Cross-Pacific Vessel Estimated Time of Arrival and Next Destination Prediction with Automatic Identification System Data

With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently u...

Full description

Saved in:
Bibliographic Details
Published inTransportation research record Vol. 2679; no. 3; pp. 67 - 80
Main Authors Lloret-Batlle, Roger, Lin, Sen, Guo, Jiequn
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently under stress because of strikes and trade wars between the U.S. and China. Voyages are subject to multiple external factors leading to uncertainty in arrival times. This is especially true for cross-Pacific voyages, where long distances without intermediate port visits allow for a large feasible set of trajectories and vessel speed profiles. Large errors in ETA prediction not only hinder the effective planning and execution of other stakeholders but also lead to significant fluctuations in the types and quantities of goods arriving at the port, thereby hindering port competitiveness and efficient multimodal transportation. Existing literature focuses on estimating ETA and next positions for dense, compact areas at the vicinity of ports. We propose and evaluate model framework based on artificial neural networks (ANN) fed by automatic identification system (AIS) historical data to predict the next destination and ETA for cross-Pacific routes for cases where ETA from the captain is missing in the AIS data. Results show our model can effectively predict next destination and ETA of vessels, achieving a mean absolute error value of 4 h when the vessel is 1,500 nmi away from the port. For comparison, the ANN submodules are replaced with gradient boosted trees, providing similar results. We terminate by highlighting the challenges found to improve the model.
AbstractList With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can effectively help carriers, terminals, and freight forwarders improve operational efficiency. The Asia-North America route has been recently under stress because of strikes and trade wars between the U.S. and China. Voyages are subject to multiple external factors leading to uncertainty in arrival times. This is especially true for cross-Pacific voyages, where long distances without intermediate port visits allow for a large feasible set of trajectories and vessel speed profiles. Large errors in ETA prediction not only hinder the effective planning and execution of other stakeholders but also lead to significant fluctuations in the types and quantities of goods arriving at the port, thereby hindering port competitiveness and efficient multimodal transportation. Existing literature focuses on estimating ETA and next positions for dense, compact areas at the vicinity of ports. We propose and evaluate model framework based on artificial neural networks (ANN) fed by automatic identification system (AIS) historical data to predict the next destination and ETA for cross-Pacific routes for cases where ETA from the captain is missing in the AIS data. Results show our model can effectively predict next destination and ETA of vessels, achieving a mean absolute error value of 4 h when the vessel is 1,500 nmi away from the port. For comparison, the ANN submodules are replaced with gradient boosted trees, providing similar results. We terminate by highlighting the challenges found to improve the model.
Author Guo, Jiequn
Lloret-Batlle, Roger
Lin, Sen
Author_xml – sequence: 1
  givenname: Roger
  orcidid: 0000-0001-9336-3668
  surname: Lloret-Batlle
  fullname: Lloret-Batlle, Roger
– sequence: 2
  givenname: Sen
  orcidid: 0000-0002-4136-0390
  surname: Lin
  fullname: Lin, Sen
– sequence: 3
  givenname: Jiequn
  orcidid: 0000-0003-4463-4913
  surname: Guo
  fullname: Guo, Jiequn
BookMark eNp9kNFKAzEQRYNUsNZ-gG_5ga072eym-1jaqoWiBauvyzQ70UiblSTV9u_dtb4JwsAMzD2XuXPJeq5xxNg1pCMApW7SrAAoxyAkCJXnOZyxvoCiTGSaix7rd_ukE1ywYQh2k0pZFlIq0WeHqW9CSFaorbGav1AItOXzEO0OI9V8bXfEG8Mn3ttP3HJ0NX-gQ-QzajUOo20cX3mqrf4Zv2x845N9bFq89VvU5GLnfBI-HUOkHZ9hxCt2bnAbaPjbB-z5dr6e3ifLx7vFdLJMtMiKmMC41FgQbLTMaQwKsIBNViqFRmmpU-gqr4Vuw1NZGlHXBrQyIkeUmOlswODkq7ugnkz14dts_lhBWnXfq_58r2VGJybgK1Xvzd679sR_gG8stnLd
Cites_doi 10.3390/s18093172
10.1016/j.trc.2015.01.027
10.1016/j.oceaneng.2016.09.007
10.3390/s19204365
10.1017/S0373463314000253
10.1109/ITSC48978.2021.9564883
10.1109/OCEANSE.2017.8084635
10.1057/mel.2011.3
10.1016/j.jenvman.2015.07.051
10.1109/TAES.2016.150596
10.1109/ACCESS.2022.3154812
10.1145/3210284.3220502
10.1080/20464177.2019.1665258
10.1007/978-3-030-05318-5_1
10.1016/j.trc.2018.04.013
10.3846/16484142.2014.930714
10.1109/CRC51253.2020.9253496
10.1145/2939672.2939785
10.3390/app9152983
10.1007/s10696-022-09471-w
10.18757/EJTIR.2015.15.4.3096
10.1016/j.trc.2020.102729
10.1109/TITS.2012.2187282
10.1007/978-981-19-7346-8_18
10.1007/978-3-319-94268-1_12
10.1007/978-3-319-57421-9_20
10.1109/TITS.2022.3192574
10.1115/OMAE2019-95963
10.1007/s12599-020-00653-0
10.1109/ACCESS.2020.3018749
10.1080/13658816.2013.868466
10.1145/3419604.3419768
10.1145/3292500.3330701
10.3390/s18124211
10.1109/ACCESS.2021.3066463
10.1016/j.martra.2021.100012
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID AAYXX
CITATION
DOI 10.1177/03611981241275551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-4052
EndPage 80
ExternalDocumentID 10_1177_03611981241275551
10.1177_03611981241275551
GroupedDBID -TM
-~X
0R~
4.4
54M
5WW
AADUE
AAGGD
AAGLT
AAHPS
AAPEO
AAQXI
AARIX
AATAA
AAULN
AAWLO
AAYOK
AAZLU
ABCCA
ABCQX
ABDEX
ABFXH
ABIDT
ABKRH
ABPNF
ABQPY
ABRHV
ABUJY
ABYTW
ACCVJ
ACDXX
ACFZE
ACGFS
ACJER
ACKIV
ACOFE
ACOXC
ACSIQ
ACUFS
ACUIR
ADEBD
ADEIA
ADPEE
ADRRZ
ADUKL
AEDFJ
AEDXQ
AENEX
AESZF
AEWDL
AEWHI
AEXNY
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AHDMH
AHHCN
AHWHD
AIZZC
AJUZI
AKSRI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AYPQM
BPACV
CBRKF
CCGJY
CEADM
DH.
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
H~9
J8X
K-O
L7B
MET
MFT
P2P
Q1R
SAFTQ
SAUOL
SCNPE
SFC
TN5
Y4B
ZPLXX
ZPPRI
ZY4
~02
~32
AAYXX
ACCVC
AJGYC
AMNSR
CITATION
ID FETCH-LOGICAL-c236t-189ca6e1bc45e8171a61b3977af7c4c01c01c5d2c124e99f2ddf1c7f25aa4a3c3
ISSN 0361-1981
IngestDate Thu Jul 03 08:24:01 EDT 2025
Tue Jun 17 22:27:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords data and data science
marine automatic identification systems (AIS)
marine transportation (water transportation)
freight transportation data
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c236t-189ca6e1bc45e8171a61b3977af7c4c01c01c5d2c124e99f2ddf1c7f25aa4a3c3
ORCID 0000-0003-4463-4913
0000-0002-4136-0390
0000-0001-9336-3668
PageCount 14
ParticipantIDs crossref_primary_10_1177_03611981241275551
sage_journals_10_1177_03611981241275551
PublicationCentury 2000
PublicationDate 20250300
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 3
  year: 2025
  text: 20250300
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
PublicationTitle Transportation research record
PublicationYear 2025
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Scheepens, van de Wetering, van Wijk 2014; Vol. 28
Eshragh, Pooyandeh, Marceau 2015; Vol. 162
Mehri, Alesheikh, Basiri 2021; Vol. 9
Hardij 2018
Liu, Shi, Zhu 2019; Vol. 9
2023
2022
Mao, Tu, Zhang, Rachmawati, Rajabally, Huang 2018
Balster, Hansen, Friedrich, Ludwig 2020; Vol. 62
Millefiori, Braca, Bryan, Willett 2016; Vol. 52
Park, Sim, Bae 2021; Vol. 2
Zhang, Bin, Wang, Peng, Wang, Halldearn, Liu 2020; Vol. 118
Perera, Oliveira, Soares 2012; Vol. 13
Liu, Guo, Feng, Hong, Huang, Guo 2019; Vol. 19
Liu, Li, Jiang, Du, Lu, Guo 2021; Vol. 2021
Liu, Shi, Zhu 2020; Vol. 8
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
Liu C. (e_1_3_2_38_2) 2021; 2021
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_47_2
Hardij R. (e_1_3_2_31_2) 2018
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
Parolas I. (e_1_3_2_42_2) 2016
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
Flapper E. (e_1_3_2_24_2) 2020
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
References_xml – volume: Vol. 19
  start-page: 4365
  issue: No. 20
  year: 2019
  article-title: LVTP: Long-Term Vessel Trajectory Prediction Based On Multisource Data Analysis
  publication-title: Sensors
– volume: Vol. 13
  start-page: 1188
  issue: No. 3
  year: 2012
  end-page: 1200
  article-title: Maritime Traffic Monitoring Based On Vessel Detection, Tracking, State Estimation, and Trajectory Prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: Vol. 52
  start-page: 2313
  issue: No. 5
  year: 2016
  end-page: 2330
  article-title: Modeling Vessel Kinematics Using a Stochastic Mean-Reverting Process for Long-Term Prediction
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: Vol. 62
  start-page: 403
  year: 2020
  end-page: 416
  article-title: An ETA Prediction Model for Intermodal Transport Networks Based on Machine Learning
  publication-title: Business & Information Systems Engineering
– volume: Vol. 8
  start-page: 154727
  year: 2020
  end-page: 154745
  article-title: Online Multiple Outputs Least-Squares Support Vector Regression Model of Ship Trajectory Prediction Based On Automatic Information System Data and Selection Mechanism
  publication-title: IEEE Access
– volume: Vol. 9
  start-page: 2983
  issue: No. 15
  year: 2019
  article-title: Vessel Trajectory Pmodel Based On AIS Sensor Data and Adaptive Chaos Differential Evolution Support Vector Regression (ACDE-SVR)
  publication-title: Applied Sciences
– start-page: 241
  year: 2018
  end-page: 257
  article-title: An Automatic Identification System (AIS) Database for Maritime Trajectory Prediction and Data Mining
  publication-title: Proc., ELM-2016
– volume: Vol. 28
  start-page: 891
  issue: No. 5
  year: 2014
  end-page: 909
  article-title: Contour Based Visualization of Vessel Movement Predictions
  publication-title: International Journal of Geographical Information Science
– volume: Vol. 9
  start-page: 45600
  year: 2021
  end-page: 45613
  article-title: A Contextual Hybrid Model for Vessel Movement Prediction
  publication-title: IEEE Access
– volume: Vol. 118
  start-page: 102729
  year: 2020
  article-title: AIS Data Driven General Vessel Destination Prediction: A Random Forest Based Approach
  publication-title: Transportation Research Part C: Emerging Technologies
– year: 2023
  article-title: AIS Transponders
– volume: Vol. 162
  start-page: 148
  year: 2015
  end-page: 157
  article-title: Automated Negotiation in Environmental Resource Management: Review and Assessment
  publication-title: Journal of Environmental Management
– volume: Vol. 2021
  start-page: 1
  year: 2021
  end-page: 15
  article-title: TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based On Long-Term Trajectory Prediction
  publication-title: Wireless Communications and Mobile Computing
– volume: Vol. 2
  start-page: 100012
  year: 2021
  article-title: Vessel Estimated Time of Arrival Prediction System Based On a Path-Finding Algorithm
  publication-title: Maritime Transport Research
– year: 2018
  publication-title: Predicting Arrival Times for Tankers Ships Using Recurrent Neural Networks
– year: 2022
  article-title: Containerized Cargo Flows 2022, by Trade Route
– ident: e_1_3_2_51_2
– ident: e_1_3_2_43_2
– ident: e_1_3_2_29_2
  doi: 10.3390/s18093172
– ident: e_1_3_2_5_2
  doi: 10.1016/j.trc.2015.01.027
– ident: e_1_3_2_6_2
  doi: 10.1016/j.oceaneng.2016.09.007
– ident: e_1_3_2_16_2
  doi: 10.3390/s19204365
– ident: e_1_3_2_48_2
– ident: e_1_3_2_14_2
  doi: 10.1017/S0373463314000253
– ident: e_1_3_2_34_2
  doi: 10.1109/ITSC48978.2021.9564883
– ident: e_1_3_2_25_2
  doi: 10.1109/OCEANSE.2017.8084635
– year: 2018
  ident: e_1_3_2_31_2
  publication-title: Predicting Arrival Times for Tankers Ships Using Recurrent Neural Networks
– ident: e_1_3_2_11_2
– ident: e_1_3_2_35_2
  doi: 10.1057/mel.2011.3
– ident: e_1_3_2_47_2
  doi: 10.1016/j.jenvman.2015.07.051
– ident: e_1_3_2_17_2
  doi: 10.1109/TAES.2016.150596
– ident: e_1_3_2_23_2
  doi: 10.1109/ACCESS.2022.3154812
– volume-title: ETA Prediction for Containerships at the Port of Rotterdam Using Machine Learning Techniques
  year: 2016
  ident: e_1_3_2_42_2
– ident: e_1_3_2_28_2
  doi: 10.1145/3210284.3220502
– ident: e_1_3_2_21_2
  doi: 10.1080/20464177.2019.1665258
– ident: e_1_3_2_41_2
– ident: e_1_3_2_49_2
  doi: 10.1007/978-3-030-05318-5_1
– ident: e_1_3_2_8_2
  doi: 10.1016/j.trc.2018.04.013
– ident: e_1_3_2_36_2
  doi: 10.3846/16484142.2014.930714
– ident: e_1_3_2_2_2
– ident: e_1_3_2_20_2
  doi: 10.1109/CRC51253.2020.9253496
– ident: e_1_3_2_12_2
  doi: 10.1145/2939672.2939785
– ident: e_1_3_2_26_2
  doi: 10.3390/app9152983
– volume: 2021
  start-page: 1
  year: 2021
  ident: e_1_3_2_38_2
  article-title: TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based On Long-Term Trajectory Prediction
  publication-title: Wireless Communications and Mobile Computing
– ident: e_1_3_2_32_2
  doi: 10.1007/s10696-022-09471-w
– ident: e_1_3_2_33_2
  doi: 10.18757/EJTIR.2015.15.4.3096
– ident: e_1_3_2_7_2
  doi: 10.1016/j.trc.2020.102729
– ident: e_1_3_2_9_2
– ident: e_1_3_2_40_2
  doi: 10.1109/TITS.2012.2187282
– ident: e_1_3_2_44_2
  doi: 10.1007/978-981-19-7346-8_18
– ident: e_1_3_2_4_2
– volume-title: ETA Prediction for Vessels Using Machine Learning
  year: 2020
  ident: e_1_3_2_24_2
– ident: e_1_3_2_39_2
  doi: 10.1007/978-3-319-94268-1_12
– ident: e_1_3_2_45_2
– ident: e_1_3_2_19_2
  doi: 10.1007/978-3-319-57421-9_20
– ident: e_1_3_2_13_2
  doi: 10.1109/TITS.2022.3192574
– ident: e_1_3_2_18_2
  doi: 10.1115/OMAE2019-95963
– ident: e_1_3_2_3_2
  doi: 10.1007/s12599-020-00653-0
– ident: e_1_3_2_27_2
  doi: 10.1109/ACCESS.2020.3018749
– ident: e_1_3_2_15_2
  doi: 10.1080/13658816.2013.868466
– ident: e_1_3_2_10_2
– ident: e_1_3_2_46_2
  doi: 10.1145/3419604.3419768
– ident: e_1_3_2_50_2
  doi: 10.1145/3292500.3330701
– ident: e_1_3_2_22_2
  doi: 10.3390/s18124211
– ident: e_1_3_2_37_2
  doi: 10.1109/ACCESS.2021.3066463
– ident: e_1_3_2_30_2
  doi: 10.1016/j.martra.2021.100012
SSID ssib044964472
ssib031724273
ssj0033473
ssib053395398
Score 2.4237514
Snippet With the increase in global trade uncertainty and supply chain disruptions, accurately predicting the estimated time of arrival (ETA) of container vessels can...
SourceID crossref
sage
SourceType Index Database
Publisher
StartPage 67
Title Cross-Pacific Vessel Estimated Time of Arrival and Next Destination Prediction with Automatic Identification System Data
URI https://journals.sagepub.com/doi/full/10.1177/03611981241275551
Volume 2679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA61-6IPi1dcb-RBECyzbDJJZvJYl9VFZPGyK-tTyWQSLZTWrTMi_hP_rSdz0rmsFVahDCWEDs35knzn5JwvhDw1zOVZBp6qsuCrikwdJLlmNtGwOfHCKCt8k21xoo7PxOtzeT4a_eplLdVVsW9_bq0r-R-rQhvYNVTJ_oNl2x-FBvgO9oUnWBieV7LxYdjikphXN_kYZMAXkyOYtEBDgUiG8o6Gaa7X8-9RE-AEFuNJcDbnGAYMORjlHO8Lb2Ky07paoYwr1vD6GNSL2uYAk8r0GW2rjo69onjQlwlGf9p8n0Uol0xemGqB-cvvV5-7vOA3KGTwoStLe1XjidDcXdTLfmSCyy41q3cktj34mCqWMI2Xtey7po0zpcGblYO1mSu8aiaiMO0ttXiLx2bTPti-HTQH0uFt4WVAVngmZRS4Hapsx96zP_peIzscPBA-JjvTT2_ftaEg4F3AbjruJ4QGatkVIQON1rLRVkRakKYC0x02fz0esTfqX5dfOiBJvQzDhvSc3iS70VuhU4TeLTJyy9vkRk_D8g75MQAhRRDSFoQ0gJCuPI0gpABCGkBIeyCkHQhpACFtQUiHIKQIQhpAeJecvTw6PTxO4nUeieWpqhKWa2uUY4UV0uUsY0axIvgfxmdWwFIRPrLkFsbBae15WXpmM8-lMcKkNr1HxsvV0t0n1GcS1h5fCq-5sIYblpYF7D65KVRpUrdHnm_Gb_YVVVtmbCNsf3mw98izMMKzOLG__b3ngyv3fEiudzPiERlX69o9BvZaFU8ijn4DCoeQ4g
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA-yPagPfovzMw-CIHSYNk3bxzE3ps4xYZOJDyNNExhKJ7MD8a_3rh_bHAoi9KEPockl1_vdJXe_EHIumfY9DyJVoSBW5Z64svyAKSsAcLJDKRQ3abZFR7T6_HbgDvKsSqyFyWfwvYppVTCi1FjP_m5kSnIEg0AZYAmpyV2sni77WI1QIuXaU_dhFqsDMAL8zMGZ8wCwf14lCn5O4Kbkd5nddhyenUdDBxb2kJ-B_tjpNxRbSAFLUam5SZ4LebJklJfqNAFRPpeoHv8n8BbZyJ1VWsu0a5us6HiHrC9QGO6SjzoO0Mpz--gjUpG_0gYYDnCFdUSxxISODXxjMgKlpjKOaAcAgWLAO8q2Iml3gsdF6SvuC9PaNBmnVLI0qyM2-cYizfjV6bVM5B7pNxu9esvKb3OwlO2IxGJ-oKTQLFTc1T7zmBQsRPdTGk9x0BR83MhWIKkOAmNHkWHKM7YrJZeOcvZJKR7H-oBQ47mgeibiBqJHJW3JnCgE4-PLUETS0RVyWazO8C0j7Riygtd8eTor5AKnflgsxO8tD__c8oystnr37WH7pnN3RNZsvDM4zVs7JqVkMtUn4Mgk4WmusV99T-HE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA6ygeiDd3Fe8yAIQqdJ09vj2IV5YUxwMp9KmgsMpRuzA_HXe9Kmbg4FEfrQQmh6ktPznZOc8wWhc05UGAQQqfoCYlUW-NdOGBHhRABONOG-YDrPtuj53QG7HXpDu-BmamHsCL7VTVoVfFFurM3fPZH6yu4xXoHVJRAsAzQZenLPVFBX4YnSCqo2nvsPX_E6gCNA0BygGYsA_-eVouDrRF5OgFfYbtdlxZ40dOCYHuw-6I-dfkOyhTSwHJk6myguZSoSUl7qswzE-Viie_y_0FtowzqtuFFo2TZaUekOWl-gMtxF703zkY7N8cNPhpL8FbfBgIBLrCQ2pSZ4rOEd0xEoN-apxD0ABmwC31GxJIn7U7NtlN-a9WHcmGXjnFIWF_XE2i4w4oJnHbd4xvfQoNN-bHYde6qDI6jrZw4JI8F9RRLBPBWSgHCfJMYN5ToQDDTGXJ6kAiRVUaSplJqIQFOPc8Zd4e6jSjpO1QHCOvBABbVkGqJIwSknrkzACIU88SV3VQ1dljMUTwryjpiU_ObLw1lDF2b443Iyfm95-OeWZ2i13-rE9ze9uyO0Rs3RwXn62jGqZNOZOgF_JktOrdJ-AgW65Dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Pacific+Vessel+Estimated+Time+of+Arrival+and+Next+Destination+Prediction+with+Automatic+Identification+System+Data&rft.jtitle=Transportation+research+record&rft.au=Lloret-Batlle%2C+Roger&rft.au=Lin%2C+Sen&rft.au=Guo%2C+Jiequn&rft.date=2025-03-01&rft.pub=SAGE+Publications&rft.issn=0361-1981&rft.eissn=2169-4052&rft.volume=2679&rft.issue=3&rft.spage=67&rft.epage=80&rft_id=info:doi/10.1177%2F03611981241275551&rft.externalDocID=10.1177_03611981241275551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-1981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-1981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-1981&client=summon