Qualifying Contributions of Teleconnection Patterns to Extremely Hot Summers in Japan
Extremely hot days in Japan are known to persist for a week or more, and they are measured by the temperature anomaly at 850 hPa averaged over Japan derived from the JRA-55 reanalysis data, denoted as T850JP. Severe high-temperature anomalies are often accompanied by multiple teleconnection patterns...
Saved in:
Published in | Journal of the Meteorological Society of Japan Vol. 100; no. 3; pp. 509 - 522 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Meteorological Society of Japan
2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extremely hot days in Japan are known to persist for a week or more, and they are measured by the temperature anomaly at 850 hPa averaged over Japan derived from the JRA-55 reanalysis data, denoted as T850JP. Severe high-temperature anomalies are often accompanied by multiple teleconnection patterns that affect the weather in Japan, but their relative contribution to individual heat wave events has not yet been quantified. In this study, we examined the effects of three major teleconnection patterns, namely, the Pacific-Japan (PJ), circumglobal teleconnection (CGT), and Siberian patterns, on T850JP in July and August from 1958–2019 using daily low-pass-filtered anomalies with 8 days cutoff timescale derived from the reanalysis.A linear regression analysis demonstrated that T850JP tended to show a large positive anomaly one or two days after the peak of these patterns. On the basis of this relationship, we reconstructed a daily T850JP time series using a multivariate statistical model wherein the parameters were estimated using regression analyses between T850JP and the indices of the three teleconnection patterns. The reconstructed T850JP showed that the three teleconnection patterns together accounted for 50 % of the total variance of T850JP for extremely hot summers, to which each of the three teleconnection patterns were found to have a similar degree of contribution. The statistical model reproduces the interannual variability along with the long-term T850JP trend. The PJ pattern has the largest effect on the interannual variability of T850JP, probably due to the PJ teleconnection occurring over a longer timescale compared with the other two patterns. The reconstructed T850JP also displays a warming trend associated with an increasing trend in the CGT index, which may be a factor, along with the direct thermodynamic effects due to global warming, to explain the long-term increase in the heat wave frequency in Japan. |
---|---|
AbstractList | Extremely hot days in Japan are known to persist for a week or more, and they are measured by the temperature anomaly at 850 hPa averaged over Japan derived from the JRA-55 reanalysis data, denoted as T850JP. Severe high-temperature anomalies are often accompanied by multiple teleconnection patterns that affect the weather in Japan, but their relative contribution to individual heat wave events has not yet been quantified. In this study, we examined the effects of three major teleconnection patterns, namely, the Pacific-Japan (PJ), circumglobal teleconnection (CGT), and Siberian patterns, on T850JP in July and August from 1958–2019 using daily low-pass-filtered anomalies with 8 days cutoff timescale derived from the reanalysis.A linear regression analysis demonstrated that T850JP tended to show a large positive anomaly one or two days after the peak of these patterns. On the basis of this relationship, we reconstructed a daily T850JP time series using a multivariate statistical model wherein the parameters were estimated using regression analyses between T850JP and the indices of the three teleconnection patterns. The reconstructed T850JP showed that the three teleconnection patterns together accounted for 50 % of the total variance of T850JP for extremely hot summers, to which each of the three teleconnection patterns were found to have a similar degree of contribution. The statistical model reproduces the interannual variability along with the long-term T850JP trend. The PJ pattern has the largest effect on the interannual variability of T850JP, probably due to the PJ teleconnection occurring over a longer timescale compared with the other two patterns. The reconstructed T850JP also displays a warming trend associated with an increasing trend in the CGT index, which may be a factor, along with the direct thermodynamic effects due to global warming, to explain the long-term increase in the heat wave frequency in Japan. |
ArticleNumber | 2022-025 |
Author | MOGI, Atsushi WATANABE, Masahiro |
Author_xml | – sequence: 1 orcidid: 0000-0002-6056-5690 fullname: MOGI, Atsushi organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan – sequence: 2 fullname: WATANABE, Masahiro organization: Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan |
BookMark | eNo9kE1PAjEQhhuDiYAevfcPLPZj2y1HQ1A0JGqEc9MtU1yy25K2JPLvZUW5zGTmfWYOzwgNfPCA0D0lE0YFfdh1aTdhhLGCMHGFhowqWUyJqAZoSAiTBaVS3KBRSrt-LCs5ROuPg2kbd2z8Fs-Cz7GpD7kJPuHg8ApasMF7sP0Kv5ucIZ6iHPD8O0fooD3iRcj489B1EBNuPH41e-Nv0bUzbYK7vz5G66f5arYolm_PL7PHZWEZl6KwtarrKXdUMmeV4ooQLjeMV8Jy4oR1VpSlqIgypCwlqGq6KaVixhmQdU0qPkbF-a-NIaUITu9j05l41JTo3onunejeiT45OfHzM79L2WzhQpuYG9vCmaaEaP5b_-8uuf0yUYPnPz1icA4 |
Cites_doi | 10.1029/2018JD030170 10.2151/jmsj.2020-010 10.1029/2002GL016831 10.1007/s00382-007-0317-y 10.2151/sola.2018-025 10.1256/qj.01.211 10.1007/s004840050127 10.1175/2009JCLI3323.1 10.1002/qj.3803 10.2151/jmsj.2015-001 10.2151/jmsj.84.641 10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2 10.1038/ngeo2253 10.1073/pnas.1215582110 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2 10.1002/joc.4441 10.2151/jmsj.87.561 10.4157/geogrevjapanb.91.17 10.1002/2013JD020688 10.2151/jmsj1965.65.3_373 10.2151/sola.2008-003 10.2151/jmsj1965.76.3_419 10.1007/s00382-012-1416-y 10.1256/qj.03.101 10.2151/jmsj.82.1577 10.2151/sola.15A-002 10.1175/JCLI3473.1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2151/jmsj.2022-025 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2186-9057 |
EndPage | 522 |
ExternalDocumentID | 10_2151_jmsj_2022_025 article_jmsj_100_3_100_2022_025_article_char_en |
GroupedDBID | 29L 2WC 5GY 7.U ABEFU ABTAH AENEX AI. ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS ECGQY EJD GROUPED_DOAJ JSF KQ8 OK1 P2P RJT RNS RYR TKC VH1 VOH ZY4 ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c2365-cb8bb93f162fc88380036d2375c30f5cfc5445708a0446e879d4682afae6bb073 |
ISSN | 0026-1165 |
IngestDate | Fri Aug 23 01:39:42 EDT 2024 Wed Apr 05 05:27:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2365-cb8bb93f162fc88380036d2375c30f5cfc5445708a0446e879d4682afae6bb073 |
ORCID | 0000-0002-6056-5690 |
OpenAccessLink | http://dx.doi.org/10.2151/jmsj.2022-025 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_2151_jmsj_2022_025 jstage_primary_article_jmsj_100_3_100_2022_025_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of the Meteorological Society of Japan |
PublicationYear | 2022 |
Publisher | Meteorological Society of Japan |
Publisher_xml | – name: Meteorological Society of Japan |
References | North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699-706. Fujibe, F., J. Matsumoto, and H. Suzuki, 2018b: Spatial and temporal features of heat stroke mortality in Japan and their relation to temperature variations, 1999–2014. Geogr. Rev. Japan, 91, 17-27. Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661-1671. Yasunaka, S., and K. Hanawa, 2006: Interannual summer temperature variations over Japan and their relation to large-scale atmospheric circulation field. J. Meteor. Soc. Japan, 84, 641-652. Imada, Y., M. Watanabe, H. Kawase, H. Shiogama, and M. Arai, 2019: The July 2018 high temperature event in Japan could not have happened without human-induced global warming. SOLA, 15A, 8-12. Wakabayashi, S., and R. Kawamura, 2004: Extraction of major teleconnection patterns possibly associated with the anomalous summer climate in Japan. J. Meteor. Soc. Japan, 82, 1577-1588. Shepherd, T. G., 2014: Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci., 7, 703-708. Takemura, K., and H. Mukougawa, 2020: Dynamical relationship between quasi-stationary Rossby wave propagation along the Asian jet and Pacific-Japan pattern in boreal summer. J. Meteor. Soc. Japan, 98, 169-187. Yeo, S.-R., S.-W. Yeh, and W.-S. Lee, 2019: Two types of heat wave in Korea associated with atmospheric circulation pattern. J. Geophys. Res.: Atmos., 124, 7498-7511. Kosaka, Y., H. Nakamura, M. Watanabe, and M. Kimoto, 2009: Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J. Meteor. Soc. Japan, 87, 561-580. Kosaka, Y., S.-P. Xie, N.-C. Lau, and G. A. Vecchi, 2013: Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc. Natl. Acad. Sci. U.S.A. (PNAS), 110, 7574-7579. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373-390. Arai, M., and M. Kimoto, 2008: Simulated interannual variation in summertime atmospheric circulation associated with the East Asian monsoon. Climate Dyn., 31, 435-447. Nakai, S., T. Itoh, and T. Morimoto, 1999: Deaths from heatstroke in Japan: 1968–1994. Int. J. Biometeor., 43, 124-127. Guan, Z., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, doi:10.1029/2002GL016831. Nakamura, H., and T. Fukamachi, 2004: Evolution and dynamics of summertime blocking over the Far East and the associated surface Okhotsk high. Quart. J. Roy. Meteor. Soc., 130, 1213-1233. Japan Meteorological Agency, 2018: Press release on the July heavy rain event and subsequent hot extremes in 2018 (in Japanese). [Available at https://www.jma.go.jp/jma/press/1808/10c/h30goukouon20180810.html.] Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48. Terao, T., 1998: Barotropic disturbances on intraseasonal time scales observed in the midlatitudes over the Eurasian continent during the northern summer. J. Meteor. Soc. Japan, 76, 419-436. Ding, Q., and B. Wang, 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 3483-3505. Kosaka, Y., and H. Nakamura, 2008: A comparative study on the dynamics of the Pacific-Japan (PJ) teleconnection pattern based on reanalysis datasets. SOLA, 4, 9-12. Park, Y.-J., and J.-B. Ahn, 2014: Characteristics of atmospheric circulation over East Asia associated with summer blocking. J. Geophys. Res.: Atmos., 119, 726-738. Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. D. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999-2049. Fujibe, F., J. Matsumoto, and H. Suzuki, 2018a: Regional features of the relationship between daily heat-stroke mortality and temperature in different climate zones in Japan. SOLA, 14, 144-147. Imada, Y., H. Shiogama, M. Watanabe, M. Mori, M. Ishii, and M. Kimoto, 2014: The contribution of anthropogenic forcing to the Japanese heat waves of 2013. Explaining Extreme Events of 2013 from a Climate Perspective. Herring, S. C., M. P. Hoerling, T. C. Peterson, and P. A. Stott (eds.), Bull. Amer. Meteor. Soc., 95, S52-S54. Park, C.-K., and S. D. Schubert, 1997: On the nature of the 1994 East Asian summer drought. J. Climate, 10, 1056-1070. Hirota, N., and M. Takahashi, 2012: A tripolar pattern as an internal mode of the East Asian summer monsoon. Climate Dyn., 39, 2219-2238. Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157-178. Fujibe, F., 2013: Long-term variations in heat mortality and summer temperature in Japan. Tenki, 60, 371-381 (in Japanese). Kubota, H., Y. Kosaka, and S.-P. Xie, 2016: A 117-year long index of the Pacific-Japan pattern with application to interdecadal variability. Int. J. Climatol., 36, 1575-1589. Yasui, S., and M. Watanabe, 2010: Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J. Climate, 23, 2093-2114. 22 23 24 25 26 27 28 29 30 31 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 4 – ident: 31 doi: 10.1029/2018JD030170 – ident: 26 doi: 10.2151/jmsj.2020-010 – ident: 7 doi: 10.1029/2002GL016831 – ident: 1 doi: 10.1007/s00382-007-0317-y – ident: 5 doi: 10.2151/sola.2018-025 – ident: 3 doi: 10.1256/qj.01.211 – ident: 19 doi: 10.1007/s004840050127 – ident: 29 doi: 10.1175/2009JCLI3323.1 – ident: 8 doi: 10.1002/qj.3803 – ident: 14 doi: 10.2151/jmsj.2015-001 – ident: 30 doi: 10.2151/jmsj.84.641 – ident: 23 doi: 10.1175/1520-0442(1997)010<1056:OTNOTE>2.0.CO;2 – ident: 25 doi: 10.1038/ngeo2253 – ident: 17 doi: 10.1073/pnas.1215582110 – ident: 22 doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 – ident: 10 doi: 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2 – ident: 18 doi: 10.1002/joc.4441 – ident: 16 doi: 10.2151/jmsj.87.561 – ident: 11 – ident: 6 doi: 10.4157/geogrevjapanb.91.17 – ident: 13 – ident: 24 doi: 10.1002/2013JD020688 – ident: 21 doi: 10.2151/jmsj1965.65.3_373 – ident: 15 doi: 10.2151/sola.2008-003 – ident: 27 doi: 10.2151/jmsj1965.76.3_419 – ident: 9 doi: 10.1007/s00382-012-1416-y – ident: 20 doi: 10.1256/qj.03.101 – ident: 28 doi: 10.2151/jmsj.82.1577 – ident: 12 doi: 10.2151/sola.15A-002 – ident: 2 doi: 10.1175/JCLI3473.1 |
SSID | ssj0026476 ssib026971113 |
Score | 2.3485057 |
Snippet | Extremely hot days in Japan are known to persist for a week or more, and they are measured by the temperature anomaly at 850 hPa averaged over Japan derived... |
SourceID | crossref jstage |
SourceType | Aggregation Database Publisher |
StartPage | 509 |
SubjectTerms | circumglobal teleconnection Japan summer temperature Pacific-Japan pattern Siberian pattern statistical model |
Title | Qualifying Contributions of Teleconnection Patterns to Extremely Hot Summers in Japan |
URI | https://www.jstage.jst.go.jp/article/jmsj/100/3/100_2022-025/_article/-char/en |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Meteorological Society of Japan. Ser. II, 2022, Vol.100(3), pp.509-522 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBayboddhu6FZY9Ch6GXQJktv-TLgLTIlnZItwEJ0Jth2TLqorWHxAHa_pL-3JJSrDjDhq3bRUjkRxR9BEkR5EdC3heF46VZkTM3jxXzfalYGrkxU1LAUSyInFy3TpiehJO5f3wanPZ6t52spVUjh9nNL-tK_gVVmANcsUr2Hsjal8IEfAZ8YQSEYfwrjDUBhilUQpaptneVzs6YYYMbzGIxvcC_aR7NSvM5jK8ajApeXA8mdTPAOBhW8ZbV4BgsZ_UbdxUd1Cl42PXCqss24xOu6ieHqHmGgyMbiJ1-_XyklU-zXC3PSmsARrPRyehgbGqFlulZuai70Qe-OaX-4Re7OpeHDEl-jMXRc9gIi8WOoaa2ethxOgLndbRq4MQdAx2YVfys-9F3Qd1_uTwf4kqZw4ONkbOph2uwErwPCZsTT4_4RAJPJO11LHoDGXtAHnJQYZgs-uW71VQ8jCMwEtbmg1ep2xja_2rYXHFJH7YWtOX9PDqHA0CbPKj9mdkuebJGlo7MQp6Snqqekf5mv6_pPj28KOFAo789J_ONtNEtaaN1QbeljbbSRpuaWmmjIG10LW20rKhG8AWZfxrPDids3ZSDZRwzIjMppIy9wg15kQnhCWQ0yrkXBZnnFEFWZEjvFDkixVQBJaI490PB0yJVoZRgUF6Snaqu1CtCwfsWUQ7-pBu5fubncNaIXSUCCZZPwNb1yX67WckPw70CWCW4qwa-FrQ--Wi20t52T5Rf_-8L3pDHBmKMzb0lO81ipd6Bt9rIPR3l2dPicwetvJsp |
link.rule.ids | 315,783,787,867,4031,27935,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Qualifying+Contributions+of+Teleconnection+Patterns+to+Extremely+Hot+Summers+in+Japan&rft.jtitle=Journal+of+the+Meteorological+Society+of+Japan.+Ser.+II&rft.au=MOGI%2C+Atsushi&rft.au=WATANABE%2C+Masahiro&rft.date=2022&rft.pub=Meteorological+Society+of+Japan&rft.issn=0026-1165&rft.eissn=2186-9057&rft.volume=100&rft.issue=3&rft.spage=509&rft.epage=522&rft_id=info:doi/10.2151%2Fjmsj.2022-025&rft.externalDocID=article_jmsj_100_3_100_2022_025_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1165&client=summon |