Cross-Pacific Vessel Estimated Time of Arrival and Next Destination Prediction with Automatic Identification System Data
With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently u...
Saved in:
Published in | Transportation research record Vol. 2679; no. 3; pp. 67 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently under stress because of strikes and trade wars between the U.S. and China. Voyages are subject to multiple external factors leading to uncertainty in arrival times. This is especially true for cross-Pacific voyages, where long distances without intermediate port visits allow for a large feasible set of trajectories and vessel speed profiles. Large errors in ETA prediction not only hinder the effective planning and execution of other stakeholders but also lead to significant fluctuations in the types and quantities of goods arriving at the port, thereby hindering port competitiveness and efficient multimodal transportation. Existing literature focuses on estimating ETA and next positions for dense, compact areas at the vicinity of ports. We propose and evaluate model framework based on artificial neural networks (ANN) fed by automatic identification system (AIS) historical data to predict the next destination and ETA for cross-Pacific routes for cases where ETA from the captain is missing in the AIS data. Results show our model can effectively predict next destination and ETA of vessels, achieving a mean absolute error value of 4 h when the vessel is 1,500 nmi away from the port. For comparison, the ANN submodules are replaced with gradient boosted trees, providing similar results. We terminate by highlighting the challenges found to improve the model. |
---|---|
AbstractList | With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently under stress because of strikes and trade wars between the U.S. and China. Voyages are subject to multiple external factors leading to uncertainty in arrival times. This is especially true for cross-Pacific voyages, where long distances without intermediate port visits allow for a large feasible set of trajectories and vessel speed profiles. Large errors in ETA prediction not only hinder the effective planning and execution of other stakeholders but also lead to significant fluctuations in the types and quantities of goods arriving at the port, thereby hindering port competitiveness and efficient multimodal transportation. Existing literature focuses on estimating ETA and next positions for dense, compact areas at the vicinity of ports. We propose and evaluate model framework based on artificial neural networks (ANN) fed by automatic identification system (AIS) historical data to predict the next destination and ETA for cross-Pacific routes for cases where ETA from the captain is missing in the AIS data. Results show our model can effectively predict next destination and ETA of vessels, achieving a mean absolute error value of 4 h when the vessel is 1,500 nmi away from the port. For comparison, the ANN submodules are replaced with gradient boosted trees, providing similar results. We terminate by highlighting the challenges found to improve the model. |
Author | Guo, Jiequn Lloret-Batlle, Roger Lin, Sen |
Author_xml | – sequence: 1 givenname: Roger orcidid: 0000-0001-9336-3668 surname: Lloret-Batlle fullname: Lloret-Batlle, Roger – sequence: 2 givenname: Sen orcidid: 0000-0002-4136-0390 surname: Lin fullname: Lin, Sen – sequence: 3 givenname: Jiequn orcidid: 0000-0003-4463-4913 surname: Guo fullname: Guo, Jiequn |
BookMark | eNp9kNFKAzEQRYNUsNZ-gG_5ga072eym-1jaqoWiBauvyzQ70UiblSTV9u_dtb4JwsAMzD2XuXPJeq5xxNg1pCMApW7SrAAoxyAkCJXnOZyxvoCiTGSaix7rd_ukE1ywYQh2k0pZFlIq0WeHqW9CSFaorbGav1AItOXzEO0OI9V8bXfEG8Mn3ttP3HJ0NX-gQ-QzajUOo20cX3mqrf4Zv2x845N9bFq89VvU5GLnfBI-HUOkHZ9hxCt2bnAbaPjbB-z5dr6e3ifLx7vFdLJMtMiKmMC41FgQbLTMaQwKsIBNViqFRmmpU-gqr4Vuw1NZGlHXBrQyIkeUmOlswODkq7ugnkz14dts_lhBWnXfq_58r2VGJybgK1Xvzd679sR_gG8stnLd |
Cites_doi | 10.3390/s18093172 10.1016/j.trc.2015.01.027 10.1016/j.oceaneng.2016.09.007 10.3390/s19204365 10.1017/S0373463314000253 10.1109/ITSC48978.2021.9564883 10.1109/OCEANSE.2017.8084635 10.1057/mel.2011.3 10.1016/j.jenvman.2015.07.051 10.1109/TAES.2016.150596 10.1109/ACCESS.2022.3154812 10.1145/3210284.3220502 10.1080/20464177.2019.1665258 10.1007/978-3-030-05318-5_1 10.1016/j.trc.2018.04.013 10.3846/16484142.2014.930714 10.1109/CRC51253.2020.9253496 10.1145/2939672.2939785 10.3390/app9152983 10.1007/s10696-022-09471-w 10.18757/EJTIR.2015.15.4.3096 10.1016/j.trc.2020.102729 10.1109/TITS.2012.2187282 10.1007/978-981-19-7346-8_18 10.1007/978-3-319-94268-1_12 10.1007/978-3-319-57421-9_20 10.1109/TITS.2022.3192574 10.1115/OMAE2019-95963 10.1007/s12599-020-00653-0 10.1109/ACCESS.2020.3018749 10.1080/13658816.2013.868466 10.1145/3419604.3419768 10.1145/3292500.3330701 10.3390/s18124211 10.1109/ACCESS.2021.3066463 10.1016/j.martra.2021.100012 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | AAYXX CITATION |
DOI | 10.1177/03611981241275551 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-4052 |
EndPage | 80 |
ExternalDocumentID | 10_1177_03611981241275551 10.1177_03611981241275551 |
GroupedDBID | -TM -~X 0R~ 4.4 54M 5WW AADUE AAGGD AAGLT AAHPS AAPEO AAQXI AARIX AATAA AAULN AAWLO AAYOK AAZLU ABCCA ABCQX ABDEX ABFXH ABIDT ABKRH ABPNF ABQPY ABRHV ABUJY ABYTW ACCVJ ACDXX ACFZE ACGFS ACJER ACKIV ACOFE ACOXC ACSIQ ACUFS ACUIR ADEBD ADEIA ADPEE ADRRZ ADUKL AEDFJ AEDXQ AENEX AESZF AEWDL AEWHI AEXNY AFKRG AFMOU AFQAA AFUIA AGDVU AGKLV AGNHF AGNWV AHDMH AHHCN AHWHD AIZZC AJUZI AKSRI ALMA_UNASSIGNED_HOLDINGS ARTOV AYPQM BPACV CBRKF CCGJY CEADM DH. DOPDO DU5 DV7 DV8 EBS EJD F5P FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 H~9 J8X K-O L7B MET MFT P2P Q1R SAFTQ SAUOL SCNPE SFC TN5 Y4B ZPLXX ZPPRI ZY4 ~02 ~32 AAYXX ACCVC AJGYC AMNSR CITATION |
ID | FETCH-LOGICAL-c236t-189ca6e1bc45e8171a61b3977af7c4c01c01c5d2c124e99f2ddf1c7f25aa4a3c3 |
ISSN | 0361-1981 |
IngestDate | Thu Jul 03 08:24:01 EDT 2025 Tue Jun 17 22:27:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | data and data science marine automatic identification systems (AIS) marine transportation (water transportation) freight transportation data |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c236t-189ca6e1bc45e8171a61b3977af7c4c01c01c5d2c124e99f2ddf1c7f25aa4a3c3 |
ORCID | 0000-0003-4463-4913 0000-0002-4136-0390 0000-0001-9336-3668 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1177_03611981241275551 sage_journals_10_1177_03611981241275551 |
PublicationCentury | 2000 |
PublicationDate | 20250300 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 3 year: 2025 text: 20250300 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA |
PublicationTitle | Transportation research record |
PublicationYear | 2025 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Scheepens, van de Wetering, van Wijk 2014; Vol. 28 Eshragh, Pooyandeh, Marceau 2015; Vol. 162 Mehri, Alesheikh, Basiri 2021; Vol. 9 Hardij 2018 Liu, Shi, Zhu 2019; Vol. 9 2023 2022 Mao, Tu, Zhang, Rachmawati, Rajabally, Huang 2018 Balster, Hansen, Friedrich, Ludwig 2020; Vol. 62 Millefiori, Braca, Bryan, Willett 2016; Vol. 52 Park, Sim, Bae 2021; Vol. 2 Zhang, Bin, Wang, Peng, Wang, Halldearn, Liu 2020; Vol. 118 Perera, Oliveira, Soares 2012; Vol. 13 Liu, Guo, Feng, Hong, Huang, Guo 2019; Vol. 19 Liu, Li, Jiang, Du, Lu, Guo 2021; Vol. 2021 Liu, Shi, Zhu 2020; Vol. 8 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 Liu C. (e_1_3_2_38_2) 2021; 2021 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_47_2 Hardij R. (e_1_3_2_31_2) 2018 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Parolas I. (e_1_3_2_42_2) 2016 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Flapper E. (e_1_3_2_24_2) 2020 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 |
References_xml | – volume: Vol. 19 start-page: 4365 issue: No. 20 year: 2019 article-title: LVTP: Long-Term Vessel Trajectory Prediction Based On Multisource Data Analysis publication-title: Sensors – volume: Vol. 13 start-page: 1188 issue: No. 3 year: 2012 end-page: 1200 article-title: Maritime Traffic Monitoring Based On Vessel Detection, Tracking, State Estimation, and Trajectory Prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: Vol. 52 start-page: 2313 issue: No. 5 year: 2016 end-page: 2330 article-title: Modeling Vessel Kinematics Using a Stochastic Mean-Reverting Process for Long-Term Prediction publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: Vol. 62 start-page: 403 year: 2020 end-page: 416 article-title: An ETA Prediction Model for Intermodal Transport Networks Based on Machine Learning publication-title: Business & Information Systems Engineering – volume: Vol. 8 start-page: 154727 year: 2020 end-page: 154745 article-title: Online Multiple Outputs Least-Squares Support Vector Regression Model of Ship Trajectory Prediction Based On Automatic Information System Data and Selection Mechanism publication-title: IEEE Access – volume: Vol. 9 start-page: 2983 issue: No. 15 year: 2019 article-title: Vessel Trajectory Pmodel Based On AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR) publication-title: Applied Sciences – start-page: 241 year: 2018 end-page: 257 article-title: An Automatic Identification System (AIS) Database for Maritime Trajectory Prediction and Data Mining publication-title: Proc., ELM-2016 – volume: Vol. 28 start-page: 891 issue: No. 5 year: 2014 end-page: 909 article-title: Contour Based Visualization of Vessel Movement Predictions publication-title: International Journal of Geographical Information Science – volume: Vol. 9 start-page: 45600 year: 2021 end-page: 45613 article-title: A Contextual Hybrid Model for Vessel Movement Prediction publication-title: IEEE Access – volume: Vol. 118 start-page: 102729 year: 2020 article-title: AIS Data Driven General Vessel Destination Prediction: A Random Forest Based Approach publication-title: Transportation Research Part C: Emerging Technologies – year: 2023 article-title: AIS Transponders – volume: Vol. 162 start-page: 148 year: 2015 end-page: 157 article-title: Automated Negotiation in Environmental Resource Management: Review and Assessment publication-title: Journal of Environmental Management – volume: Vol. 2021 start-page: 1 year: 2021 end-page: 15 article-title: TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based On Long-Term Trajectory Prediction publication-title: Wireless Communications and Mobile Computing – volume: Vol. 2 start-page: 100012 year: 2021 article-title: Vessel Estimated Time of Arrival Prediction System Based On a Path-Finding Algorithm publication-title: Maritime Transport Research – year: 2018 publication-title: Predicting Arrival Times for Tankers Ships Using Recurrent Neural Networks – year: 2022 article-title: Containerized Cargo Flows 2022, by Trade Route – ident: e_1_3_2_51_2 – ident: e_1_3_2_43_2 – ident: e_1_3_2_29_2 doi: 10.3390/s18093172 – ident: e_1_3_2_5_2 doi: 10.1016/j.trc.2015.01.027 – ident: e_1_3_2_6_2 doi: 10.1016/j.oceaneng.2016.09.007 – ident: e_1_3_2_16_2 doi: 10.3390/s19204365 – ident: e_1_3_2_48_2 – ident: e_1_3_2_14_2 doi: 10.1017/S0373463314000253 – ident: e_1_3_2_34_2 doi: 10.1109/ITSC48978.2021.9564883 – ident: e_1_3_2_25_2 doi: 10.1109/OCEANSE.2017.8084635 – year: 2018 ident: e_1_3_2_31_2 publication-title: Predicting Arrival Times for Tankers Ships Using Recurrent Neural Networks – ident: e_1_3_2_11_2 – ident: e_1_3_2_35_2 doi: 10.1057/mel.2011.3 – ident: e_1_3_2_47_2 doi: 10.1016/j.jenvman.2015.07.051 – ident: e_1_3_2_17_2 doi: 10.1109/TAES.2016.150596 – ident: e_1_3_2_23_2 doi: 10.1109/ACCESS.2022.3154812 – volume-title: ETA Prediction for Containerships at the Port of Rotterdam Using Machine Learning Techniques year: 2016 ident: e_1_3_2_42_2 – ident: e_1_3_2_28_2 doi: 10.1145/3210284.3220502 – ident: e_1_3_2_21_2 doi: 10.1080/20464177.2019.1665258 – ident: e_1_3_2_41_2 – ident: e_1_3_2_49_2 doi: 10.1007/978-3-030-05318-5_1 – ident: e_1_3_2_8_2 doi: 10.1016/j.trc.2018.04.013 – ident: e_1_3_2_36_2 doi: 10.3846/16484142.2014.930714 – ident: e_1_3_2_2_2 – ident: e_1_3_2_20_2 doi: 10.1109/CRC51253.2020.9253496 – ident: e_1_3_2_12_2 doi: 10.1145/2939672.2939785 – ident: e_1_3_2_26_2 doi: 10.3390/app9152983 – volume: 2021 start-page: 1 year: 2021 ident: e_1_3_2_38_2 article-title: TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based On Long-Term Trajectory Prediction publication-title: Wireless Communications and Mobile Computing – ident: e_1_3_2_32_2 doi: 10.1007/s10696-022-09471-w – ident: e_1_3_2_33_2 doi: 10.18757/EJTIR.2015.15.4.3096 – ident: e_1_3_2_7_2 doi: 10.1016/j.trc.2020.102729 – ident: e_1_3_2_9_2 – ident: e_1_3_2_40_2 doi: 10.1109/TITS.2012.2187282 – ident: e_1_3_2_44_2 doi: 10.1007/978-981-19-7346-8_18 – ident: e_1_3_2_4_2 – volume-title: ETA Prediction for Vessels Using Machine Learning year: 2020 ident: e_1_3_2_24_2 – ident: e_1_3_2_39_2 doi: 10.1007/978-3-319-94268-1_12 – ident: e_1_3_2_45_2 – ident: e_1_3_2_19_2 doi: 10.1007/978-3-319-57421-9_20 – ident: e_1_3_2_13_2 doi: 10.1109/TITS.2022.3192574 – ident: e_1_3_2_18_2 doi: 10.1115/OMAE2019-95963 – ident: e_1_3_2_3_2 doi: 10.1007/s12599-020-00653-0 – ident: e_1_3_2_27_2 doi: 10.1109/ACCESS.2020.3018749 – ident: e_1_3_2_15_2 doi: 10.1080/13658816.2013.868466 – ident: e_1_3_2_10_2 – ident: e_1_3_2_46_2 doi: 10.1145/3419604.3419768 – ident: e_1_3_2_50_2 doi: 10.1145/3292500.3330701 – ident: e_1_3_2_22_2 doi: 10.3390/s18124211 – ident: e_1_3_2_37_2 doi: 10.1109/ACCESS.2021.3066463 – ident: e_1_3_2_30_2 doi: 10.1016/j.martra.2021.100012 |
SSID | ssib044964472 ssib031724273 ssj0033473 ssib053395398 |
Score | 2.4237514 |
Snippet | With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can... |
SourceID | crossref sage |
SourceType | Index Database Publisher |
StartPage | 67 |
Title | Cross-Pacific Vessel Estimated Time of Arrival and Next Destination Prediction with Automatic Identification System Data |
URI | https://journals.sagepub.com/doi/full/10.1177/03611981241275551 |
Volume | 2679 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA61-6IPi1dcb-RBECyzbDJJZvJYl9VFZPGyK-tTyWQSLZTWrTMi_hP_rSdz0rmsFVahDCWEDs35knzn5JwvhDw1zOVZBp6qsuCrikwdJLlmNtGwOfHCKCt8k21xoo7PxOtzeT4a_eplLdVVsW9_bq0r-R-rQhvYNVTJ_oNl2x-FBvgO9oUnWBieV7LxYdjikphXN_kYZMAXkyOYtEBDgUiG8o6Gaa7X8-9RE-AEFuNJcDbnGAYMORjlHO8Lb2Ky07paoYwr1vD6GNSL2uYAk8r0GW2rjo69onjQlwlGf9p8n0Uol0xemGqB-cvvV5-7vOA3KGTwoStLe1XjidDcXdTLfmSCyy41q3cktj34mCqWMI2Xtey7po0zpcGblYO1mSu8aiaiMO0ttXiLx2bTPti-HTQH0uFt4WVAVngmZRS4Hapsx96zP_peIzscPBA-JjvTT2_ftaEg4F3AbjruJ4QGatkVIQON1rLRVkRakKYC0x02fz0esTfqX5dfOiBJvQzDhvSc3iS70VuhU4TeLTJyy9vkRk_D8g75MQAhRRDSFoQ0gJCuPI0gpABCGkBIeyCkHQhpACFtQUiHIKQIQhpAeJecvTw6PTxO4nUeieWpqhKWa2uUY4UV0uUsY0axIvgfxmdWwFIRPrLkFsbBae15WXpmM8-lMcKkNr1HxsvV0t0n1GcS1h5fCq-5sIYblpYF7D65KVRpUrdHnm_Gb_YVVVtmbCNsf3mw98izMMKzOLG__b3ngyv3fEiudzPiERlX69o9BvZaFU8ijn4DCoeQ4g |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yPagPfovzMw-CIHSYNk3bxzE3ps4xYZOJDyNNExhKJ7MD8a_3rh_bHAoi9KEPockl1_vdJXe_EHIumfY9DyJVoSBW5Z64svyAKSsAcLJDKRQ3abZFR7T6_HbgDvKsSqyFyWfwvYppVTCi1FjP_m5kSnIEg0AZYAmpyV2sni77WI1QIuXaU_dhFqsDMAL8zMGZ8wCwf14lCn5O4Kbkd5nddhyenUdDBxb2kJ-B_tjpNxRbSAFLUam5SZ4LebJklJfqNAFRPpeoHv8n8BbZyJ1VWsu0a5us6HiHrC9QGO6SjzoO0Mpz--gjUpG_0gYYDnCFdUSxxISODXxjMgKlpjKOaAcAgWLAO8q2Iml3gsdF6SvuC9PaNBmnVLI0qyM2-cYizfjV6bVM5B7pNxu9esvKb3OwlO2IxGJ-oKTQLFTc1T7zmBQsRPdTGk9x0BR83MhWIKkOAmNHkWHKM7YrJZeOcvZJKR7H-oBQ47mgeibiBqJHJW3JnCgE4-PLUETS0RVyWazO8C0j7Riygtd8eTor5AKnflgsxO8tD__c8oystnr37WH7pnN3RNZsvDM4zVs7JqVkMtUn4Mgk4WmusV99T-HE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6ygeiDd3Fe8yAIQqdJ09vj2IV5YUxwMp9KmgsMpRuzA_HXe9Kmbg4FEfrQQmh6ktPznZOc8wWhc05UGAQQqfoCYlUW-NdOGBHhRABONOG-YDrPtuj53QG7HXpDu-BmamHsCL7VTVoVfFFurM3fPZH6yu4xXoHVJRAsAzQZenLPVFBX4YnSCqo2nvsPX_E6gCNA0BygGYsA_-eVouDrRF5OgFfYbtdlxZ40dOCYHuw-6I-dfkOyhTSwHJk6myguZSoSUl7qswzE-Viie_y_0FtowzqtuFFo2TZaUekOWl-gMtxF703zkY7N8cNPhpL8FbfBgIBLrCQ2pSZ4rOEd0xEoN-apxD0ABmwC31GxJIn7U7NtlN-a9WHcmGXjnFIWF_XE2i4w4oJnHbd4xvfQoNN-bHYde6qDI6jrZw4JI8F9RRLBPBWSgHCfJMYN5ToQDDTGXJ6kAiRVUaSplJqIQFOPc8Zd4e6jSjpO1QHCOvBABbVkGqJIwSknrkzACIU88SV3VQ1dljMUTwryjpiU_ObLw1lDF2b443Iyfm95-OeWZ2i13-rE9ze9uyO0Rs3RwXn62jGqZNOZOgF_JktOrdJ-AgW65Dk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Pacific+Vessel+Estimated+Time+of+Arrival+and+Next+Destination+Prediction+with+Automatic+Identification+System+Data&rft.jtitle=Transportation+research+record&rft.au=Lloret-Batlle%2C+Roger&rft.au=Lin%2C+Sen&rft.au=Guo%2C+Jiequn&rft.date=2025-03-01&rft.pub=SAGE+Publications&rft.issn=0361-1981&rft.eissn=2169-4052&rft.volume=2679&rft.issue=3&rft.spage=67&rft.epage=80&rft_id=info:doi/10.1177%2F03611981241275551&rft.externalDocID=10.1177_03611981241275551 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon |