Enhancing Ferroptosis-Related Protein Prediction Through Multimodal Feature Integration and Pre-Trained Language Model Embeddings

Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational met...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 465
Main Authors Zhou, Jie, Wang, Chunhua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18080465

Cover

Abstract Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational methods for FRP prediction often exhibit limited accuracy and suboptimal performance. In this study, we harnessed the power of pre-trained protein language models (PLMs) to develop a novel machine learning framework, termed PLM-FRP, which utilizes deep learning-derived features for FRP identification. By integrating ESM2 embeddings with traditional sequence-based features, PLM-FRP effectively captures complex evolutionary relationships and structural patterns within protein sequences, achieving a remarkable accuracy of 96.09% on the benchmark dataset and significantly outperforming previous state-of-the-art methods. We anticipate that PLM-FRP will serve as a powerful computational tool for FRP annotation and facilitate deeper insights into ferroptosis mechanisms, ultimately advancing the development of ferroptosis-targeted therapeutics.
AbstractList Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational methods for FRP prediction often exhibit limited accuracy and suboptimal performance. In this study, we harnessed the power of pre-trained protein language models (PLMs) to develop a novel machine learning framework, termed PLM-FRP, which utilizes deep learning-derived features for FRP identification. By integrating ESM2 embeddings with traditional sequence-based features, PLM-FRP effectively captures complex evolutionary relationships and structural patterns within protein sequences, achieving a remarkable accuracy of 96.09% on the benchmark dataset and significantly outperforming previous state-of-the-art methods. We anticipate that PLM-FRP will serve as a powerful computational tool for FRP annotation and facilitate deeper insights into ferroptosis mechanisms, ultimately advancing the development of ferroptosis-targeted therapeutics.
Audience Academic
Author Zhou, Jie
Wang, Chunhua
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0009-0005-6549-4675
  surname: Zhou
  fullname: Zhou, Jie
– sequence: 2
  givenname: Chunhua
  orcidid: 0009-0008-1448-3169
  surname: Wang
  fullname: Wang, Chunhua
BookMark eNpNkUFrGzEQhZeSQpO0h_6DhZ562ERaabXSMQSnNTi0FPcsxtJoLbOWXEl76DH_vEpcQtBhRsN73wy8q-YixIBN85mSG8YUuQUqiSRcDO-aS6qU6rhU7OJN_6G5yvlAiBiUoJfN0yrsIRgfpvYBU4qnErPP3S-coaBtf6ZY0Ida0XpTfAztdp_iMu3bx2Uu_hgtzNUJZUnYrkPBKcGLDMKzG7ttAh8qaQNhWmDC9jFanNvVcYfW1rX5Y_PewZzx0_963fx-WG3vv3ebH9_W93ebzvRMDJ0QHHdIndjxsXZGSS4Frz82gmGEAPRGOj5YKYQR3ElCHBuZpA4twZ6x62Z95toIB31K_gjpr47g9csgpklDKt7MqEdlRhSOS5CMM6BKWioHHC0jXAmuKuvLmXVK8c-CuehDXFKo52vWc6bEMApaVTdn1QQV6oOLJYGpz-LRm5qb83V-JwcmCBn6vhq-ng0mxZwTutczKdHP8erXeNk_etGYtA
Cites_doi 10.1038/nature24297
10.1101/2020.07.12.199554
10.1145/2939672.2939785
10.1016/j.physrep.2017.05.001
10.1038/cdd.2015.158
10.1109/APWCCSE.2014.7053846
10.1038/s41419-019-2064-5
10.1126/science.ade2574
10.1109/72.788645
10.1101/2021.02.12.430858
10.1109/5.726791
10.1093/nar/25.17.3389
10.1016/j.csbj.2021.03.022
10.1038/s41586-019-1707-0
10.1093/nar/gkac1052
10.1186/1471-2105-7-319
10.1016/j.cell.2012.03.042
10.1371/journal.pone.0022930
10.1016/j.addr.2010.06.006
10.1016/S0004-3702(97)00043-X
10.1023/A:1010933404324
10.1038/s41598-019-46369-4
10.1093/bioinformatics/btx302
10.1016/j.ijbiomac.2024.130180
10.1109/TKDE.2005.66
10.3390/informatics8040079
10.3390/cancers12010164
10.1109/TKDE.2019.2912815
10.1089/ars.2021.0218
10.1038/nchembio.2239
10.1038/s41467-022-32007-7
10.3390/s17020273
10.1093/nar/gkz740
10.1371/journal.pone.0007813
10.18632/aging.205055
10.1093/bfgp/elaa030
10.12928/telkomnika.v14i4.3956
10.1016/j.jmb.2023.168116
10.1155/2021/1587922
10.1109/BigData47090.2019.9005997
10.1093/nar/gkac935
10.1023/A:1007465528199
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a18080465
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_79c7e6f48a8343a198d185e7d3049649
A853600522
10_3390_a18080465
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
PUEGO
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2365-664ebe1f6b474ebc9848646b437ac300aa2c8f45d866c64f800f37381fed0e233
IEDL.DBID 8FG
ISSN 1999-4893
IngestDate Mon Sep 01 19:39:27 EDT 2025
Wed Aug 27 12:54:03 EDT 2025
Tue Sep 02 04:00:05 EDT 2025
Thu Jul 31 00:43:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2365-664ebe1f6b474ebc9848646b437ac300aa2c8f45d866c64f800f37381fed0e233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-1448-3169
0009-0005-6549-4675
OpenAccessLink https://www.proquest.com/docview/3243965761?pq-origsite=%requestingapplication%
PQID 3243965761
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_79c7e6f48a8343a198d185e7d3049649
proquest_journals_3243965761
gale_infotracacademiconefile_A853600522
crossref_primary_10_3390_a18080465
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kohavi (ref_31) 1997; 97
Hinton (ref_47) 2008; 9
Dixon (ref_5) 2012; 149
ref_10
Altschul (ref_19) 1997; 25
Nesmelova (ref_17) 2010; 62
Cui (ref_28) 2021; 20
Liu (ref_18) 2019; 47
Breiman (ref_35) 2001; 45
ref_16
ref_38
Xie (ref_1) 2016; 23
ref_15
Drucker (ref_34) 1999; 10
Liu (ref_33) 2005; 17
Ferruz (ref_24) 2022; 13
Pedregosa (ref_39) 2011; 12
Liao (ref_30) 2017; 689
Wang (ref_20) 2017; 33
ref_25
ref_46
David (ref_3) 2022; 37
Doll (ref_7) 2017; 13
ref_23
ref_22
ref_44
Li (ref_4) 2021; 2021
ref_21
ref_42
ref_41
ref_40
Wong (ref_45) 2019; 32
Lin (ref_11) 2023; 379
Zhou (ref_13) 2022; 51
Consortium (ref_14) 2023; 51
ref_2
Park (ref_8) 2019; 10
ref_29
Friedman (ref_36) 1997; 29
Doll (ref_9) 2019; 575
ref_26
Zagirova (ref_12) 2023; 15
Burges (ref_32) 2010; 11
LeCun (ref_37) 1998; 86
Ofer (ref_27) 2021; 19
Hangauer (ref_6) 2017; 551
Syarif (ref_43) 2016; 14
References_xml – volume: 551
  start-page: 247
  year: 2017
  ident: ref_6
  article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
  publication-title: Nature
  doi: 10.1038/nature24297
– ident: ref_26
  doi: 10.1101/2020.07.12.199554
– volume: 11
  start-page: 81
  year: 2010
  ident: ref_32
  article-title: From ranknet to lambdarank to lambdamart: An overview
  publication-title: Learning
– ident: ref_38
  doi: 10.1145/2939672.2939785
– volume: 689
  start-page: 1
  year: 2017
  ident: ref_30
  article-title: Ranking in evolving complex networks
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2017.05.001
– volume: 23
  start-page: 369
  year: 2016
  ident: ref_1
  article-title: Ferroptosis: Process and function
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2015.158
– ident: ref_22
  doi: 10.1109/APWCCSE.2014.7053846
– volume: 10
  start-page: 822
  year: 2019
  ident: ref_8
  article-title: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-2064-5
– volume: 379
  start-page: 1123
  year: 2023
  ident: ref_11
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
  doi: 10.1126/science.ade2574
– volume: 10
  start-page: 1048
  year: 1999
  ident: ref_34
  article-title: Support vector machines for spam categorization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.788645
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_39
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_25
  doi: 10.1101/2021.02.12.430858
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_37
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 25
  start-page: 3389
  year: 1997
  ident: ref_19
  article-title: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.17.3389
– volume: 19
  start-page: 1750
  year: 2021
  ident: ref_27
  article-title: The language of proteins: NLP, machine learning & protein sequences
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.03.022
– volume: 575
  start-page: 693
  year: 2019
  ident: ref_9
  article-title: FSP1 is a glutathione-independent ferroptosis suppressor
  publication-title: Nature
  doi: 10.1038/s41586-019-1707-0
– volume: 51
  start-page: D523
  year: 2023
  ident: ref_14
  article-title: UniProt: The universal protein knowledgebase in 2023
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac1052
– ident: ref_21
  doi: 10.1186/1471-2105-7-319
– volume: 149
  start-page: 1060
  year: 2012
  ident: ref_5
  article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.042
– ident: ref_23
– ident: ref_16
  doi: 10.1371/journal.pone.0022930
– volume: 62
  start-page: 1187
  year: 2010
  ident: ref_17
  article-title: DDE transposases: Structural similarity and diversity
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2010.06.006
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_31
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_35
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_40
  doi: 10.1038/s41598-019-46369-4
– volume: 33
  start-page: 2756
  year: 2017
  ident: ref_20
  article-title: POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx302
– ident: ref_10
  doi: 10.1016/j.ijbiomac.2024.130180
– volume: 17
  start-page: 491
  year: 2005
  ident: ref_33
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2005.66
– ident: ref_44
  doi: 10.3390/informatics8040079
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_47
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref_2
  doi: 10.3390/cancers12010164
– volume: 32
  start-page: 1586
  year: 2019
  ident: ref_45
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2912815
– ident: ref_46
– volume: 37
  start-page: 150
  year: 2022
  ident: ref_3
  article-title: Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2021.0218
– volume: 13
  start-page: 91
  year: 2017
  ident: ref_7
  article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.2239
– volume: 13
  start-page: 4348
  year: 2022
  ident: ref_24
  article-title: ProtGPT2 is a deep unsupervised language model for protein design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32007-7
– ident: ref_42
  doi: 10.3390/s17020273
– volume: 47
  start-page: e127
  year: 2019
  ident: ref_18
  article-title: BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz740
– ident: ref_15
  doi: 10.1371/journal.pone.0007813
– volume: 15
  start-page: 9293
  year: 2023
  ident: ref_12
  article-title: Biomedical generative pre-trained based transformer language model for age-related disease target discovery
  publication-title: Aging
  doi: 10.18632/aging.205055
– volume: 20
  start-page: 61
  year: 2021
  ident: ref_28
  article-title: Sequence representation approaches for sequence-based protein prediction tasks that use deep learning
  publication-title: Briefings Funct. Genom.
  doi: 10.1093/bfgp/elaa030
– volume: 14
  start-page: 1502
  year: 2016
  ident: ref_43
  article-title: SVM parameter optimization using grid search and genetic algorithm to improve classification performance
  publication-title: Telkomnika Telecommun. Comput. Electron. Control.
  doi: 10.12928/telkomnika.v14i4.3956
– ident: ref_29
  doi: 10.1016/j.jmb.2023.168116
– volume: 2021
  start-page: 1587922
  year: 2021
  ident: ref_4
  article-title: Targeting ferroptosis: Pathological mechanism and treatment of ischemia-reperfusion injury
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2021/1587922
– ident: ref_41
  doi: 10.1109/BigData47090.2019.9005997
– volume: 51
  start-page: D571
  year: 2022
  ident: ref_13
  article-title: FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac935
– volume: 29
  start-page: 131
  year: 1997
  ident: ref_36
  article-title: Bayesian network classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
SSID ssj0065961
Score 2.3453712
Snippet Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 465
SubjectTerms Accuracy
Amino acids
Annotations
Bioinformatics
Cell death
Datasets
Deep learning
ESM2
feature integration
Ferroptosis
Health aspects
Machine learning
Methods
protein language models
Proteins
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiEJBFkJiiprEjpOMBbUqCBBDK3WzXNuBSjSp0vQH8M-5c5KqC2JhykN2bN3Fvu_s83eE3KWh9bk1zIuU4rh0E3lKmMgLLWexYUwnjkj79U2Mp_x5Fs12Un1hTFhND1wLrh-nOrYi44lKGGcKfGQDJsbCdwDbCu6O7vmp3zpT9RwsolQENY8QA6e-rwKkT-RoQXasjyPp_20qdvZldEQOGmBIB3WHjsmezU_IYZt0gTZj8JR8D_NP5MjIP-jIlmWxqor1Yu25oDZr6DvyLixyuOIODEqdTupUPNSdtV0WBlpB4LcpLX1qyCKwmMqxtvUmmDQCvvTSrGRSTJf2RYfLuTVuo-qMTEfDyePYa_IoeDrEIDYhOKgqyMScx3CnU5C_4PDEYqWZ7ysV6iTjkUmE0IJngCEzJDwKMmt8GzJ2Tjp5kdsLQuchsrlAlUhlCAWUSgDixb7iqc6gkS65beUrVzVdhgQ3A5Ugt0rokgeU_LYAMly7F6B32ehd_qX3LrlHvUkch1WptGqOE0A_kdFKDgCHCFz0Druk16pWNgN0LQFHslSAsxVc_kdvrsh-iImBXWRgj3SqcmOvAa1U8xv3Y_4A6Krm5w
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing Ferroptosis-Related Protein Prediction Through Multimodal Feature Integration and Pre-Trained Language Model Embeddings
URI https://www.proquest.com/docview/3243965761
https://doaj.org/article/79c7e6f48a8343a198d185e7d3049649
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8xeNnLGGyI8lFZCImniCR2nORpgqkdQ1BVU5F4s1zbASSalLT9A_jPd-c6sJfxlC8njnxn3-_O9u8ATsvUxcJZHmVaCwrdZJGWNotSJ3huOTeFJ9K-HcmrO3F9n92HgNsiLKvsxkQ_UNvGUIz8HA0_LyWi4-TH_CWirFE0uxpSaHyCrQQtDel5MfzVjcQyK2WyZhPi6Nqf64RIFAXZkX9skKfq_9-A7K3M8Ct8CfCQXazluQMbrt6F7S71Ags98Ru8DupHYsqoH9jQtW0zXzaLp0Xkl7Y5y8bEvvBU45HmYajt2WSdkIf5HbezxmItBP9WrWO_A2UEFdM1ve2iCaWOwC_dhHgmo6Rpz2wwmzrrp6u-w91wMPl5FYVsCpFJaSmblAIFllRyKnI8MyVKQQq84rk2PI61Tk1RicwWUhopKkSSFdEeJZWzsUs534PNuqndPrBpSpwu-EqmKwIEWhcI9PJYi9JUWEkPTrr2VfM1aYZCZ4OEoN6E0INLavm3AsRz7W807YMK3UblpcmdrEShCy64TsrCIsBwqEXo2UhR9uCM5KaoNy5bbXTYVID_SbxW6gLRiKTQd9qDo060KnTThXpXqoOPHx_C55QS__qVf0ewuWxX7hjRyHLa9yrXh63LwWj8p-99-r_O4-Ii
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNcKJ9iaQELgThFTWzHSQ4ItbCrXbpdVWgr9Wa8ttNWosmS3Qpx5A_xG5lxksIFbj3tV7KxPOOZ57H9HsDrgvtYeiei1BhJpZs0MsqlEfdSZE4Imwci7eO5mpzKT2fp2Rb86s_C0LbKPiaGQO1qSzXyfUz8olCIjpP3q28RqUbR6movodG6xZH_8R2nbOt3049o3zecj0eLD5OoUxWILKctXUpJbHhSqqXM8J0tsDVK4ieRGSvi2Bhu81KmLlfKKlkioiqJ_icpvYs9pwIohvxtSSdaB7B9OJqffO5jv0oLlbT8RUIU8b5JiLZRUub6K-sFcYB_pYCQ18b34V4HSNlB60EPYMtXD2GnF3tg3dh_BD9H1QVxc1TnbOybpl5t6vXlOgqb6bxjJ8T3cFnhK638kLXZopUAYuGM71Xt8CkEOK8bz6YdSQVdZiq620cLEqvAf5p1FVRGMm1f2ehq6V1YIHsMp7fS009gUNWVfwpsyYlFBm9JTUkQxJgcoWUWG1nYEh8yhFd9_-pVS9OhcXpDRtA3RhjCIfX8zQXErB2-qJtz3Q1UnRU286qUucmFFCYpcoeQxqPf4lxKyWIIb8lumsb_pjHWdMcYsJ3EpKUPEP8oKrbzIez1ptVdYFjrP2787P8_v4Q7k8XxTM-m86NduMtJdjjsO9yDwaa59s8RC22WLzoHZPDltn3-N-MnHO0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJcoLzEQgELgThFm9iOEx8qVOiGLi1VD1upN-P1o61Ek212q6pH_ha_jhknKVzg1tO-kk3WMzvzeTz-PkLeKeZT4R1PcmMElm7yxEiXJ8wLXjjObRmJtL8dyr1j8fUkP1kjv4a9MNhWOcTEGKhdY7FGPobEz5UEdJyNQ98WcbRbfVxcJqgghSutg5xG5yL7_uYapm_L7eku2Po9Y9Vk9nkv6RUGEsuwvUtKAT8iC3IuCnhmFdyZFPCKF8byNDWG2TKI3JVSWikCoKuAVEBZ8C71DIuhEP43Cl4onPiV1ZchC8hcyaxjMuJcpWOTIYGjwBz2V_6LMgH_SgYxw1Wb5EEPTelO50uPyJqvH5OHg-wD7aPAE_JzUp8hS0d9Sivfts1i1SzPl0lsq_OOHiHzw3kNj7gGhHans04MiMbdvheNg6sg9LxqPZ32dBV4mKnxbJ_MULYCvumgr6VSFGz7QScXc-_iUtlTcnwn4_yMrNdN7Z8TOmfIJwOn5CYgGDGmBJBZpEYoG-AiI_J2GF-96Ag7NEx00Aj61ggj8glH_vYA5NiObzTtqe7_srpQtvAyiNKUXHCTqdIBuPHgwTCrkkKNyAe0m8ZIsGqNNf2GBrhP5NTSO4CEJJbd2YhsDabVfYhY6j8O_eL_H78h98DT9cH0cP8luc9Qfzg2IG6R9VV75V8BKFrNX0fvo-T7Xbv7bwhtH70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Ferroptosis-Related+Protein+Prediction+Through+Multimodal+Feature+Integration+and+Pre-Trained+Language+Model+Embeddings&rft.jtitle=Algorithms&rft.au=Zhou%2C+Jie&rft.au=Wang%2C+Chunhua&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft_id=info:doi/10.3390%2Fa18080465&rft.externalDocID=A853600522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon