HSS-YOLO Lightweight Object Detection Model for Intelligent Inspection Robots in Power Distribution Rooms

Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To addres...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 495
Main Authors Li, Liang, He, Yangfei, Wei, Yingying, Pu, Hucheng, He, Xiangge, Li, Chunlei, Zhang, Weiliang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18080495

Cover

Abstract Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To address these problems, this paper proposes HSS-YOLO, a lightweight object detection model based on YOLOv11. Initially, HetConv is introduced. By combining convolutional kernels of different sizes, it reduces the required number of floating-point operations (FLOPs) and enhances computational efficiency. Subsequently, the integration of Inner-SIoU strengthens the recognition capability for small targets within dim environments. Finally, ShuffleAttention is incorporated to mitigate problems like missed or false detections of small targets under low-light conditions. The experimental results demonstrate that on a custom dataset, the model achieves a precision of 90.5% for critical targets (doors and two types of handles). This represents a 4.6% improvement over YOLOv11, while also reducing parameter count by 10.7% and computational load by 9%. Furthermore, evaluations on public datasets confirm that the proposed model surpasses YOLOv11 in assessment metrics. The improved model presented in this study not only achieves lightweight design but also yields more accurate detection results for doors and handles within dimly lit substation environments.
AbstractList Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation environments, YOLO exhibits issues such as excessively low accuracy, missed detections, and false detections for critical targets. To address these problems, this paper proposes HSS-YOLO, a lightweight object detection model based on YOLOv11. Initially, HetConv is introduced. By combining convolutional kernels of different sizes, it reduces the required number of floating-point operations (FLOPs) and enhances computational efficiency. Subsequently, the integration of Inner-SIoU strengthens the recognition capability for small targets within dim environments. Finally, ShuffleAttention is incorporated to mitigate problems like missed or false detections of small targets under low-light conditions. The experimental results demonstrate that on a custom dataset, the model achieves a precision of 90.5% for critical targets (doors and two types of handles). This represents a 4.6% improvement over YOLOv11, while also reducing parameter count by 10.7% and computational load by 9%. Furthermore, evaluations on public datasets confirm that the proposed model surpasses YOLOv11 in assessment metrics. The improved model presented in this study not only achieves lightweight design but also yields more accurate detection results for doors and handles within dimly lit substation environments.
Audience Academic
Author Li, Liang
He, Xiangge
Zhang, Weiliang
Wei, Yingying
Li, Chunlei
He, Yangfei
Pu, Hucheng
Author_xml – sequence: 1
  givenname: Liang
  surname: Li
  fullname: Li, Liang
– sequence: 2
  givenname: Yangfei
  surname: He
  fullname: He, Yangfei
– sequence: 3
  givenname: Yingying
  surname: Wei
  fullname: Wei, Yingying
– sequence: 4
  givenname: Hucheng
  surname: Pu
  fullname: Pu, Hucheng
– sequence: 5
  givenname: Xiangge
  surname: He
  fullname: He, Xiangge
– sequence: 6
  givenname: Chunlei
  orcidid: 0000-0002-7205-6885
  surname: Li
  fullname: Li, Chunlei
– sequence: 7
  givenname: Weiliang
  surname: Zhang
  fullname: Zhang, Weiliang
BookMark eNpNUU1rGzEQFSWFJmkO_QeCnHLYVFqttDvHkE-Dg0vTHnISWu3IlVmvHEnG5N9HqU0IA_P55jHDOyFHU5iQkB-cXQoB7KfhHetYA_ILOeYAUDUdiKNP-TdyktKKMSVB8WPiH56equfFfEHnfvkv7_Dd00W_QpvpDeYSfJjoYxhwpC5EOpsyjqNf4pRLnjYHwO_Qh5yon-ivsMNIb3zK0ffbwzCs03fy1Zkx4dkhnpK_d7d_rh-q-eJ-dn01r2wtlKwcdByNcp2VpgE-YPnHKUAQxjXQ12XWoO25bOp2EJz3YG0PoisflUpZcUpme94hmJXeRL828VUH4_X_RohLbWL2dkRdG6XaoXNW1aLh0hhlOQyOM9a2Bh0UrvM91yaGly2mrFdhG6dyvhZ1I0BJ1fKCutyjlqaQ-smFHI0tNuDa26KP86V_1UmhGJOyLgsX-wUbQ0oR3ceZnOl3GfWHjOINiwGP5A
Cites_doi 10.1016/j.compag.2024.109281
10.1142/S0218127403008375
10.1109/CISP-BMEI64163.2024.10906253
10.1007/s11760-025-03858-6
10.1109/IJCNN60899.2024.10650361
10.3390/app15010090
10.1016/j.chb.2024.108150
10.1080/08839514.2019.1684778
10.1118/1.1650563
10.1109/ICASSP39728.2021.9414568
10.1109/ACCESS.2022.3147866
10.1016/j.procs.2022.01.135
10.1109/CVPR.2019.00497
10.1109/ICITSI50517.2020.9264972
10.1109/TAAI.2018.00027
10.1016/j.engappai.2022.105665
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a18080495
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9
A853600552
10_3390_a18080495
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
PUEGO
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2365-f981ea6f8c5a491de808f69e93af49b2ea64ecb15427d311b9ccb9380063116c3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Mon Sep 01 19:39:27 EDT 2025
Wed Aug 27 12:54:15 EDT 2025
Tue Sep 02 04:00:06 EDT 2025
Thu Aug 14 00:18:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2365-f981ea6f8c5a491de808f69e93af49b2ea64ecb15427d311b9ccb9380063116c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7205-6885
OpenAccessLink https://doaj.org/article/2a667d8fc623415aa6c19df10077aef9
PQID 3243965671
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9
proquest_journals_3243965671
gale_infotracacademiconefile_A853600552
crossref_primary_10_3390_a18080495
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Welfer (ref_2) 2019; 33
Itoh (ref_6) 2003; 10
Jiang (ref_7) 2022; 199
Alruwaili (ref_9) 2024; 154
Lin (ref_3) 2022; 10
ref_12
ref_11
ref_10
ref_1
Mushtaq (ref_5) 2023; 118
Saini (ref_8) 2004; 31
ref_17
ref_16
ref_15
Xiao (ref_14) 2024; 225
ref_4
Zhang (ref_13) 2025; 19
References_xml – volume: 225
  start-page: 109281
  year: 2024
  ident: ref_14
  article-title: DHSW-YOLO: A duck flock daily behavior recognition model adaptable to bright and dark conditions
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.109281
– volume: 10
  start-page: 2739
  year: 2003
  ident: ref_6
  article-title: Designing CNN Genes
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127403008375
– ident: ref_10
  doi: 10.1109/CISP-BMEI64163.2024.10906253
– volume: 19
  start-page: 271
  year: 2025
  ident: ref_13
  article-title: LLD-YOLO: A multi-module network for robust vehicle detection in low-light conditions
  publication-title: SIViP
  doi: 10.1007/s11760-025-03858-6
– ident: ref_11
  doi: 10.1109/IJCNN60899.2024.10650361
– ident: ref_12
  doi: 10.3390/app15010090
– volume: 154
  start-page: 108150
  year: 2024
  ident: ref_9
  article-title: Deep learning and ubiquitous systems for disabled people detection using YOLO models
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2024.108150
– volume: 33
  start-page: 1290
  year: 2019
  ident: ref_2
  article-title: Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm
  publication-title: Appl. Artif. Intell.
  doi: 10.1080/08839514.2019.1684778
– volume: 31
  start-page: 914
  year: 2004
  ident: ref_8
  article-title: Dose rate and SDD dependence of commercially available diode detectors
  publication-title: Med. Phys.
  doi: 10.1118/1.1650563
– ident: ref_16
  doi: 10.1109/ICASSP39728.2021.9414568
– volume: 10
  start-page: 14120
  year: 2022
  ident: ref_3
  article-title: Intelligent Traffic-Monitoring System Based on YOLO and Convolutional Fuzzy Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147866
– volume: 199
  start-page: 1066
  year: 2022
  ident: ref_7
  article-title: A Review of Yolo Algorithm Developments
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.135
– ident: ref_17
– ident: ref_15
  doi: 10.1109/CVPR.2019.00497
– ident: ref_1
  doi: 10.1109/ICITSI50517.2020.9264972
– ident: ref_4
  doi: 10.1109/TAAI.2018.00027
– volume: 118
  start-page: 105665
  year: 2023
  ident: ref_5
  article-title: Nuts&bolts: YOLO-v5 and image processing based component identification system
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105665
SSID ssj0065961
Score 2.345407
Snippet Currently, YOLO-based object detection is widely employed in intelligent inspection robots. However, under interference factors present in dimly lit substation...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 495
SubjectTerms Accuracy
Algorithms
Analysis
Datasets
Deep learning
dim environment object detection
Efficiency
Floating point arithmetic
HetConv
Information processing
Inner-SIoU
Inspection
Neural networks
Object recognition
Real time
Robotics industry
Robots
ShuffleAttention
Substations
YOLO11 improvement
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwELUKvXDhowWxFCqrQuopQv6IE58qCixLRdmqgAQny3ZstBIksBvE3-9M1tlygVsUW1EyY888O-P3CNmXRVUIK4qMx9Jl0kuRwTIiz3jglVaQ8LzCA86_L9ToWv66yW_ShtsslVX2MbEL1FXjcY_8ABK_0AA-Cvbj8SlD1Sj8u5okNJbIRwaZBsd5OTztI7HKtWJzNiEBS_sDy5BEUaKUxKsc1FH1vxWQuywzXCerCR7Sw7k_N8iHUH8ia730Ak0z8TOZjC4vs9vx-Zie4-r6pdvgpGOHuyr0OLRdgVVNUensngIupWcL6s0WrufnK6HD38Y17YxOavoH5dLoMfLoJgksaGweZpvkenhydTTKkmpC5jmWrEVdsmBVLH1upWZVgI-OSgctbJTacWiTwTuATryoBGNOe--0KBGsMKa82CLLdVOHbUKDVJxHySpklMllYb3XLISowLHROzEg33o7msc5OYaBRQUa2yyMPSA_0cKLDshn3d1opncmTQ_DrVJFBQ8FNAaQwlrlma4ilnAUNkQ9IN_RPwZnXTu13qbDA_CeyF9lDgF1KOQT4wOy27vQpOk4M_8Hz877zV_ICkeB367Cb5cst9PnsAeoo3Vfu6H1D__Z1t8
  priority: 102
  providerName: ProQuest
Title HSS-YOLO Lightweight Object Detection Model for Intelligent Inspection Robots in Power Distribution Rooms
URI https://www.proquest.com/docview/3243965671
https://doaj.org/article/2a667d8fc623415aa6c19df10077aef9
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeuECbQGxFFZWVYlTBP6IEx-hsGwryiI-JDhZtmNLK9Fsxabi7zOTZFdcUC_cotgHZyb2vElm3gP4roqqkE4WmUilz1RQMsM0Is9EFJXRGPCCpgbn35d6fKd-3ef3r6S-qCasowfuDHconNZFVaaAcRqDjXM6cFMl-rlfuJja1r0jc7RIprozWOdG845HSGJSf-g40ScqEpF4FX1akv63juI2vow-wXoPDNlxt6DP8CHWX2BjIbrA-j24CdPxzU32MLmYsAvKq5_bT5ts4ul7CjuNTVtaVTPSOHtkiEjZzyXpZoPXXWclTrie-VkzZ9OaXZFQGjslBt1e_AoHZ3_mW3A3Orv9Mc56vYQsCCpWS6bk0elUhtwpw6uID520iUa6pIwXOKZi8AiaRFFJzr0JwRtZEkzhXAe5Dav1rI47wKLSQiTFK-KSyVXhQjA8xqTRpSl4OYBvCzvavx0thsV0goxtl8YewAlZeDmBmKzbG-hf2_vX_s-_Azgg_1jab82TC65vG8B1EnOVPUa8oYlJTAxgb-FC22_EuUW8KA1i1oLvvsdqvsKaIAHgtgJwD1abp39xH1FJ44ewUo7Oh_Dx5Ozy6nrYvo4vldrh9Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuvBFbClgIxClq_YgTHxBq2Va7dLtb9SGVU-o4NqpEk7IbVPGn-I3M5LFwgVtvUWxZ0Xg8D2fm-wDeqqRIpJVJJEKaR8opGWEaEUfCi8JodHhOU4Pz4UyPz9Tn8_h8DX71vTBUVtnbxMZQF5WjO_ItdPzSYPCR8I_X3yNijaK_qz2FRqsWB_7nDaZsyw-TEe7vOyH2904_jaOOVSBygkq6gkm5tzqkLrbK8MKn22nQxhtpgzK5wDHlXY6hhUgKyXlunMuNTMmZc66dxHXvwLqijtYBrO_uzY6Oe9uvY6N5i18kpdnespxgGxWRV_zl9RpygH-5gMav7T-E-11AynZaDXoEa758DA96sgfWnf0ncDk-OYm-zKdzNqV8_qa5UmXznO5x2MjXTUlXyYhb7RvDSJhNVmCfNT63HZ044bjKq3rJLkt2RARtbETIvR3pFg5WV8uncHYrEn0Gg7Iq_XNgXmkhguIFYdjEKrHOGe590KhKweVyCG96OWbXLRxHhmkMCTtbCXsIuyTh1QRC0G5eVIuvWXcgM2G1TgpcFOM_DGKs1Y6bIlDRSGJ9MEN4T_uT0TmvF9bZrl0Bv5MQs7IdjHM0IZiJIWz2W5h1BmCZ_VHXjf8Pv4a749PDaTadzA5ewD1B9MJNfeEmDOrFD_8SY546f9UpGoOL29bt3ypBFJ8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiFAhYCcYq2fsSODwgVlmWXLt2KUqmcjO3YqBIkZTeo4q_x65jJY-ECt96i2LKi8Xgezsz3EfJU6lILJ3TGU-EzGaTIII3IMx55aRQ4vKCwwfn9gZody3cn-ckW-TX0wmBZ5WATW0Nd1gHvyMfg-IWB4EOzcerLIg4n05dn3zNkkMI_rQOdRqci-_HnOaRv6xfzCez1M86nbz6-nmU9w0AWOJZ3JVOw6FQqQu6kYWUsdoukTDTCJWk8hzEZg4cwg-tSMOZNCN6IAh07YyoIWPcSuayFNpj4FdO3gxdQuVGsQzISwuyOHUMAR4k0Fn_5v5Ym4F_OoPVw0xvkWh-a0r1Ol26SrVjdItcH2gfaW4Hb5HR2dJR9Wi6WdIGZ_Xl7uUqXHm906CQ2bXFXRZFl7SuFmJjON7CfDTx3vZ0w4UPt62ZNTyt6iFRtdIIYvj39FgzW39Z3yPGFyPMu2a7qKt4jNErFeZKsRDSbXGoXgmExJgVKlYIXI_JkkKM964A5LCQ0KGy7EfaIvEIJbyYglnb7ol59sf3RtNwppUtYFCJBCGecU4GZMmH5iHYxmRF5jvtj8cQ3Kxdc37gA34nYWXYPIh6FWGZ8RHaGLbS9KVjbP4p7___Dj8kV0Gi7mB_sPyBXOfIMt4WGO2S7Wf2IDyH4afyjVsso-XzRav0bCgUXbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSS-YOLO+Lightweight+Object+Detection+Model+for+Intelligent+Inspection+Robots+in+Power+Distribution+Rooms&rft.jtitle=Algorithms&rft.au=Liang+Li&rft.au=Yangfei+He&rft.au=Yingying+Wei&rft.au=Hucheng+Pu&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=495&rft_id=info:doi/10.3390%2Fa18080495&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2a667d8fc623415aa6c19df10077aef9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon