 start-page: 181 year: 2016 end-page: 190 ident: b0465 article-title: Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization publication-title: Ultrason. Sonochem. – volume: 406 year: 2021 ident: b0350 article-title: A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs) publication-title: Chem. Eng. J. – volume: 24 year: 2020 ident: b0640 article-title: Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs) publication-title: Water Resour. Ind. – volume: 402 year: 2020 ident: b0400 article-title: Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the–art review publication-title: Chem. Eng. J. – volume: 391 start-page: 1 year: 2020 end-page: 11 ident: b0655 article-title: Novel ZnO/CuBi2O4 heterostructures for persulfate-assisted photocatalytic degradation of dye contaminants under visible light publication-title: J. Photochem. Photobiol. Chem. – volume: 313 start-page: 1023 year: 2017 end-page: 1032 ident: b0580 article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals publication-title: Chem. Eng. J. – volume: 206 start-page: 83 year: 2020 end-page: 107 ident: b0015 article-title: A review of the textile wastewater treatment technologies with special focus on advanced oxidation processes (AOPs), membrane separation and integrated AOP-membrane processes publication-title: Desalination Water Treat. – volume: 454 start-page: 96 year: 2014 end-page: 103 ident: b0750 article-title: Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal publication-title: Colloids Surf. Physicochem. Eng. Asp. – volume: 33 start-page: 163 year: 2018 end-page: 203 ident: b0120 article-title: A review on the sustainability of textile industries wastewater with and without treatment methodologies publication-title: Rev. Environ. Health. – volume: 227–228 start-page: 394 year: 2012 end-page: 401 ident: b0675 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J. Hazard. Mater. – volume: 770 year: 2021 ident: b0385 article-title: Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: a review publication-title: Sci. Total Environ. – volume: 204 start-page: 202 year: 2016 end-page: 212 ident: b0010 article-title: Treatment of textile wastewater with membrane bioreactor: a critical review publication-title: Bioresour. Technol. – volume: 177 start-page: 341 year: 2016 end-page: 355 ident: b0135 article-title: Textile dye degradation using nano zero valent iron: a review publication-title: J. Environ. Manage. – reference: M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review, J. Environ. Chem. Eng. 7 (2019) 103248. https://doi.org/10.1016/j.jece.2019.103248. – volume: 6 start-page: 5330 year: 2016 end-page: 5340 ident: b0105 article-title: Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon publication-title: RSC Adv. – volume: 376 year: 2019 ident: b0035 article-title: A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment publication-title: Chem. Eng. J. – volume: 369 start-page: 130 year: 2016 end-page: 136 ident: b0630 article-title: Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation publication-title: Appl. Surf. Sci. – volume: 35 start-page: 1281 year: 2021 end-page: 1292 ident: b0475 article-title: Membrane concentrate management for textile wastewater with thermally activated persulfate oxidation method publication-title: Water Environ. J. – reference: M. Reza Samarghandi, K. Tari, A. Shabanloo, M. Salari, H. Zolghadr Nasab, Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater, Sep. Purif. Technol. 247 (2020) 116931. https://doi.org/10.1016/j.seppur.2020.116931. – volume: 93 start-page: 154 year: 2012 end-page: 168 ident: b0055 article-title: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters publication-title: J. Environ. Manage. – volume: 162 start-page: 36 year: 2012 end-page: 43 ident: b0620 article-title: Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation publication-title: Micropor. Mesopor. Mater. – volume: 150 start-page: 68 year: 2014 end-page: 74 ident: b0325 article-title: Understanding persulfate production at boron doped diamond film anodes publication-title: Electrochim. Acta – reference: N.R.J. Hynes, J.S. Kumar, H. Kamyab, J.A.J. Sujana, O.A. Al-Khashman, Y. Kuslu, A. Ene, B. Suresh Kumar, Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -A comprehensive review, J. Clean. Prod. 272 (2020) 122636. https://doi.org/10.1016/j.jclepro.2020.122636. – volume: 13 year: 2021 ident: b0170 article-title: Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process publication-title: Groundw. Sustain. Dev. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: b0235 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 209 start-page: 390 year: 2022 end-page: 432 ident: b0060 article-title: A review of integrated advanced oxidation processes and biological processes for organic pollutant removal publication-title: Chem. Eng. Commun. – volume: 48 start-page: 1902 year: 2014 end-page: 1910 ident: b0780 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. – volume: 126 start-page: 101 year: 2012 end-page: 106 ident: b0525 article-title: Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate publication-title: Bioresour. Technol. – volume: 41 start-page: 807 year: 2011 end-page: 878 ident: b0070 article-title: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 232 start-page: 259 year: 2013 end-page: 265 ident: b0740 article-title: Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon publication-title: Chem. Eng. J. – volume: 328 start-page: 216 year: 2019 end-page: 222 ident: b0840 article-title: Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study publication-title: Catal. Today. – reference: F.E. Titchou, H. Zazou, H. Afanga, E.G. Jamila, R. Ait Akbour, M. Hamdani, M.A. Oturan, Comparative study of the removal of direct red 23 by anodic oxidation, electro-fenton, photo-anodic oxidation and photoelectro-fenton in chloride and sulfate media, Environ. Res. (2021) 112353. https://doi.org/10.1016/j.envres.2021.112353. – reference: M. Mahdi Ahmed, S. Barbati, P. Doumenq, S. Chiron, Sulfate radical anion oxidation of diclofenac and sulfamethoxazole for water decontamination, Chem. Eng. J. 197 (2012) 440–447. https://doi.org/10.1016/j.cej.2012.05.040. – volume: 57 start-page: 1501 year: 2022 end-page: 1520 ident: b0190 article-title: Electrochemical oxidation treatment of Direct Red 23 aqueous solutions: Influence of the operating conditions publication-title: Sep. Sci. Technol. – volume: 417 year: 2021 ident: b0370 article-title: Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water publication-title: Chem. Eng. J. – volume: 19 start-page: 51 year: 2018 end-page: 58 ident: b0275 article-title: Activation of peroxymonosulfate / persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies publication-title: Curr. Opin. Chem. Eng. – volume: 147 start-page: 186 year: 2015 end-page: 193 ident: b0515 article-title: Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine publication-title: Sep. Purif. Technol. – volume: 261 start-page: 118290 year: 2021 ident: b0610 article-title: Persulfate activation by MnCuS nanocomposites for degradation of organic pollutants publication-title: Sep. Purif. Technol. – volume: 384 year: 2020 ident: b0485 article-title: Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review publication-title: Chem. Eng. J. – reference: G. Divyapriya, P.V. Nidheesh, Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications, Curr. Opin. Solid State Mater. Sci. 25 (2021) 100921. https://doi.org/10.1016/j.cossms.2021.100921. – volume: 38 start-page: 652 year: 2017 end-page: 663 ident: b0670 article-title: Mechanistic investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques of persulfate activation for degradation of Azorubine publication-title: Ultrason. Sonochem. – volume: 265 year: 2020 ident: b0245 article-title: Iron-based persulfate activation process for environmental decontamination in water and soil publication-title: Chemosphere – volume: 38 start-page: 1 year: 2020 end-page: 8 ident: b0430 article-title: Real textile wastewater treatment by a sulfate radicals-advanced oxidation process: peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon publication-title: J. Water Process Eng. – volume: 401 year: 2020 ident: b0340 article-title: Reactive species in advanced oxidation processes: formation, identification and reaction mechanism publication-title: Chem. Eng. J. – year: 2021 ident: b0360 article-title: MOFs-derived MnOx@C nanosheets for peroxymonosulfate activation: synergistic effect and mechanism publication-title: Chem. Eng. J. – volume: 808 year: 2022 ident: b0870 article-title: Selecting the most environmentally friendly oxidant for UVC degradation of micropollutants in urban wastewater by assessing life cycle impacts: hydrogen peroxide, peroxymonosulfate or persulfate? publication-title: Sci. Total Environ. – volume: 329 start-page: 272 year: 2017 end-page: 279 ident: b0420 article-title: Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway publication-title: J. Hazard. Mater. – volume: 380 year: 2020 ident: b0590 article-title: 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation publication-title: Chem. Eng. J. – volume: 169 year: 2021 ident: b0100 article-title: Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes publication-title: Chem. Eng. Process. - Process Intensif. – volume: 57 start-page: 7898 year: 2016 end-page: 7909 ident: b0575 article-title: Fe2(MoO4)3 as a novel heterogeneous catalyst to activate persulfate for Rhodamine B degradation publication-title: Desalination Water Treat. – volume: 24 start-page: 27047 year: 2017 end-page: 27069 ident: b0860 article-title: Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review publication-title: Environ. Sci. Pollut. Res. – volume: 10 start-page: 1828 year: 2018 ident: b0240 article-title: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review publication-title: Water. – volume: 189 start-page: 224 year: 2017 end-page: 238 ident: b0735 article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications publication-title: Chemosphere – volume: 106 start-page: 173 year: 2009 end-page: 182 ident: b0530 article-title: pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene publication-title: J. Contam. Hydrol. – volume: 165 start-page: E250 year: 2018 end-page: E255 ident: b0705 article-title: Electrochemical oxidation of Acid Violet 7 dye by using Si/BDD and Nb/BDD electrodes publication-title: J. Electrochem. Soc. – volume: 182 start-page: 351 year: 2016 end-page: 366 ident: b0200 article-title: A critical review on textile wastewater treatments: possible approaches publication-title: J. Environ. Manage. – volume: 320 start-page: 608 year: 2017 end-page: 633 ident: b0095 article-title: Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review publication-title: Chem. Eng. J. – volume: 571 start-page: 643 year: 2016 end-page: 657 ident: b0765 article-title: In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. – volume: 361 start-page: 1333 year: 2019 end-page: 1344 ident: b0875 article-title: Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation publication-title: Chem. Eng. J. – volume: 429 year: 2022 ident: b0550 article-title: Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: a review publication-title: Chem. Eng. J. – volume: 313 start-page: 629 year: 2017 end-page: 637 ident: b0210 article-title: Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide publication-title: Chem. Eng. J. – reference: A. Popat, P.V. Nidheesh, T.S. Anantha Singh, M. Suresh Kumar, Mixed industrial wastewater treatment by combined electrochemical advanced oxidation and biological processes, Chemosphere. 237 (2019) 124419. https://doi.org/10.1016/j.chemosphere.2019.124419. – reference: C. Yu, Z. Xiong, H. Zhou, P. Zhou, H. Zhang, R. Huang, G. Yao, B. Lai, Marriage of membrane filtration and sulfate radical-advanced oxidation processes (SR-AOPs) for water purification: Current developments, challenges and prospects, Chem. Eng. J. (2021) 133802. https://doi.org/10.1016/j.cej.2021.133802. – volume: 195 start-page: 374 year: 2018 end-page: 384 ident: b0285 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Clean. Prod. – volume: 54 start-page: 155 year: 2004 end-page: 163 ident: b0215 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B Environ. – volume: 347 start-page: 243 year: 2018 end-page: 251 ident: b0500 article-title: Performance and modeling of UV/persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: Kinetic study and operating cost estimation publication-title: Chem. Eng. J. – volume: 133 start-page: 247 year: 2018 end-page: 254 ident: b0270 article-title: Persulfate activation by glucose for in situ chemical oxidation publication-title: Water Res. – volume: 772 year: 2021 ident: b0410 article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates publication-title: Sci. Total Environ. – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: b0165 article-title: Batch elimination of cationic dye from aqueous solution by electrocoagulation process publication-title: Mediterr. J. Chem. – volume: 26 start-page: 23 year: 2018 end-page: 33 ident: b0040 article-title: Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh publication-title: Environ. Dev. – reference: J.-S. Wang, X.-H. Yi, X. Xu, H. Ji, A.M. Alanazi, C.-C. Wang, C. Zhao, Y.V. Kaneti, P. Wang, W. Liu, Y. Yamauchi, Eliminating tetracycline antibiotics matrix via photoactivated sulfate radical-based advanced oxidation process over the immobilized MIL-88A: Batch and continuous experiments, Chem. Eng. J. (2021) 133213. https://doi.org/10.1016/j.cej.2021.133213. – volume: 96 start-page: 1061 year: 2006 end-page: 1085 ident: b0065 article-title: Non-conventional low-cost adsorbents for dye removal: a review publication-title: Bioresour. Technol. – volume: 106 start-page: 1 year: 2020 end-page: 11 ident: b0260 article-title: Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process publication-title: Waste Manag. – volume: 571 start-page: 142 year: 2020 end-page: 154 ident: b0585 article-title: Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation publication-title: J. Colloid Interface Sci. – volume: 219 start-page: 314 year: 2017 end-page: 321 ident: b0645 article-title: UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation publication-title: Appl. Catal. B Environ. – volume: 133 year: 2019 ident: b0220 article-title: Mn-based catalysts for sulfate radical-based advanced oxidation processes: a review publication-title: Environ. Int. – volume: 179 start-page: 552 year: 2010 end-page: 558 ident: b0815 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. – volume: 181 start-page: 103 year: 2016 end-page: 117 ident: b0800 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. – volume: 246 start-page: 768 year: 2019 end-page: 775 ident: b0140 article-title: Balasubramanian, Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment publication-title: J. Environ. Manage. – volume: 47 start-page: 5864 year: 2013 end-page: 5871 ident: b0265 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. – volume: 42 start-page: 251 year: 2012 end-page: 325 ident: b0110 article-title: Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 113 start-page: 80 year: 2017 end-page: 88 ident: b0280 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. – volume: 54 start-page: 3064 year: 2020 end-page: 3081 ident: b0335 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ. Sci. Technol. – volume: 8 year: 2020 ident: b0785 article-title: A review study on sulfate-radical-based advanced oxidation processes for domestic/industrial wastewater treatment: degradation, efficiency, and mechanism publication-title: Front. Chem. – volume: 162 start-page: E85 year: 2015 end-page: E89 ident: b0710 article-title: The peculiar roles of sulfate electrolytes in BDD anode cells publication-title: J. Electrochem. Soc. – volume: 125 start-page: 175 year: 2015 end-page: 181 ident: b0295 article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate publication-title: Chemosphere – volume: 44 start-page: 9987 year: 2019 end-page: 9996 ident: b0300 article-title: Sono-electro-chemical treatment of Reactive Black 5 dye and real textile effluent using MnSO4/Na2S2O8 electrolytes publication-title: Arab. J. Sci. Eng. – volume: 430 year: 2022 ident: b0820 article-title: Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: a review publication-title: Chem. Eng. J. – volume: 66 start-page: 106 year: 2007 end-page: 113 ident: b0810 article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures publication-title: Chemosphere – volume: 43 start-page: 2513 year: 2009 end-page: 2521 ident: b0680 article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process publication-title: Water Res. – volume: 730 year: 2020 ident: b0075 article-title: Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update publication-title: Sci. Total Environ. – volume: 44 start-page: 8203 year: 2010 end-page: 8208 ident: b0535 article-title: Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate publication-title: Environ. Sci. Technol. – volume: 747 year: 2020 ident: b0695 article-title: Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions publication-title: Sci. Total Environ. – volume: 6 start-page: 2379 year: 2019 end-page: 2392 ident: b0320 article-title: Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment publication-title: ChemElectroChem. – volume: 149 start-page: 928 year: 2015 end-page: 933 ident: b0805 article-title: Simple spectrophotometric determination of monopersulfate publication-title: Spectrochim. Acta - Part Mol. Biomol. Spectrosc. – volume: 397 year: 2020 ident: b0375 article-title: Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water publication-title: J. Hazard. Mater. – volume: 3 start-page: 153 year: 2020 end-page: 160 ident: b0050 article-title: Textile wastewater treatment by peroxydisulfate/Fe(II)/UV: operating cost evaluation and phytotoxicity studies publication-title: Chem. Afr. – volume: 338 start-page: 651 year: 2018 end-page: 669 ident: b0225 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. – volume: 722 start-page: 137831 year: 2020 ident: b0745 article-title: The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: a review publication-title: Sci. Total Environ. – volume: 255 year: 2020 ident: b0450 article-title: Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II) publication-title: J. Environ. Manage. – volume: 82 start-page: 185 year: 2020 end-page: 193 ident: b0595 article-title: Oxidative degradation of Orange G in aqueous solution by persulfate activated with pyrite publication-title: Water Sci. Technol. – volume: 117 start-page: 18 year: 2013 end-page: 23 ident: b0415 article-title: Degradation of bisphenol A in aqueous solution by a novel electro/Fe 3+/peroxydisulfate process publication-title: Sep. Purif. Technol. – volume: 358 start-page: 110 year: 2019 end-page: 133 ident: b0545 article-title: Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview publication-title: Chem. Eng. J. – volume: 50 start-page: 306 year: 2007 end-page: 318 ident: b0025 article-title: Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis—case studies publication-title: Resour. Conserv. Recycl. – volume: 167 start-page: 645 year: 2012 end-page: 661 ident: b0195 article-title: Current technologies for biological treatment of textile wastewater-a review publication-title: Appl. Biochem. Biotechnol. – volume: 73 start-page: 304 year: 2015 end-page: 310 ident: b0890 article-title: UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon publication-title: Water Res. – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: b0230 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere – volume: 214 start-page: 642 year: 2019 end-page: 650 ident: b0570 article-title: Efficient degradation of Orange G with persulfate activated by recyclable FeMoO4 publication-title: Chemosphere. – volume: 630 start-page: 1216 year: 2018 end-page: 1225 ident: b0855 article-title: Micropollutants removal by full-scale UV-C/sulfate radical based advanced oxidation processes publication-title: Sci. Total Environ. – volume: 169 start-page: 230 year: 2016 end-page: 240 ident: b0565 article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process publication-title: Sep. Purif. Technol. – volume: 307 year: 2020 ident: b0825 article-title: Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants publication-title: J. Mol. Liq. – volume: 55 start-page: 3195 year: 2020 end-page: 3227 ident: b0160 article-title: Industrial wastewater treatment by electrocoagulation process publication-title: Sep. Sci. Technol. – volume: 169 start-page: 525 year: 2014 end-page: 531 ident: b0755 article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent publication-title: Bioresour. Technol. – volume: 270 year: 2020 ident: b0865 article-title: Renewable energies driven electrochemical wastewater/soil decontamination technologies: a critical review of fundamental concepts and applications publication-title: Appl. Catal. B Environ. – volume: 26 year: 2021 ident: b0650 article-title: Enhanced persulfate activated sono-catalytic degradation of brilliant green dye by magnetic CaFe2O4 nanoparticles: degradation pathway study, assessment of bio-toxicity and cost analysis publication-title: Surf. Interfaces. – volume: 21 year: 2021 ident: b0395 article-title: Hydroxyl and sulfate radical advanced oxidation processes: application to an agro-industrial wastewater publication-title: Environ. Technol. Innov. – volume: 2 start-page: 1846 year: 2014 end-page: 1851 ident: b0425 article-title: Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: Compared with zero valent copper publication-title: J. Environ. Chem. Eng. – volume: 81 start-page: 925 year: 2020 end-page: 935 ident: b0715 article-title: Electro-activated persulfate oxidation of malachite green by boron-doped diamond (BDD) anode: effect of degradation process parameters publication-title: Water Sci. Technol. – volume: 165 start-page: 42 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0600 article-title: Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.03.026 – volume: 117 start-page: 18 year: 2013 ident: 10.1016/j.seppur.2022.121115_b0415 article-title: Degradation of bisphenol A in aqueous solution by a novel electro/Fe 3+/peroxydisulfate process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.04.026 – volume: 571 start-page: 643 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0765 article-title: In-situ chemical oxidation: Principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.032 – volume: 808 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0870 article-title: Selecting the most environmentally friendly oxidant for UVC degradation of micropollutants in urban wastewater by assessing life cycle impacts: hydrogen peroxide, peroxymonosulfate or persulfate? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.152050 – volume: 113 start-page: 80 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0280 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2017.02.016 – volume: 147 start-page: 186 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0515 article-title: Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.04.031 – ident: 10.1016/j.seppur.2022.121115_b0310 doi: 10.1016/j.seppur.2021.119999 – volume: 402 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0400 article-title: Sulfate radicals-based advanced oxidation technology in various environmental remediation: a state-of-the–art review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126232 – volume: 125 start-page: 175 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0295 article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.053 – volume: 378 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0405 article-title: Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122149 – volume: 772 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0410 article-title: Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: catalytic mechanism and toxicity assessment of degradation intermediates publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145522 – volume: 197 start-page: 210 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0175 article-title: An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.195 – volume: 106 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0260 article-title: Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process publication-title: Waste Manag. doi: 10.1016/j.wasman.2020.03.005 – volume: 44 start-page: 8203 year: 2010 ident: 10.1016/j.seppur.2022.121115_b0535 article-title: Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es903411a – ident: 10.1016/j.seppur.2022.121115_b0885 doi: 10.1016/j.cej.2021.133802 – volume: 369 start-page: 130 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0630 article-title: Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.02.037 – volume: 130 start-page: 104918 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0685 article-title: An often-overestimated adverse effect of halides in heat/persulfate-based degradation of wastewater contaminants publication-title: Environ. Int. doi: 10.1016/j.envint.2019.104918 – ident: 10.1016/j.seppur.2022.121115_b0250 doi: 10.1016/j.chemosphere.2018.02.155 – volume: 401 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0340 article-title: Reactive species in advanced oxidation processes: formation, identification and reaction mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126158 – volume: 54 start-page: 3064 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0335 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07082 – volume: 45 start-page: 1007 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0150 article-title: Membrane processes for dye wastewater treatment: recent progress in fouling control publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2014.900242 – volume: 206 start-page: 83 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0015 article-title: A review of the textile wastewater treatment technologies with special focus on advanced oxidation processes (AOPs), membrane separation and integrated AOP-membrane processes publication-title: Desalination Water Treat. doi: 10.5004/dwt.2020.26363 – volume: 348 start-page: 67 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0255 article-title: Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.074 – volume: 204 start-page: 202 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0010 article-title: Treatment of textile wastewater with membrane bioreactor: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.01.006 – volume: 143 start-page: 19 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0725 article-title: Activated carbon fiber as heterogeneous catalyst of peroxymonosulfate activation for efficient degradation of Acid Orange 7 in aqueous solution publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.01.022 – ident: 10.1016/j.seppur.2022.121115_b0795 doi: 10.1016/j.cej.2012.05.040 – volume: 177 start-page: 77 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0700 article-title: Improved degradation of anthraquinone dye by electrochemical activation of PDS publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.04.015 – volume: 26 start-page: 23 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0040 article-title: Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh publication-title: Environ. Dev. doi: 10.1016/j.envdev.2018.03.005 – volume: 32 start-page: 181 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0465 article-title: Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.03.011 – year: 2021 ident: 10.1016/j.seppur.2022.121115_b0380 article-title: Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment publication-title: Chin. Chem. Lett. – volume: 9 start-page: 10 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0080 article-title: Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review publication-title: Sustain. Mater. Technol. – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0165 article-title: Batch elimination of cationic dye from aqueous solution by electrocoagulation process publication-title: Mediterr. J. Chem. doi: 10.13171/mjc10102001201163mh – volume: 57 start-page: 1501 issue: 9 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0190 article-title: Electrochemical oxidation treatment of Direct Red 23 aqueous solutions: Influence of the operating conditions publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2021.1982978 – volume: 48 start-page: 1902 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0780 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es4048126 – volume: 57 start-page: 7898 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0575 article-title: Fe2(MoO4)3 as a novel heterogeneous catalyst to activate persulfate for Rhodamine B degradation publication-title: Desalination Water Treat. doi: 10.1080/19443994.2015.1033476 – volume: 195 start-page: 374 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0285 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.05.207 – volume: 417 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0370 article-title: Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128081 – volume: 406 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0350 article-title: A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127083 – volume: 770 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0385 article-title: Recent advances in cobalt-activated sulfate radical-based advanced oxidation processes for water remediation: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.145311 – volume: 38 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0430 article-title: Real textile wastewater treatment by a sulfate radicals-advanced oxidation process: peroxydisulfate decomposition using copper oxide (CuO) supported onto activated carbon publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101623 – volume: 47 start-page: 5864 year: 2013 ident: 10.1016/j.seppur.2022.121115_b0265 article-title: Mechanism of persulfate activation by phenols publication-title: Environ. Sci. Technol. doi: 10.1021/es400728c – volume: 244 start-page: 116839 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0690 article-title: Oxidation of Congo red by thermally activated persulfate process: kinetics and transformation pathway publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116839 – volume: 55 start-page: 286 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0115 article-title: UV/chlorine process: an efficient advanced oxidation process with multiple radicals and functions in water treatment publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00269 – volume: 54 start-page: 155 year: 2004 ident: 10.1016/j.seppur.2022.121115_b0215 article-title: Transition metal/UV-based advanced oxidation technologies for water decontamination publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2004.05.025 – volume: 391 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0655 article-title: Novel ZnO/CuBi2O4 heterostructures for persulfate-assisted photocatalytic degradation of dye contaminants under visible light publication-title: J. Photochem. Photobiol. Chem. doi: 10.1016/j.jphotochem.2020.112397 – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0230 article-title: Activated persulfate for organic chemical degradation: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 177 start-page: 341 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0135 article-title: Textile dye degradation using nano zero valent iron: a review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.04.034 – volume: 184 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0460 article-title: Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: modeling by response surface methodology and artificial neural network publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109367 – volume: 307 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0825 article-title: Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113002 – volume: 189 start-page: 224 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0735 article-title: Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.042 – volume: 24 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0640 article-title: Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs) publication-title: Water Resour. Ind. doi: 10.1016/j.wri.2020.100134 – volume: 7 start-page: 44059 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0850 article-title: Evaluation and optimization of a pilot-scale catalytic ozonation–persulfate oxidation integrated process for the pretreatment of dry-spun acrylic fiber wastewater publication-title: RSC Adv. doi: 10.1039/C7RA03287K – volume: 33 start-page: 1 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0155 article-title: A review of electrocoagulation technology for the treatment of textile wastewater publication-title: Rev. Chem. Eng. doi: 10.1515/revce-2016-0019 – volume: 208 start-page: 54 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0845 article-title: Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.081 – volume: 209 start-page: 390 issue: 3 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0060 article-title: A review of integrated advanced oxidation processes and biological processes for organic pollutant removal publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2020.1864626 – volume: 384 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0485 article-title: Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123265 – volume: 328 start-page: 216 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0840 article-title: Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study publication-title: Catal. Today. doi: 10.1016/j.cattod.2018.11.029 – volume: 126 start-page: 101 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0525 article-title: Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.09.001 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0235 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 347 start-page: 243 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0500 article-title: Performance and modeling of UV/persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: Kinetic study and operating cost estimation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.093 – volume: 630 start-page: 1216 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0855 article-title: Micropollutants removal by full-scale UV-C/sulfate radical based advanced oxidation processes publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.279 – ident: 10.1016/j.seppur.2022.121115_b0480 doi: 10.1016/j.seppur.2020.116931 – volume: 40 start-page: 4 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0470 article-title: Evaluating the efficiency of advanced oxidation processes for textile wastewater treatment: electro-kinetic, sonochemical and persulfate publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.13531 – volume: 181 start-page: 103 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0800 article-title: Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.024 – volume: 149 start-page: 928 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0805 article-title: Simple spectrophotometric determination of monopersulfate publication-title: Spectrochim. Acta - Part Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2015.05.029 – volume: 400 start-page: 81 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0625 article-title: Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework publication-title: J. Mol. Catal. Chem. doi: 10.1016/j.molcata.2015.02.007 – volume: 246 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0835 article-title: Nano zerovalent zinc catalyzed peroxymonosulfate based advanced oxidation technologies for treatment of chlorpyrifos in aqueous solution: a semi-pilot scale study publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119032 – ident: 10.1016/j.seppur.2022.121115_b0315 doi: 10.1016/j.cossms.2021.100921 – volume: 220 start-page: 1014 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0390 article-title: Rate constants of sulfate radical anion reactions with organic molecules: a review publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.12.156 – volume: 162 start-page: 36 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0620 article-title: Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2012.06.009 – ident: 10.1016/j.seppur.2022.121115_b0880 doi: 10.1016/j.cej.2021.133213 – volume: 296 start-page: 128 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0830 article-title: Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (CoxMn3-xO4) for Fenton-Like reaction in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.04.014 – volume: 376 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0035 article-title: A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.057 – volume: 182 start-page: 351 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0200 article-title: A critical review on textile wastewater treatments: possible approaches publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.090 – volume: 6 start-page: 5330 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0105 article-title: Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon publication-title: RSC Adv. doi: 10.1039/C5RA19987E – volume: 227–228 start-page: 394 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0675 article-title: Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.05.074 – volume: 747 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0695 article-title: Simultaneous persulfate activation by electrogenerated H2O2 and anodic oxidation at a boron-doped diamond anode for the treatment of dye solutions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141541 – volume: 24 start-page: 27047 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0860 article-title: Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0481-5 – volume: 33 start-page: 163 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0120 article-title: A review on the sustainability of textile industries wastewater with and without treatment methodologies publication-title: Rev. Environ. Health. doi: 10.1515/reveh-2018-0013 – volume: 361 start-page: 1333 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0875 article-title: Degradation of diatrizoate in water by Fe(II)-activated persulfate oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.139 – volume: 106 start-page: 173 year: 2009 ident: 10.1016/j.seppur.2022.121115_b0530 article-title: pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2009.02.008 – volume: 159 start-page: 491 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0770 article-title: Reactivity enhancement of gasification biochars for catalytic applications publication-title: Fuel. doi: 10.1016/j.fuel.2015.06.100 – volume: 169 start-page: 230 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0565 article-title: Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.05.039 – volume: 219 start-page: 314 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0645 article-title: UV-LED/ilmenite/persulfate for azo dye mineralization: The role of sulfate in the catalyst deactivation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.072 – volume: 332 start-page: 398 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0495 article-title: Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.102 – volume: 78 start-page: 74 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0045 article-title: In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation publication-title: Water Res. doi: 10.1016/j.watres.2015.03.024 – volume: 358 start-page: 110 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0545 article-title: Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.203 – volume: 397 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0375 article-title: Ultrasound-assisted heterogeneous activation of persulfate and peroxymonosulfate by asphaltenes for the degradation of BTEX in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122804 – volume: 82 start-page: 185 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0595 article-title: Oxidative degradation of Orange G in aqueous solution by persulfate activated with pyrite publication-title: Water Sci. Technol. – volume: 338 start-page: 651 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0225 article-title: Critical review of the science and sustainability of persulphate advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.034 – volume: 3 start-page: 153 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0050 article-title: Textile wastewater treatment by peroxydisulfate/Fe(II)/UV: operating cost evaluation and phytotoxicity studies publication-title: Chem. Afr. doi: 10.1007/s42250-019-00094-7 – volume: 20 start-page: 2099 year: 2013 ident: 10.1016/j.seppur.2022.121115_b0085 article-title: Degradation of dyes from aqueous solution by Fenton processes: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1385-z – volume: 133 start-page: 247 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0270 article-title: Persulfate activation by glucose for in situ chemical oxidation publication-title: Water Res. doi: 10.1016/j.watres.2018.01.050 – volume: 313 start-page: 629 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0210 article-title: Degradation of sulfamethoxazole by medium pressure UV and oxidants: peroxymonosulfate, persulfate, and hydrogen peroxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.089 – volume: 55 start-page: 15010 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0330 article-title: Is sulfate radical a ROS? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06651 – volume: 50 start-page: 306 year: 2007 ident: 10.1016/j.seppur.2022.121115_b0025 article-title: Recycling of wastewaters of textile dyeing industries using advanced treatment technology and cost analysis—case studies publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2006.06.004 – volume: 19 start-page: 543 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0205 article-title: A review on advanced physico-chemical and biological textile dye wastewater treatment techniques publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-020-09543-z – volume: 380 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0590 article-title: 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122447 – volume: 66 start-page: 106 year: 2007 ident: 10.1016/j.seppur.2022.121115_b0810 article-title: Influence of pH on persulfate oxidation of TCE at ambient temperatures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.05.026 – volume: 73 start-page: 493 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0490 article-title: Activation of persulfate/copper by hydroxylamine via accelerating the cupric/cuprous redox couple publication-title: Water Sci. Technol. doi: 10.2166/wst.2015.509 – volume: 169 start-page: 525 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0755 article-title: Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.07.062 – volume: 107 start-page: 371 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0730 article-title: Unveiling the active sites of graphene-catalyzed peroxymonosulfate activation publication-title: Carbon doi: 10.1016/j.carbon.2016.06.016 – volume: 93 start-page: 154 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0055 article-title: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2011.09.012 – volume: 549 start-page: 82 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0635 article-title: Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution publication-title: Appl. Catal. Gen. doi: 10.1016/j.apcata.2017.09.021 – volume: 55 start-page: 3195 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0160 article-title: Industrial wastewater treatment by electrocoagulation process publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2019.1671866 – volume: 19 start-page: 51 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0275 article-title: Activation of peroxymonosulfate / persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2017.12.005 – volume: 313 start-page: 1023 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0580 article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.138 – volume: 10 start-page: 1828 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0240 article-title: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review publication-title: Water. doi: 10.3390/w10121828 – volume: 730 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0075 article-title: Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139034 – volume: 270 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0865 article-title: Renewable energies driven electrochemical wastewater/soil decontamination technologies: a critical review of fundamental concepts and applications publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118857 – volume: 571 start-page: 142 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0585 article-title: Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.03.041 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0790 article-title: Perovskite and spinel catalysts for sulfate radical-based advanced oxidation of organic pollutants in water and wastewater systems publication-title: Catalysts doi: 10.3390/catal10111299 – volume: 253 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0665 article-title: Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2020.126655 – volume: 315 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0345 article-title: Toxicity changes of wastewater during various advanced oxidation processes treatment: an overview publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128202 – volume: 6 start-page: 553 year: 2016 ident: 10.1016/j.seppur.2022.121115_b0555 article-title: Degradation of dye wastewater by persulfate activated with Fe3O4/graphene nanocomposite publication-title: J. Water Reuse Desalination doi: 10.2166/wrd.2016.187 – volume: 8 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0785 article-title: A review study on sulfate-radical-based advanced oxidation processes for domestic/industrial wastewater treatment: degradation, efficiency, and mechanism publication-title: Front. Chem. doi: 10.3389/fchem.2020.592056 – volume: 147 start-page: 55 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0030 article-title: Remediation of textile effluents by membrane based treatment techniques: a state of the art review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2014.08.008 – volume: 26 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0650 article-title: Enhanced persulfate activated sono-catalytic degradation of brilliant green dye by magnetic CaFe2O4 nanoparticles: degradation pathway study, assessment of bio-toxicity and cost analysis publication-title: Surf. Interfaces. – volume: 246 start-page: 768 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0140 article-title: Balasubramanian, Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.06.039 – ident: 10.1016/j.seppur.2022.121115_b0125 doi: 10.1016/j.jclepro.2020.122636 – volume: 73 start-page: 304 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0890 article-title: UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon publication-title: Water Res. doi: 10.1016/j.watres.2015.01.040 – ident: 10.1016/j.seppur.2022.121115_b0290 doi: 10.1016/j.chemosphere.2019.124419 – volume: 261 start-page: 118290 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0610 article-title: Persulfate activation by MnCuS nanocomposites for degradation of organic pollutants publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118290 – volume: 81 start-page: 925 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0715 article-title: Electro-activated persulfate oxidation of malachite green by boron-doped diamond (BDD) anode: effect of degradation process parameters publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.176 – volume: 22 start-page: 69 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0455 article-title: Photocatalytic degradation of industrial textile wastewater using S2O82/Fe2+ process publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2019.08.083 – volume: 338 start-page: 599 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0090 article-title: Wastewater treatment by means of advanced oxidation processes based on cavitation – a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.049 – volume: 430 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0820 article-title: Advanced oxidation processes (AOPs) based wastewater treatment - unexpected nitration side reactions - a serious environmental issue: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133002 – volume: 165 start-page: E250 issue: 5 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0705 article-title: Electrochemical oxidation of Acid Violet 7 dye by using Si/BDD and Nb/BDD electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.1111805jes – volume: 255 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0450 article-title: Comparison of real wastewater oxidation with Fenton/Fenton-like and persulfate activated by NaOH and Fe(II) publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.109926 – volume: 96 start-page: 1061 year: 2006 ident: 10.1016/j.seppur.2022.121115_b0065 article-title: Non-conventional low-cost adsorbents for dye removal: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.05.001 – volume: 133 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0220 article-title: Mn-based catalysts for sulfate radical-based advanced oxidation processes: a review publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105141 – volume: 150 start-page: 68 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0325 article-title: Understanding persulfate production at boron doped diamond film anodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.104 – volume: 2 start-page: 71 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0020 article-title: The potential of membrane distillation in recovering water from hot dyeing solution publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2014.05.006 – volume: 41 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0180 article-title: An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102040 – volume: 228 start-page: 115732 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0435 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: the effect of UV and US irradiation and application for real wastewater publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115732 – volume: 307 start-page: 750 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0520 article-title: Degradation performance and mechanism of decabromodiphenyl ether (BDE209) by ferrous-activated persulfate in spiked soil publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.129 – volume: 6 start-page: 2379 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0320 article-title: Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment publication-title: ChemElectroChem. doi: 10.1002/celc.201900159 – volume: 21 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0395 article-title: Hydroxyl and sulfate radical advanced oxidation processes: application to an agro-industrial wastewater publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.101183 – volume: 417 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0355 article-title: Co/N co-doped carbonaceous polyhedron as efficient peroxymonosulfate activator for degradation of organic pollutants: role of cobalt publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127921 – volume: 49 start-page: 5645 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0775 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 04 start-page: 22 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0005 article-title: Textile dyeing industry an environmental hazard publication-title: Nat. Sci. – volume: 42 start-page: 251 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0110 article-title: Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2010.507698 – volume: 53 start-page: 2797 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0130 article-title: Charcoal as an adsorbent for textile wastewater treatment publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2018.1473880 – volume: 722 start-page: 137831 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0745 article-title: The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137831 – ident: 10.1016/j.seppur.2022.121115_b0145 doi: 10.1016/j.jece.2019.103248 – volume: 13 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0170 article-title: Removal of persistent organic pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process publication-title: Groundw. Sustain. Dev. doi: 10.1016/j.gsd.2021.100575 – volume: 320 start-page: 608 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0095 article-title: Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.084 – volume: 179 start-page: 552 year: 2010 ident: 10.1016/j.seppur.2022.121115_b0815 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.039 – volume: 264 start-page: 587 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0615 article-title: Heterogeneous Fenton oxidation of 2,4-dichlorophenol using iron-based nanoparticles and persulfate system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.11.128 – volume: 265 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0245 article-title: Iron-based persulfate activation process for environmental decontamination in water and soil publication-title: Chemosphere – ident: 10.1016/j.seppur.2022.121115_b0185 doi: 10.1016/j.envres.2021.112353 – volume: 72 start-page: 105 year: 2010 ident: 10.1016/j.seppur.2022.121115_b0505 article-title: Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2010.01.012 – volume: 329 start-page: 272 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0420 article-title: Catalyst-free activation of peroxides under visible LED light irradiation through photoexcitation pathway publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.01.046 – volume: 432 start-page: 134191 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0365 article-title: Synergistic effects of hybrid advanced oxidation processes (AOPs) based on hydrodynamic cavitation phenomenon – a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134191 – volume: 232 start-page: 259 year: 2013 ident: 10.1016/j.seppur.2022.121115_b0740 article-title: Decolorization of Acid Orange 7 with peroxymonosulfate oxidation catalyzed by granular activated carbon publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.108 – volume: 214 start-page: 642 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0570 article-title: Efficient degradation of Orange G with persulfate activated by recyclable FeMoO4 publication-title: Chemosphere. doi: 10.1016/j.chemosphere.2018.09.124 – volume: 169 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0100 article-title: Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2021.108631 – volume: 167 start-page: 645 year: 2012 ident: 10.1016/j.seppur.2022.121115_b0195 article-title: Current technologies for biological treatment of textile wastewater-a review publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-012-9716-6 – volume: 41 start-page: 807 year: 2011 ident: 10.1016/j.seppur.2022.121115_b0070 article-title: Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380903218376 – volume: 38 start-page: 652 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0670 article-title: Mechanistic investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques of persulfate activation for degradation of Azorubine publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.08.015 – volume: 43 start-page: 684 year: 2009 ident: 10.1016/j.seppur.2022.121115_b0540 article-title: Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols publication-title: Water Res. doi: 10.1016/j.watres.2008.10.045 – volume: 2 start-page: 1846 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0425 article-title: Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: Compared with zero valent copper publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2014.08.003 – volume: 454 start-page: 96 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0750 article-title: Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal publication-title: Colloids Surf. Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.03.105 – volume: 206 start-page: 565 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0560 article-title: Effective degradation of primary color direct azo dyes using Fe0 aggregates-activated persulfate process publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.11.006 – ident: 10.1016/j.seppur.2022.121115_b0305 doi: 10.1016/j.seppur.2020.117570 – volume: 429 year: 2022 ident: 10.1016/j.seppur.2022.121115_b0550 article-title: Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132323 – volume: 162 start-page: E85 year: 2015 ident: 10.1016/j.seppur.2022.121115_b0710 article-title: The peculiar roles of sulfate electrolytes in BDD anode cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0361508jes – volume: 9 start-page: 105414 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0440 article-title: Heterogeneous activation of peroxymonosulfate with Fe3O4 magnetic nanoparticles for degradation of Reactive Black 5: batch and column study publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105414 – year: 2021 ident: 10.1016/j.seppur.2022.121115_b0360 article-title: MOFs-derived MnOx@C nanosheets for peroxymonosulfate activation: synergistic effect and mechanism publication-title: Chem. Eng. J. – volume: 16 start-page: 1 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0720 article-title: Parametric Mathematical modelling of cristal Violet Dye electrochemical oxidation using a flow electrochemical reactor with BDD and DSA anodes in sulfate media publication-title: Int. J. Chem. React. Eng. – volume: 101 start-page: 86 year: 2014 ident: 10.1016/j.seppur.2022.121115_b0510 article-title: Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.037 – volume: 261 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0605 article-title: Bi2MoO6 microspheres for the degradation of orange II by heterogeneous activation of persulfate under visible light publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.127099 – volume: 35 start-page: 1281 year: 2021 ident: 10.1016/j.seppur.2022.121115_b0475 article-title: Membrane concentrate management for textile wastewater with thermally activated persulfate oxidation method publication-title: Water Environ. J. doi: 10.1111/wej.12718 – volume: 44 start-page: 9987 year: 2019 ident: 10.1016/j.seppur.2022.121115_b0300 article-title: Sono-electro-chemical treatment of Reactive Black 5 dye and real textile effluent using MnSO4/Na2S2O8 electrolytes publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-04159-0 – volume: 12 start-page: 733 issue: 3 year: 2020 ident: 10.1016/j.seppur.2022.121115_b0445 article-title: New sustainable approach for the production of Fe3O4/Graphene oxide-activated persulfate system for dye removal in real wastewater publication-title: Water Switz. doi: 10.3390/w12030733 – volume: 357 start-page: 506 year: 2018 ident: 10.1016/j.seppur.2022.121115_b0660 article-title: Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.06.012 – volume: 43 start-page: 2513 year: 2009 ident: 10.1016/j.seppur.2022.121115_b0680 article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process publication-title: Water Res. doi: 10.1016/j.watres.2009.02.029 – volume: 246 start-page: 271 year: 2017 ident: 10.1016/j.seppur.2022.121115_b0760 article-title: Applications of biochar in redox-mediated reactions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.154 |
SSID | ssj0017182 |
Score | 2.6689663 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Generation of SO4•- via different methods, their mechanisms and oxidative pathways.•Systematically reviewed the SR-AOPs based treatments of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121115 |
SubjectTerms | Advanced oxidation processes Oxidation of dye molecules Peroxymonosulfate activation Persulfate activation Sulfate radical Textile wastewater treatment |
Title | Treatment of textile wastewater by sulfate radical based advanced oxidation processes |
URI | https://dx.doi.org/10.1016/j.seppur.2022.121115 |
Volume | 293 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MT6KHvwGpvsK9ljKZaq2Ist9Bay2V2olDY0LerF3-5uHqWCKHjLYwfCx2YeO9_MANzyMKGSGEeSCm2AopTyJFHU05TixNcYR5GrRn4e8eGEPk7ZtAH9uhbG0Sor3V_q9EJbV0-6FZrdbDbrvgQ2uGIR5xgX-US6By1MBGdNaPUenoajbTLBqt8i6WnXe06grqAraF65zrKNawyKseu0ELj5uD9ZqB2rMziCw8pdRL3yi46hoRcncLDTRPAUJuOaK46WBjkih_3R0VuSu2MxixqSHyjfzI29RqukSMsgZ7sUqvP_aPk-K0croaysG9D5GUwG9-P-0KuGJXgpJnztESY1Vgm2HpdkPg0V0TZycM1aEqqYb00hM0ZQI7F9HwWJ5tg31v1j2obTLDXkHJqL5UJfAEqlMJhG1BChKFFC0DS0F0IKkgYi4W0gNUBxWnUSdwMt5nFNGXuNS1hjB2tcwtoGbyuVlZ00_lgf1tjH33ZEbJX9r5KX_5a8gn13585uA3YNzfVqo2-s07GWHdi7-ww61db6AkLN18E |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEB3S5ND2ULrSdNWhV5NYi5djCA1Js1yaQG7GsiRICYnJQtu_78hLSKG00JuxNGAe8iyamTcAT54fc8mMLZLyMUBRSjmSKe5ozmnc1JQGge1GHo687oS_TMW0Au2yF8aWVRa6P9fpmbYu3jQKNBvpbNZ4dTG4EoHnUZrlE_kB1LjAaK8KtVav3x3tkgmofrOkJ-53rEDZQZeVea11mm4tMSillmnBtfNxf7JQe1ancwonhbtIWvkXnUFFL87heI9E8AIm47JWnCwNsYUc-KOT93htr8UQNSI_yXo7N_hMVnGWliHWdilS5v_J8mOWj1Yiad43oNeXMOk8j9tdpxiW4CSUeRuHCampiil6XFI0ua-YxsjBkrXEXIkmmkJhTMiNpLgeuLH2aNOg-yc0htMiMewKqovlQl8DSWRoKA-4YaHiTIUhT3x8CGXIEjeMvTqwEqAoKZjE7UCLeVSWjL1FOayRhTXKYa2Ds5NKcyaNP_b7JfbRtxMRobL_VfLm35KPcNgdDwfRoDfq38KRXbH3uK64g-pmtdX36IBs5ENxwL4AcY_ZsA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Treatment+of+textile+wastewater+by+sulfate+radical+based+advanced+oxidation+processes&rft.jtitle=Separation+and+purification+technology&rft.au=Nidheesh%2C+P.V.&rft.au=Divyapriya%2C+G.&rft.au=Ezzahra+Titchou%2C+Fatima&rft.au=Hamdani%2C+Mohamed&rft.date=2022-07-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=293&rft_id=info:doi/10.1016%2Fj.seppur.2022.121115&rft.externalDocID=S1383586622006724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |