Using Genetic Algorithms in Test Data Generation A Critical Systematic Mapping
Software testing activities account for a considerable portion of systems development cost and, for this reason, many studies have sought to automate these activities. Test data generation has a high cost reduction potential (especially for complex domain systems), since it can decrease human effort...
Saved in:
Published in | ACM computing surveys Vol. 51; no. 2; pp. 1 - 23 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Baltimore
Association for Computing Machinery
31.03.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-0300 1557-7341 |
DOI | 10.1145/3182659 |
Cover
Loading…
Abstract | Software testing activities account for a considerable portion of systems development cost and, for this reason, many studies have sought to automate these activities. Test data generation has a high cost reduction potential (especially for complex domain systems), since it can decrease human effort. Although several studies have been published about this subject, articles of reviews covering this topic usually focus only on specific domains. This article presents a systematic mapping aiming at providing a broad, albeit critical, overview of the literature in the topic of test data generation using genetic algorithms. The selected studies were categorized by software testing technique (structural, functional, or mutation testing) for which test data were generated and according to the most significantly adapted genetic algorithms aspects. The most used evaluation metrics and software testing techniques were identified. The results showed that genetic algorithms have been successfully applied to simple test data generation, but are rarely used to generate complex test data such as images, videos, sounds, and 3D (three-dimensional) models. From these results, we discuss some challenges and opportunities for research in this area. |
---|---|
AbstractList | Software testing activities account for a considerable portion of systems development cost and, for this reason, many studies have sought to automate these activities. Test data generation has a high cost reduction potential (especially for complex domain systems), since it can decrease human effort. Although several studies have been published about this subject, articles of reviews covering this topic usually focus only on specific domains. This article presents a systematic mapping aiming at providing a broad, albeit critical, overview of the literature in the topic of test data generation using genetic algorithms. The selected studies were categorized by software testing technique (structural, functional, or mutation testing) for which test data were generated and according to the most significantly adapted genetic algorithms aspects. The most used evaluation metrics and software testing techniques were identified. The results showed that genetic algorithms have been successfully applied to simple test data generation, but are rarely used to generate complex test data such as images, videos, sounds, and 3D (three-dimensional) models. From these results, we discuss some challenges and opportunities for research in this area. |
Author | Corrêa, Cléber Gimenez Rodrigues, Davi Silva Delamaro, Márcio Eduardo Nunes, Fátima L. S. |
Author_xml | – sequence: 1 givenname: Davi Silva surname: Rodrigues fullname: Rodrigues, Davi Silva organization: School of Arts, Sciences and Humanities, University of São Paulo, SP, Brazil – sequence: 2 givenname: Márcio Eduardo surname: Delamaro fullname: Delamaro, Márcio Eduardo organization: Mathematics and Computer Science Institute, University of São Paulo, SP, Brazil – sequence: 3 givenname: Cléber Gimenez surname: Corrêa fullname: Corrêa, Cléber Gimenez organization: School of Arts, Sciences and Humanities, University of São Paulo and School of Engineering, University of São Paulo, SP, Brazil – sequence: 4 givenname: Fátima L. S. surname: Nunes fullname: Nunes, Fátima L. S. organization: School of Arts, Sciences and Humanities, University of São Paulo and School of Engineering, University of São Paulo, SP, Brazil |
BookMark | eNpl0E1PAjEQBuDGYOKCxr-wiQdPqzPTbpceCQqakHiB86Z0C5YsXWzLwX_vCpz0NId5Mh_vkA185y1j9whPiKJ85jgmWaorlmFZVkXFBQ5YBlxCARzghg1j3AEACZQZg1V0fpvPrbfJmXzSbrvg0uc-5s7nSxtT_qKTPvWDTq7zt-x6o9to7y51xFaz1-X0rVh8zN-nk0VhiMtUkKA1ojJGNxrt2lSorDSbCgiFaHhDCLIirpQQkkAZsmNJa6VlKbBUuuEj9nCeewjd17E_pN51x-D7lTUhJ5JCVapXj2dlQhdjsJv6ENxeh-8aof6No77E0cvijzQunT5KQbv2n_8BcJxfDA |
CitedBy_id | crossref_primary_10_3390_app10103397 crossref_primary_10_1109_TSE_2020_3014960 crossref_primary_10_1007_s11227_023_05460_4 crossref_primary_10_1145_3616372 crossref_primary_10_1016_j_infsof_2020_106448 crossref_primary_10_1007_s10515_024_00433_0 crossref_primary_10_1007_s11219_020_09530_1 crossref_primary_10_1109_ACCESS_2020_2966433 crossref_primary_10_1177_1475472X221093711 crossref_primary_10_1016_j_jss_2022_111391 |
Cites_doi | 10.1155/2016/5309348 10.1016/j.cor.2007.01.012 10.1109/IITA.2009.232 10.1016/j.jss.2016.07.001 10.1145/2818640 10.1109/CYBER.2011.6011775 10.1145/2676585.2676617 10.1109/APSEC.2007.100 10.1016/j.infsof.2005.06.006 10.1109/ICNC.2008.388 10.1007/s10515-014-0173-z 10.1109/ICICICT.2014.6781358 10.1109/ICIS.2012.37 10.1049/iet-sen.2014.0058 10.1109/ICSESS.2014.6933716 10.1155/2014/591294 10.5555/1302505.1303890 10.1109/ETFA.2012.6489789 10.1109/ICST.2010.39 10.1109/ICMTMA.2011.152 10.1007/978-3-642-39643-4_41 10.1145/2897010.2897015 10.1109/CIS.2015.84 10.1145/1013886.1007528 10.1109/SYNASC.2007.47 10.1007/s00500-012-0894-5 10.1145/2483760.2483789 10.1016/j.jss.2014.11.035 10.1016/j.infsof.2008.12.005 10.1109/APSEC.2012.94 10.1109/CCAA.2015.7148494 10.1109/ICACCE.2015.145 10.1145/1543834.1543839 10.1007/s13369-015-1921-5 10.1109/NCM.2009.56 10.1145/2996355 10.1109/ICQR2MSE.2012.6246363 10.1007/s11219-010-9117-4 10.1016/j.sysarc.2015.11.001 10.1109/CCECE.2010.5575262 10.1016/j.infsof.2016.04.013 10.1016/j.procs.2015.10.044 10.1109/ICTAI.2010.26 10.1145/2660859.2660906 10.1145/1276958.1277175 10.1109/ICECTECH.2011.5941989 10.1109/ICCSEE.2012.36 10.1109/TSE.2009.52 10.1145/2408776.2408795 10.1016/j.infsof.2016.05.001 10.1049/cje.2015.01.008 10.1016/j.proeng.2011.08.219 10.1016/j.jss.2011.06.028 10.1145/1774088.1774326 |
ContentType | Journal Article |
Copyright | Copyright Association for Computing Machinery Jun 2018 |
Copyright_xml | – notice: Copyright Association for Computing Machinery Jun 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/3182659 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-7341 |
EndPage | 23 |
ExternalDocumentID | 10_1145_3182659 |
GroupedDBID | --Z -DZ -~X .DC 23M 4.4 5GY 5VS 6J9 85S 8US 8VB AAIKC AAKMM AALFJ AAMNW AAYFX AAYXX ABPPZ ACGFO ACGOD ACM ACNCT ADBCU ADL ADMLS ADXHL AEBYY AEFXT AEGXH AEJOY AEMOZ AENEX AENSD AETEA AFWIH AFWXC AGHSJ AHQJS AIAGR AIKLT AKRVB AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CITATION CS3 EBS EJD FEDTE GUFHI HGAVV H~9 IAO ICD IEA IGS IOF K1G LHSKQ N95 P1C P2P PQQKQ QWB RNS ROL RXW TAE TH9 U5U UKR UPT WH7 X6Y XH6 XSW XZL YXB ZCA ZL0 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c236t-242b119ccada1ebc719e6cf702144d3d210672399446209c2e862b9a654159ad3 |
ISSN | 0360-0300 |
IngestDate | Mon Jun 30 03:20:26 EDT 2025 Thu Jul 03 08:31:57 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c236t-242b119ccada1ebc719e6cf702144d3d210672399446209c2e862b9a654159ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2132264979 |
PQPubID | 47570 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2132264979 crossref_primary_10_1145_3182659 crossref_citationtrail_10_1145_3182659 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-31 |
PublicationDateYYYYMMDD | 2019-03-31 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | Baltimore |
PublicationPlace_xml | – name: Baltimore |
PublicationTitle | ACM computing surveys |
PublicationYear | 2019 |
Publisher | Association for Computing Machinery |
Publisher_xml | – name: Association for Computing Machinery |
References | (e_1_2_1_64_1) 2016 Gupta N. (e_1_2_1_31_1) Zhang Wanqiu (e_1_2_1_83_1) 2010 e_1_2_1_81_1 Xplore Digital Library IEEE (e_1_2_1_37_1) 2016 e_1_2_1_66_1 e_1_2_1_68_1 Zhang Y. (e_1_2_1_84_1) e_1_2_1_24_1 e_1_2_1_62_1 Mitchell Melanie (e_1_2_1_55_1) e_1_2_1_43_1 e_1_2_1_85_1 e_1_2_1_49_1 e_1_2_1_47_1 Parthiban M. (e_1_2_1_59_1) Deepak A. (e_1_2_1_20_1) 2009 Manikumar T. (e_1_2_1_51_1) 2016 Peng Xuan (e_1_2_1_60_1) 2011; 6 Khan R. (e_1_2_1_40_1) Digital Library ACM (e_1_2_1_1_1) 2016 Koleejan C. (e_1_2_1_45_1) Fan X. (e_1_2_1_23_1) 2015 Myers Glenford J. (e_1_2_1_56_1) Liu Dan (e_1_2_1_50_1) 2013; 48 e_1_2_1_54_1 e_1_2_1_77_1 e_1_2_1_8_1 e_1_2_1_79_1 e_1_2_1_6_1 Goldberg David E. (e_1_2_1_28_1) e_1_2_1_12_1 e_1_2_1_73_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 e_1_2_1_75_1 e_1_2_1_2_1 Dave M. (e_1_2_1_19_1) Sommerville Ian (e_1_2_1_70_1) e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_18_1 Hermadi Irman (e_1_2_1_34_1) 2003; 1 Khan R. (e_1_2_1_41_1) El-Serafy A. (e_1_2_1_22_1) e_1_2_1_80_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_67_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 Holland J. H. (e_1_2_1_35_1) Pachauri Ankur (e_1_2_1_58_1) 2015 Direct Science (e_1_2_1_63_1) 2016 Derderian Karnig (e_1_2_1_21_1) Ghiduk Ahmed S. (e_1_2_1_26_1) 2010 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_76_1 Zhang Na (e_1_2_1_82_1) 2015 e_1_2_1_5_1 Mann M. (e_1_2_1_52_1) Sun J. H. (e_1_2_1_71_1); 3 e_1_2_1_57_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_72_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_53_1 e_1_2_1_74_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_9_1 |
References_xml | – volume-title: Proceedings of the 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA’15) ident: e_1_2_1_22_1 – volume-title: Proceedings of the 2013 International Conference on Information Communication and Embedded Systems (ICICES’13) ident: e_1_2_1_59_1 – volume-title: Proceedings of the World Congress on Nature Biologically Inspired Computing year: 2009 ident: e_1_2_1_20_1 – ident: e_1_2_1_13_1 doi: 10.1155/2016/5309348 – ident: e_1_2_1_4_1 doi: 10.1016/j.cor.2007.01.012 – ident: e_1_2_1_18_1 doi: 10.1109/IITA.2009.232 – ident: e_1_2_1_33_1 doi: 10.1016/j.jss.2016.07.001 – ident: e_1_2_1_6_1 doi: 10.1145/2818640 – ident: e_1_2_1_39_1 doi: 10.1109/CYBER.2011.6011775 – volume-title: Automatic generation of test cases based on multi-population genetic algorithm. Technology 10, 6 year: 2015 ident: e_1_2_1_82_1 – ident: e_1_2_1_32_1 doi: 10.1145/2676585.2676617 – volume-title: 2010 IEEE 5th International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA’10) ident: e_1_2_1_84_1 – ident: e_1_2_1_27_1 doi: 10.1109/APSEC.2007.100 – ident: e_1_2_1_54_1 doi: 10.1016/j.infsof.2005.06.006 – ident: e_1_2_1_17_1 doi: 10.1109/ICNC.2008.388 – ident: e_1_2_1_73_1 doi: 10.1007/s10515-014-0173-z – volume-title: Proceedings of the 2010 Chinese Control and Decision Conference. 230--235 year: 2010 ident: e_1_2_1_83_1 – volume-title: Proc. Sci. 12-13-September-2015 year: 2015 ident: e_1_2_1_23_1 – ident: e_1_2_1_12_1 doi: 10.1109/ICICICT.2014.6781358 – ident: e_1_2_1_38_1 doi: 10.1109/ICIS.2012.37 – volume-title: Proceedings of the 2016 2nd International Conference on Computational Intelligence Communication Technology (CICT’16) ident: e_1_2_1_41_1 – volume-title: Retrieved year: 2016 ident: e_1_2_1_64_1 – ident: e_1_2_1_81_1 doi: 10.1049/iet-sen.2014.0058 – ident: e_1_2_1_85_1 doi: 10.1109/ICSESS.2014.6933716 – ident: e_1_2_1_79_1 doi: 10.1155/2014/591294 – ident: e_1_2_1_14_1 doi: 10.5555/1302505.1303890 – ident: e_1_2_1_24_1 doi: 10.1109/ETFA.2012.6489789 – volume-title: Proceedings of the, 2013 IEEE 3rd International Advance Computing Conference (IACC’13) ident: e_1_2_1_31_1 – ident: e_1_2_1_36_1 doi: 10.1109/ICST.2010.39 – volume-title: Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC’15) ident: e_1_2_1_45_1 – ident: e_1_2_1_77_1 doi: 10.1109/ICMTMA.2011.152 – ident: e_1_2_1_5_1 doi: 10.1007/978-3-642-39643-4_41 – ident: e_1_2_1_69_1 doi: 10.1145/2897010.2897015 – volume-title: Science direct. Retrieved year: 2016 ident: e_1_2_1_63_1 – ident: e_1_2_1_67_1 doi: 10.1109/CIS.2015.84 – volume: 48 start-page: 411 year: 2013 ident: e_1_2_1_50_1 article-title: Automatic test case generation based on genetic algorithm publication-title: J. Theor. Appl. Inform. Technol. – ident: e_1_2_1_74_1 doi: 10.1145/1013886.1007528 – ident: e_1_2_1_47_1 doi: 10.1109/SYNASC.2007.47 – volume-title: Adaptation in Natural and Artificial Systems ident: e_1_2_1_35_1 – volume: 1 volume-title: Proceedings of the 2003 Congress on Evolutionary Computation year: 2003 ident: e_1_2_1_34_1 – volume-title: Software Engineering ident: e_1_2_1_70_1 – ident: e_1_2_1_57_1 doi: 10.1007/s00500-012-0894-5 – ident: e_1_2_1_43_1 doi: 10.1145/2483760.2483789 – ident: e_1_2_1_7_1 doi: 10.1016/j.jss.2014.11.035 – ident: e_1_2_1_2_1 doi: 10.1016/j.infsof.2008.12.005 – ident: e_1_2_1_65_1 doi: 10.1109/APSEC.2012.94 – ident: e_1_2_1_42_1 doi: 10.1109/CCAA.2015.7148494 – ident: e_1_2_1_62_1 doi: 10.1109/ICACCE.2015.145 – ident: e_1_2_1_16_1 doi: 10.1145/1543834.1543839 – volume: 6 start-page: 3232 year: 2011 ident: e_1_2_1_60_1 article-title: User-session-based automatic test case generation using GA publication-title: Int. J. Phys. Sci. – ident: e_1_2_1_75_1 doi: 10.1007/s13369-015-1921-5 – ident: e_1_2_1_72_1 doi: 10.1109/NCM.2009.56 – ident: e_1_2_1_8_1 doi: 10.1145/2996355 – volume-title: International Work-Conference on Artificial Neural Networks ident: e_1_2_1_21_1 – volume-title: 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON). 1--5. ident: e_1_2_1_40_1 – ident: e_1_2_1_49_1 doi: 10.1109/ICQR2MSE.2012.6246363 – ident: e_1_2_1_10_1 doi: 10.1007/s11219-010-9117-4 – ident: e_1_2_1_3_1 doi: 10.1016/j.sysarc.2015.11.001 – volume-title: Proceedings of the 2015 IEEE International Advance Computing Conference (IACC’15) ident: e_1_2_1_19_1 – ident: e_1_2_1_11_1 doi: 10.1109/CCECE.2010.5575262 – volume-title: IEEE xplore digital library. Retrieved year: 2016 ident: e_1_2_1_37_1 – volume-title: Proc. Eng. Sci. 41 year: 2016 ident: e_1_2_1_51_1 – ident: e_1_2_1_78_1 doi: 10.1016/j.infsof.2016.04.013 – ident: e_1_2_1_25_1 doi: 10.1016/j.procs.2015.10.044 – volume-title: Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom’15) year: 2015 ident: e_1_2_1_58_1 – volume-title: Girgis year: 2010 ident: e_1_2_1_26_1 – volume-title: The Art of Software Testing ident: e_1_2_1_56_1 – ident: e_1_2_1_61_1 doi: 10.1109/ICTAI.2010.26 – volume-title: Proceedings of the 2016 6th International Conference—Cloud System and Big Data Engineering (Confluence). 83--87 ident: e_1_2_1_52_1 – ident: e_1_2_1_53_1 doi: 10.1145/2660859.2660906 – ident: e_1_2_1_44_1 – ident: e_1_2_1_46_1 doi: 10.1145/1276958.1277175 – ident: e_1_2_1_76_1 doi: 10.1109/ICECTECH.2011.5941989 – ident: e_1_2_1_48_1 doi: 10.1109/ICCSEE.2012.36 – ident: e_1_2_1_9_1 doi: 10.1109/TSE.2009.52 – ident: e_1_2_1_15_1 doi: 10.1145/2408776.2408795 – ident: e_1_2_1_29_1 doi: 10.1016/j.infsof.2016.05.001 – volume-title: An Introduction to Genetic Algorithms ident: e_1_2_1_55_1 – volume-title: Retrieved year: 2016 ident: e_1_2_1_1_1 – ident: e_1_2_1_80_1 doi: 10.1049/cje.2015.01.008 – volume-title: Genetic Algorithms in Search, Optimization and Machine Learning ident: e_1_2_1_28_1 – ident: e_1_2_1_66_1 doi: 10.1016/j.proeng.2011.08.219 – ident: e_1_2_1_30_1 doi: 10.1016/j.jss.2011.06.028 – ident: e_1_2_1_68_1 doi: 10.1145/1774088.1774326 – volume: 3 volume-title: Proceedings of the 2010 6th International Conference on Natural Computation (ICNC’10) ident: e_1_2_1_71_1 |
SSID | ssj0002416 |
Score | 2.3718984 |
Snippet | Software testing activities account for a considerable portion of systems development cost and, for this reason, many studies have sought to automate these... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Acoustics Computer science Cost reduction Domains Genetic algorithms Mapping Software Software testing Studies Systems development Three dimensional models |
Subtitle | A Critical Systematic Mapping |
Title | Using Genetic Algorithms in Test Data Generation |
URI | https://www.proquest.com/docview/2132264979 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65zqWXvqumTas9VL1YtMAuYHpDTtyoMsnBWPIN7S7rBMkxFYEc8mP6Wzv7AGw1qtpekIXxCu98OzuzM_MNQh8J9z0qPeYQfxo4NJDCYYQJx2V0A7sJASNaZ1tchOcr-n0drEejn3tZS23DP4v7B-tK_keqcA_kqqpk_0Gy_aBwAz6DfOEKEobrX8nYxPsVc7SiXU22VxW4-tc3OsU1A3UPMm2YZZbukjiSSd_dYDmwOKdM8TRc7ZuqySzVCeetToy-bes7EPoQnynArW-NjlF58ZNlub3rVfypBKAxU0KT6li8V4uyUukkgMiqD3xUtYnUJ9qEnW1N2J7LevJNdR2Q9_1ZdWtbCszNaE15wyYLe25rDy1UnRTptL2G2QA9nU056_9NqlNIu3LwrrDLhd-7JnwjrZ4OIicihjOrU-SWubbc86eNVvYe3iuootUgysGypOQHbNwXl_l8tVjk2dk6e4SOfHBD3DE6Sk7TxbLf68H-sdFw84qmLFsN_cUOfGjvHG732obJnqEn1vnAiUHSczSSuxfoadfYA1s9_xJdamBhCyw8AAuXO6yAhRWw8ACsrzjBHazwACtsYfUKreZn2ezcsZ03HOGTsFF5AtzzYljdBfMkF5EXy1BsIk2wV5DCV8SDqiqaUljLsfAlrGkeM9VUPohZQV6j8a7ayTcIx34AgxDKQ8mokIJFlE751C1kUWwEC4_Rp25-cmFp6VV3lG1uSuaD3E7kMcL9gz8ME8vvj5x0E5zbZXqb--q8JaRxFL_989fv0OMBqido3NStfA8WZ8M_WLH_AmrggO0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+Genetic+Algorithms+in+Test+Data+Generation%3A+A+Critical+Systematic+Mapping&rft.jtitle=ACM+computing+surveys&rft.au=Rodrigues%2C+Davi+Silva&rft.au=Delamaro%2C+M%C3%A1rcio+Eduardo&rft.au=Corr%C3%AAa%2C+Cl%C3%A9ber+Gimenez&rft.au=Nunes%2C+F%C3%A1tima+L+S&rft.date=2019-03-31&rft.pub=Association+for+Computing+Machinery&rft.issn=0360-0300&rft.eissn=1557-7341&rft.volume=51&rft.issue=2&rft.spage=1&rft_id=info:doi/10.1145%2F3182659&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-0300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-0300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-0300&client=summon |