HSS-YOLO Lightweight Object Detection Model for Intelligent Inspection Robots in Power Distribution Rooms
Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To addres...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 495 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a18080495 |
Cover
Abstract | Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To address these problems, this paper proposes HSS-YOLO, a lightweight object detection model based on YOLOv11. Initially, HetConv is introduced. By combining convolutional kernels of different sizes, it reduces the required number of floating-point operations (FLOPs) and enhances computational efficiency. Subsequently, the integration of Inner-SIoU strengthens the recognition capability for small targets within dim environments. Finally, ShuffleAttention is incorporated to mitigate problems like missed or false detections of small targets under low-light conditions. The experimental results demonstrate that on a custom dataset, the model achieves a precision of 90.5% for critical targets (doors and two types of handles). This represents a 4.6% improvement over YOLOv11, while also reducing parameter count by 10.7% and computational load by 9%. Furthermore, evaluations on public datasets confirm that the proposed model surpasses YOLOv11 in assessment metrics. The improved model presented in this study not only achieves lightweight design but also yields more accurate detection results for doors and handles within dimly lit substation environments. |
---|---|
AbstractList | Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To address these problems, this paper proposes HSS-YOLO, a lightweight object detection model based on YOLOv11. Initially, HetConv is introduced. By combining convolutional kernels of different sizes, it reduces the required number of floating-point operations (FLOPs) and enhances computational efficiency. Subsequently, the integration of Inner-SIoU strengthens the recognition capability for small targets within dim environments. Finally, ShuffleAttention is incorporated to mitigate problems like missed or false detections of small targets under low-light conditions. The experimental results demonstrate that on a custom dataset, the model achieves a precision of 90.5% for critical targets (doors and two types of handles). This represents a 4.6% improvement over YOLOv11, while also reducing parameter count by 10.7% and computational load by 9%. Furthermore, evaluations on public datasets confirm that the proposed model surpasses YOLOv11 in assessment metrics. The improved model presented in this study not only achieves lightweight design but also yields more accurate detection results for doors and handles within dimly lit substation environments. |
Audience | Academic |
Author | Li, Liang He, Xiangge Zhang, Weiliang Wei, Yingying Li, Chunlei He, Yangfei Pu, Hucheng |
Author_xml | – sequence: 1 givenname: Liang surname: Li fullname: Li, Liang – sequence: 2 givenname: Yangfei surname: He fullname: He, Yangfei – sequence: 3 givenname: Yingying surname: Wei fullname: Wei, Yingying – sequence: 4 givenname: Hucheng surname: Pu fullname: Pu, Hucheng – sequence: 5 givenname: Xiangge surname: He fullname: He, Xiangge – sequence: 6 givenname: Chunlei orcidid: 0000-0002-7205-6885 surname: Li fullname: Li, Chunlei – sequence: 7 givenname: Weiliang surname: Zhang fullname: Zhang, Weiliang |
BookMark | eNpNUU1rGzEQFSWFJmkO_QeCnHLYVFqttDvHkE-Dg0vTHnISWu3IlVmvHEnG5N9HqU0IA_P55jHDOyFHU5iQkB-cXQoB7KfhHetYA_ILOeYAUDUdiKNP-TdyktKKMSVB8WPiH56equfFfEHnfvkv7_Dd00W_QpvpDeYSfJjoYxhwpC5EOpsyjqNf4pRLnjYHwO_Qh5yon-ivsMNIb3zK0ffbwzCs03fy1Zkx4dkhnpK_d7d_rh-q-eJ-dn01r2wtlKwcdByNcp2VpgE-YPnHKUAQxjXQ12XWoO25bOp2EJz3YG0PoisflUpZcUpme94hmJXeRL828VUH4_X_RohLbWL2dkRdG6XaoXNW1aLh0hhlOQyOM9a2Bh0UrvM91yaGly2mrFdhG6dyvhZ1I0BJ1fKCutyjlqaQ-smFHI0tNuDa26KP86V_1UmhGJOyLgsX-wUbQ0oR3ceZnOl3GfWHjOINiwGP5A |
Cites_doi | 10.1016/j.compag.2024.109281 10.1142/S0218127403008375 10.1109/CISP-BMEI64163.2024.10906253 10.1007/s11760-025-03858-6 10.1109/IJCNN60899.2024.10650361 10.3390/app15010090 10.1016/j.chb.2024.108150 10.1080/08839514.2019.1684778 10.1118/1.1650563 10.1109/ICASSP39728.2021.9414568 10.1109/ACCESS.2022.3147866 10.1016/j.procs.2022.01.135 10.1109/CVPR.2019.00497 10.1109/ICITSI50517.2020.9264972 10.1109/TAAI.2018.00027 10.1016/j.engappai.2022.105665 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/a18080495 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9 A853600552 10_3390_a18080495 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS PUEGO 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c2365-f981ea6f8c5a491de808f69e93af49b2ea64ecb15427d311b9ccb9380063116c3 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Mon Sep 01 19:39:27 EDT 2025 Wed Aug 27 12:54:15 EDT 2025 Tue Sep 02 04:00:06 EDT 2025 Thu Aug 14 00:18:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2365-f981ea6f8c5a491de808f69e93af49b2ea64ecb15427d311b9ccb9380063116c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7205-6885 |
OpenAccessLink | https://doaj.org/article/2a667d8fc623415aa6c19df10077aef9 |
PQID | 3243965671 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9 proquest_journals_3243965671 gale_infotracacademiconefile_A853600552 crossref_primary_10_3390_a18080495 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Welfer (ref_2) 2019; 33 Itoh (ref_6) 2003; 10 Jiang (ref_7) 2022; 199 Alruwaili (ref_9) 2024; 154 Lin (ref_3) 2022; 10 ref_12 ref_11 ref_10 ref_1 Mushtaq (ref_5) 2023; 118 Saini (ref_8) 2004; 31 ref_17 ref_16 ref_15 Xiao (ref_14) 2024; 225 ref_4 Zhang (ref_13) 2025; 19 |
References_xml | – volume: 225 start-page: 109281 year: 2024 ident: ref_14 article-title: DHSW-YOLO: A duck flock daily behavior recognition model adaptable to bright and dark conditions publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.109281 – volume: 10 start-page: 2739 year: 2003 ident: ref_6 article-title: Designing CNN Genes publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127403008375 – ident: ref_10 doi: 10.1109/CISP-BMEI64163.2024.10906253 – volume: 19 start-page: 271 year: 2025 ident: ref_13 article-title: LLD-YOLO: A multi-module network for robust vehicle detection in low-light conditions publication-title: SIViP doi: 10.1007/s11760-025-03858-6 – ident: ref_11 doi: 10.1109/IJCNN60899.2024.10650361 – ident: ref_12 doi: 10.3390/app15010090 – volume: 154 start-page: 108150 year: 2024 ident: ref_9 article-title: Deep learning and ubiquitous systems for disabled people detection using YOLO models publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2024.108150 – volume: 33 start-page: 1290 year: 2019 ident: ref_2 article-title: Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm publication-title: Appl. Artif. Intell. doi: 10.1080/08839514.2019.1684778 – volume: 31 start-page: 914 year: 2004 ident: ref_8 article-title: Dose rate and SDD dependence of commercially available diode detectors publication-title: Med. Phys. doi: 10.1118/1.1650563 – ident: ref_16 doi: 10.1109/ICASSP39728.2021.9414568 – volume: 10 start-page: 14120 year: 2022 ident: ref_3 article-title: Intelligent Traffic-Monitoring System Based on YOLO and Convolutional Fuzzy Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3147866 – volume: 199 start-page: 1066 year: 2022 ident: ref_7 article-title: A Review of Yolo Algorithm Developments publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.135 – ident: ref_17 – ident: ref_15 doi: 10.1109/CVPR.2019.00497 – ident: ref_1 doi: 10.1109/ICITSI50517.2020.9264972 – ident: ref_4 doi: 10.1109/TAAI.2018.00027 – volume: 118 start-page: 105665 year: 2023 ident: ref_5 article-title: Nuts&bolts: YOLO-v5 and image processing based component identification system publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105665 |
SSID | ssj0065961 |
Score | 2.345407 |
Snippet | Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 495 |
SubjectTerms | Accuracy Algorithms Analysis Datasets Deep learning dim environment object detection Efficiency Floating point arithmetic HetConv Information processing Inner-SIoU Inspection Neural networks Object recognition Real time Robotics industry Robots ShuffleAttention Substations YOLO11 improvement |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUKvXDhowWxFCqrQuopQv6IE58qCixLRdmqgAQny3ZstBIksBvE3-9M1tlygVsUW1EyY888O-P3CNmXRVUIK4qMx9Jl0kuRwTIiz3jglVaQ8LzCA86_L9ToWv66yW_ShtsslVX2MbEL1FXjcY_8ABK_0AA-Cvbj8SlD1Sj8u5okNJbIRwaZBsd5OTztI7HKtWJzNiEBS_sDy5BEUaKUxKsc1FH1vxWQuywzXCerCR7Sw7k_N8iHUH8ia730Ak0z8TOZjC4vs9vx-Zie4-r6pdvgpGOHuyr0OLRdgVVNUensngIupWcL6s0WrufnK6HD38Y17YxOavoH5dLoMfLoJgksaGweZpvkenhydTTKkmpC5jmWrEVdsmBVLH1upWZVgI-OSgctbJTacWiTwTuATryoBGNOe--0KBGsMKa82CLLdVOHbUKDVJxHySpklMllYb3XLISowLHROzEg33o7msc5OYaBRQUa2yyMPSA_0cKLDshn3d1opncmTQ_DrVJFBQ8FNAaQwlrlma4ilnAUNkQ9IN_RPwZnXTu13qbDA_CeyF9lDgF1KOQT4wOy27vQpOk4M_8Hz877zV_ICkeB367Cb5cst9PnsAeoo3Vfu6H1D__Z1t8 priority: 102 providerName: ProQuest |
Title | HSS-YOLO Lightweight Object Detection Model for Intelligent Inspection Robots in Power Distribution Rooms |
URI | https://www.proquest.com/docview/3243965671 https://doaj.org/article/2a667d8fc623415aa6c19df10077aef9 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeuECbQGxFFZWVYlTBP6IEx-hsGwryiI-JDhZtmNLK9Fsxabi7zOTZFdcUC_cotgHZyb2vElm3gP4roqqkE4WmUilz1RQMsM0Is9EFJXRGPCCpgbn35d6fKd-3ef3r6S-qCasowfuDHconNZFVaaAcRqDjXM6cFMl-rlfuJja1r0jc7RIprozWOdG845HSGJSf-g40ScqEpF4FX1akv63juI2vow-wXoPDNlxt6DP8CHWX2BjIbrA-j24CdPxzU32MLmYsAvKq5_bT5ts4ul7CjuNTVtaVTPSOHtkiEjZzyXpZoPXXWclTrie-VkzZ9OaXZFQGjslBt1e_AoHZ3_mW3A3Orv9Mc56vYQsCCpWS6bk0elUhtwpw6uID520iUa6pIwXOKZi8AiaRFFJzr0JwRtZEkzhXAe5Dav1rI47wKLSQiTFK-KSyVXhQjA8xqTRpSl4OYBvCzvavx0thsV0goxtl8YewAlZeDmBmKzbG-hf2_vX_s-_Azgg_1jab82TC65vG8B1EnOVPUa8oYlJTAxgb-FC22_EuUW8KA1i1oLvvsdqvsKaIAHgtgJwD1abp39xH1FJ44ewUo7Oh_Dx5Ozy6nrYvo4vldrh9Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvBFbClgIxClq_YgTHxBq2Va7dLtb9SGVU-o4NqpEk7IbVPGn-I3M5LFwgVtvUWxZ0Xg8D2fm-wDeqqRIpJVJJEKaR8opGWEaEUfCi8JodHhOU4Pz4UyPz9Tn8_h8DX71vTBUVtnbxMZQF5WjO_ItdPzSYPCR8I_X3yNijaK_qz2FRqsWB_7nDaZsyw-TEe7vOyH2904_jaOOVSBygkq6gkm5tzqkLrbK8MKn22nQxhtpgzK5wDHlXY6hhUgKyXlunMuNTMmZc66dxHXvwLqijtYBrO_uzY6Oe9uvY6N5i18kpdnespxgGxWRV_zl9RpygH-5gMav7T-E-11AynZaDXoEa758DA96sgfWnf0ncDk-OYm-zKdzNqV8_qa5UmXznO5x2MjXTUlXyYhb7RvDSJhNVmCfNT63HZ044bjKq3rJLkt2RARtbETIvR3pFg5WV8uncHYrEn0Gg7Iq_XNgXmkhguIFYdjEKrHOGe590KhKweVyCG96OWbXLRxHhmkMCTtbCXsIuyTh1QRC0G5eVIuvWXcgM2G1TgpcFOM_DGKs1Y6bIlDRSGJ9MEN4T_uT0TmvF9bZrl0Bv5MQs7IdjHM0IZiJIWz2W5h1BmCZ_VHXjf8Pv4a749PDaTadzA5ewD1B9MJNfeEmDOrFD_8SY546f9UpGoOL29bt3ypBFJ8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCcYq2fsSODwgVlmWXLt2KUqmcjO3YqBIkZTeo4q_x65jJY-ECt96i2LKi8Xgezsz3EfJU6lILJ3TGU-EzGaTIII3IMx55aRQ4vKCwwfn9gZody3cn-ckW-TX0wmBZ5WATW0Nd1gHvyMfg-IWB4EOzcerLIg4n05dn3zNkkMI_rQOdRqci-_HnOaRv6xfzCez1M86nbz6-nmU9w0AWOJZ3JVOw6FQqQu6kYWUsdoukTDTCJWk8hzEZg4cwg-tSMOZNCN6IAh07YyoIWPcSuayFNpj4FdO3gxdQuVGsQzISwuyOHUMAR4k0Fn_5v5Ym4F_OoPVw0xvkWh-a0r1Ol26SrVjdItcH2gfaW4Hb5HR2dJR9Wi6WdIGZ_Xl7uUqXHm906CQ2bXFXRZFl7SuFmJjON7CfDTx3vZ0w4UPt62ZNTyt6iFRtdIIYvj39FgzW39Z3yPGFyPMu2a7qKt4jNErFeZKsRDSbXGoXgmExJgVKlYIXI_JkkKM964A5LCQ0KGy7EfaIvEIJbyYglnb7ol59sf3RtNwppUtYFCJBCGecU4GZMmH5iHYxmRF5jvtj8cQ3Kxdc37gA34nYWXYPIh6FWGZ8RHaGLbS9KVjbP4p7___Dj8kV0Gi7mB_sPyBXOfIMt4WGO2S7Wf2IDyH4afyjVsso-XzRav0bCgUXbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSS-YOLO+Lightweight+Object+Detection+Model+for+Intelligent+Inspection+Robots+in+Power+Distribution+Rooms&rft.jtitle=Algorithms&rft.au=Liang+Li&rft.au=Yangfei+He&rft.au=Yingying+Wei&rft.au=Hucheng+Pu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=495&rft_id=info:doi/10.3390%2Fa18080495&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |