Enhancing Ferroptosis-Related Protein Prediction Through Multimodal Feature Integration and Pre-Trained Language Model Embeddings
Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational met...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 465 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a18080465 |
Cover
Abstract | Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational methods for FRP prediction often exhibit limited accuracy and suboptimal performance. In this study, we harnessed the power of pre-trained protein language models (PLMs) to develop a novel machine learning framework, termed PLM-FRP, which utilizes deep learning-derived features for FRP identification. By integrating ESM2 embeddings with traditional sequence-based features, PLM-FRP effectively captures complex evolutionary relationships and structural patterns within protein sequences, achieving a remarkable accuracy of 96.09% on the benchmark dataset and significantly outperforming previous state-of-the-art methods. We anticipate that PLM-FRP will serve as a powerful computational tool for FRP annotation and facilitate deeper insights into ferroptosis mechanisms, ultimately advancing the development of ferroptosis-targeted therapeutics. |
---|---|
AbstractList | Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins (FRPs) is essential for understanding their underlying mechanisms and developing targeted therapeutic strategies. Existing computational methods for FRP prediction often exhibit limited accuracy and suboptimal performance. In this study, we harnessed the power of pre-trained protein language models (PLMs) to develop a novel machine learning framework, termed PLM-FRP, which utilizes deep learning-derived features for FRP identification. By integrating ESM2 embeddings with traditional sequence-based features, PLM-FRP effectively captures complex evolutionary relationships and structural patterns within protein sequences, achieving a remarkable accuracy of 96.09% on the benchmark dataset and significantly outperforming previous state-of-the-art methods. We anticipate that PLM-FRP will serve as a powerful computational tool for FRP annotation and facilitate deeper insights into ferroptosis mechanisms, ultimately advancing the development of ferroptosis-targeted therapeutics. |
Audience | Academic |
Author | Zhou, Jie Wang, Chunhua |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0009-0005-6549-4675 surname: Zhou fullname: Zhou, Jie – sequence: 2 givenname: Chunhua orcidid: 0009-0008-1448-3169 surname: Wang fullname: Wang, Chunhua |
BookMark | eNpNkUFrGzEQhZeSQpO0h_6DhZ562ERaabXSMQSnNTi0FPcsxtJoLbOWXEl76DH_vEpcQtBhRsN73wy8q-YixIBN85mSG8YUuQUqiSRcDO-aS6qU6rhU7OJN_6G5yvlAiBiUoJfN0yrsIRgfpvYBU4qnErPP3S-coaBtf6ZY0Ida0XpTfAztdp_iMu3bx2Uu_hgtzNUJZUnYrkPBKcGLDMKzG7ttAh8qaQNhWmDC9jFanNvVcYfW1rX5Y_PewZzx0_963fx-WG3vv3ebH9_W93ebzvRMDJ0QHHdIndjxsXZGSS4Frz82gmGEAPRGOj5YKYQR3ElCHBuZpA4twZ6x62Z95toIB31K_gjpr47g9csgpklDKt7MqEdlRhSOS5CMM6BKWioHHC0jXAmuKuvLmXVK8c-CuehDXFKo52vWc6bEMApaVTdn1QQV6oOLJYGpz-LRm5qb83V-JwcmCBn6vhq-ng0mxZwTutczKdHP8erXeNk_etGYtA |
Cites_doi | 10.1038/nature24297 10.1101/2020.07.12.199554 10.1145/2939672.2939785 10.1016/j.physrep.2017.05.001 10.1038/cdd.2015.158 10.1109/APWCCSE.2014.7053846 10.1038/s41419-019-2064-5 10.1126/science.ade2574 10.1109/72.788645 10.1101/2021.02.12.430858 10.1109/5.726791 10.1093/nar/25.17.3389 10.1016/j.csbj.2021.03.022 10.1038/s41586-019-1707-0 10.1093/nar/gkac1052 10.1186/1471-2105-7-319 10.1016/j.cell.2012.03.042 10.1371/journal.pone.0022930 10.1016/j.addr.2010.06.006 10.1016/S0004-3702(97)00043-X 10.1023/A:1010933404324 10.1038/s41598-019-46369-4 10.1093/bioinformatics/btx302 10.1016/j.ijbiomac.2024.130180 10.1109/TKDE.2005.66 10.3390/informatics8040079 10.3390/cancers12010164 10.1109/TKDE.2019.2912815 10.1089/ars.2021.0218 10.1038/nchembio.2239 10.1038/s41467-022-32007-7 10.3390/s17020273 10.1093/nar/gkz740 10.1371/journal.pone.0007813 10.18632/aging.205055 10.1093/bfgp/elaa030 10.12928/telkomnika.v14i4.3956 10.1016/j.jmb.2023.168116 10.1155/2021/1587922 10.1109/BigData47090.2019.9005997 10.1093/nar/gkac935 10.1023/A:1007465528199 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/a18080465 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_79c7e6f48a8343a198d185e7d3049649 A853600522 10_3390_a18080465 |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS PUEGO 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c2365-664ebe1f6b474ebc9848646b437ac300aa2c8f45d866c64f800f37381fed0e233 |
IEDL.DBID | 8FG |
ISSN | 1999-4893 |
IngestDate | Mon Sep 01 19:39:27 EDT 2025 Wed Aug 27 12:54:03 EDT 2025 Tue Sep 02 04:00:05 EDT 2025 Thu Jul 31 00:43:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2365-664ebe1f6b474ebc9848646b437ac300aa2c8f45d866c64f800f37381fed0e233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-1448-3169 0009-0005-6549-4675 |
OpenAccessLink | https://www.proquest.com/docview/3243965761?pq-origsite=%requestingapplication% |
PQID | 3243965761 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79c7e6f48a8343a198d185e7d3049649 proquest_journals_3243965761 gale_infotracacademiconefile_A853600522 crossref_primary_10_3390_a18080465 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kohavi (ref_31) 1997; 97 Hinton (ref_47) 2008; 9 Dixon (ref_5) 2012; 149 ref_10 Altschul (ref_19) 1997; 25 Nesmelova (ref_17) 2010; 62 Cui (ref_28) 2021; 20 Liu (ref_18) 2019; 47 Breiman (ref_35) 2001; 45 ref_16 ref_38 Xie (ref_1) 2016; 23 ref_15 Drucker (ref_34) 1999; 10 Liu (ref_33) 2005; 17 Ferruz (ref_24) 2022; 13 Pedregosa (ref_39) 2011; 12 Liao (ref_30) 2017; 689 Wang (ref_20) 2017; 33 ref_25 ref_46 David (ref_3) 2022; 37 Doll (ref_7) 2017; 13 ref_23 ref_22 ref_44 Li (ref_4) 2021; 2021 ref_21 ref_42 ref_41 ref_40 Wong (ref_45) 2019; 32 Lin (ref_11) 2023; 379 Zhou (ref_13) 2022; 51 Consortium (ref_14) 2023; 51 ref_2 Park (ref_8) 2019; 10 ref_29 Friedman (ref_36) 1997; 29 Doll (ref_9) 2019; 575 ref_26 Zagirova (ref_12) 2023; 15 Burges (ref_32) 2010; 11 LeCun (ref_37) 1998; 86 Ofer (ref_27) 2021; 19 Hangauer (ref_6) 2017; 551 Syarif (ref_43) 2016; 14 |
References_xml | – volume: 551 start-page: 247 year: 2017 ident: ref_6 article-title: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition publication-title: Nature doi: 10.1038/nature24297 – ident: ref_26 doi: 10.1101/2020.07.12.199554 – volume: 11 start-page: 81 year: 2010 ident: ref_32 article-title: From ranknet to lambdarank to lambdamart: An overview publication-title: Learning – ident: ref_38 doi: 10.1145/2939672.2939785 – volume: 689 start-page: 1 year: 2017 ident: ref_30 article-title: Ranking in evolving complex networks publication-title: Phys. Rep. doi: 10.1016/j.physrep.2017.05.001 – volume: 23 start-page: 369 year: 2016 ident: ref_1 article-title: Ferroptosis: Process and function publication-title: Cell Death Differ. doi: 10.1038/cdd.2015.158 – ident: ref_22 doi: 10.1109/APWCCSE.2014.7053846 – volume: 10 start-page: 822 year: 2019 ident: ref_8 article-title: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation publication-title: Cell Death Dis. doi: 10.1038/s41419-019-2064-5 – volume: 379 start-page: 1123 year: 2023 ident: ref_11 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science doi: 10.1126/science.ade2574 – volume: 10 start-page: 1048 year: 1999 ident: ref_34 article-title: Support vector machines for spam categorization publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.788645 – volume: 12 start-page: 2825 year: 2011 ident: ref_39 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_25 doi: 10.1101/2021.02.12.430858 – volume: 86 start-page: 2278 year: 1998 ident: ref_37 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 25 start-page: 3389 year: 1997 ident: ref_19 article-title: Gapped BLAST and PSI-BLAST: A new generation of protein database search programs publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.17.3389 – volume: 19 start-page: 1750 year: 2021 ident: ref_27 article-title: The language of proteins: NLP, machine learning & protein sequences publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.03.022 – volume: 575 start-page: 693 year: 2019 ident: ref_9 article-title: FSP1 is a glutathione-independent ferroptosis suppressor publication-title: Nature doi: 10.1038/s41586-019-1707-0 – volume: 51 start-page: D523 year: 2023 ident: ref_14 article-title: UniProt: The universal protein knowledgebase in 2023 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1052 – ident: ref_21 doi: 10.1186/1471-2105-7-319 – volume: 149 start-page: 1060 year: 2012 ident: ref_5 article-title: Ferroptosis: An iron-dependent form of nonapoptotic cell death publication-title: Cell doi: 10.1016/j.cell.2012.03.042 – ident: ref_23 – ident: ref_16 doi: 10.1371/journal.pone.0022930 – volume: 62 start-page: 1187 year: 2010 ident: ref_17 article-title: DDE transposases: Structural similarity and diversity publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2010.06.006 – volume: 97 start-page: 273 year: 1997 ident: ref_31 article-title: Wrappers for feature subset selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 45 start-page: 5 year: 2001 ident: ref_35 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_40 doi: 10.1038/s41598-019-46369-4 – volume: 33 start-page: 2756 year: 2017 ident: ref_20 article-title: POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx302 – ident: ref_10 doi: 10.1016/j.ijbiomac.2024.130180 – volume: 17 start-page: 491 year: 2005 ident: ref_33 article-title: Toward integrating feature selection algorithms for classification and clustering publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2005.66 – ident: ref_44 doi: 10.3390/informatics8040079 – volume: 9 start-page: 2579 year: 2008 ident: ref_47 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref_2 doi: 10.3390/cancers12010164 – volume: 32 start-page: 1586 year: 2019 ident: ref_45 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2912815 – ident: ref_46 – volume: 37 start-page: 150 year: 2022 ident: ref_3 article-title: Dysregulation of iron homeostasis in the central nervous system and the role of ferroptosis in neurodegenerative disorders publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2021.0218 – volume: 13 start-page: 91 year: 2017 ident: ref_7 article-title: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2239 – volume: 13 start-page: 4348 year: 2022 ident: ref_24 article-title: ProtGPT2 is a deep unsupervised language model for protein design publication-title: Nat. Commun. doi: 10.1038/s41467-022-32007-7 – ident: ref_42 doi: 10.3390/s17020273 – volume: 47 start-page: e127 year: 2019 ident: ref_18 article-title: BioSeq-Analysis2.0: An updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz740 – ident: ref_15 doi: 10.1371/journal.pone.0007813 – volume: 15 start-page: 9293 year: 2023 ident: ref_12 article-title: Biomedical generative pre-trained based transformer language model for age-related disease target discovery publication-title: Aging doi: 10.18632/aging.205055 – volume: 20 start-page: 61 year: 2021 ident: ref_28 article-title: Sequence representation approaches for sequence-based protein prediction tasks that use deep learning publication-title: Briefings Funct. Genom. doi: 10.1093/bfgp/elaa030 – volume: 14 start-page: 1502 year: 2016 ident: ref_43 article-title: SVM parameter optimization using grid search and genetic algorithm to improve classification performance publication-title: Telkomnika Telecommun. Comput. Electron. Control. doi: 10.12928/telkomnika.v14i4.3956 – ident: ref_29 doi: 10.1016/j.jmb.2023.168116 – volume: 2021 start-page: 1587922 year: 2021 ident: ref_4 article-title: Targeting ferroptosis: Pathological mechanism and treatment of ischemia-reperfusion injury publication-title: Oxidative Med. Cell. Longev. doi: 10.1155/2021/1587922 – ident: ref_41 doi: 10.1109/BigData47090.2019.9005997 – volume: 51 start-page: D571 year: 2022 ident: ref_13 article-title: FerrDb V2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac935 – volume: 29 start-page: 131 year: 1997 ident: ref_36 article-title: Bayesian network classifiers publication-title: Mach. Learn. doi: 10.1023/A:1007465528199 |
SSID | ssj0065961 |
Score | 2.3453712 |
Snippet | Ferroptosis, an iron-dependent form of regulated cell death, plays a critical role in various diseases. Accurate identification of ferroptosis-related proteins... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 465 |
SubjectTerms | Accuracy Amino acids Annotations Bioinformatics Cell death Datasets Deep learning ESM2 feature integration Ferroptosis Health aspects Machine learning Methods protein language models Proteins Software |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiEJBFkJiiprEjpOMBbUqCBBDK3WzXNuBSjSp0vQH8M-5c5KqC2JhykN2bN3Fvu_s83eE3KWh9bk1zIuU4rh0E3lKmMgLLWexYUwnjkj79U2Mp_x5Fs12Un1hTFhND1wLrh-nOrYi44lKGGcKfGQDJsbCdwDbCu6O7vmp3zpT9RwsolQENY8QA6e-rwKkT-RoQXasjyPp_20qdvZldEQOGmBIB3WHjsmezU_IYZt0gTZj8JR8D_NP5MjIP-jIlmWxqor1Yu25oDZr6DvyLixyuOIODEqdTupUPNSdtV0WBlpB4LcpLX1qyCKwmMqxtvUmmDQCvvTSrGRSTJf2RYfLuTVuo-qMTEfDyePYa_IoeDrEIDYhOKgqyMScx3CnU5C_4PDEYqWZ7ysV6iTjkUmE0IJngCEzJDwKMmt8GzJ2Tjp5kdsLQuchsrlAlUhlCAWUSgDixb7iqc6gkS65beUrVzVdhgQ3A5Ugt0rokgeU_LYAMly7F6B32ehd_qX3LrlHvUkch1WptGqOE0A_kdFKDgCHCFz0Druk16pWNgN0LQFHslSAsxVc_kdvrsh-iImBXWRgj3SqcmOvAa1U8xv3Y_4A6Krm5w priority: 102 providerName: Directory of Open Access Journals |
Title | Enhancing Ferroptosis-Related Protein Prediction Through Multimodal Feature Integration and Pre-Trained Language Model Embeddings |
URI | https://www.proquest.com/docview/3243965761 https://doaj.org/article/79c7e6f48a8343a198d185e7d3049649 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8xeNnLGGyI8lFZCImniCR2nORpgqkdQ1BVU5F4s1zbASSalLT9A_jPd-c6sJfxlC8njnxn3-_O9u8ATsvUxcJZHmVaCwrdZJGWNotSJ3huOTeFJ9K-HcmrO3F9n92HgNsiLKvsxkQ_UNvGUIz8HA0_LyWi4-TH_CWirFE0uxpSaHyCrQQtDel5MfzVjcQyK2WyZhPi6Nqf64RIFAXZkX9skKfq_9-A7K3M8Ct8CfCQXazluQMbrt6F7S71Ags98Ru8DupHYsqoH9jQtW0zXzaLp0Xkl7Y5y8bEvvBU45HmYajt2WSdkIf5HbezxmItBP9WrWO_A2UEFdM1ve2iCaWOwC_dhHgmo6Rpz2wwmzrrp6u-w91wMPl5FYVsCpFJaSmblAIFllRyKnI8MyVKQQq84rk2PI61Tk1RicwWUhopKkSSFdEeJZWzsUs534PNuqndPrBpSpwu-EqmKwIEWhcI9PJYi9JUWEkPTrr2VfM1aYZCZ4OEoN6E0INLavm3AsRz7W807YMK3UblpcmdrEShCy64TsrCIsBwqEXo2UhR9uCM5KaoNy5bbXTYVID_SbxW6gLRiKTQd9qDo060KnTThXpXqoOPHx_C55QS__qVf0ewuWxX7hjRyHLa9yrXh63LwWj8p-99-r_O4-Ii |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNcKJ9iaQELgThFTWzHSQ4ItbCrXbpdVWgr9Wa8ttNWosmS3Qpx5A_xG5lxksIFbj3tV7KxPOOZ57H9HsDrgvtYeiei1BhJpZs0MsqlEfdSZE4Imwci7eO5mpzKT2fp2Rb86s_C0LbKPiaGQO1qSzXyfUz8olCIjpP3q28RqUbR6movodG6xZH_8R2nbOt3049o3zecj0eLD5OoUxWILKctXUpJbHhSqqXM8J0tsDVK4ieRGSvi2Bhu81KmLlfKKlkioiqJ_icpvYs9pwIohvxtSSdaB7B9OJqffO5jv0oLlbT8RUIU8b5JiLZRUub6K-sFcYB_pYCQ18b34V4HSNlB60EPYMtXD2GnF3tg3dh_BD9H1QVxc1TnbOybpl5t6vXlOgqb6bxjJ8T3cFnhK638kLXZopUAYuGM71Xt8CkEOK8bz6YdSQVdZiq620cLEqvAf5p1FVRGMm1f2ehq6V1YIHsMp7fS009gUNWVfwpsyYlFBm9JTUkQxJgcoWUWG1nYEh8yhFd9_-pVS9OhcXpDRtA3RhjCIfX8zQXErB2-qJtz3Q1UnRU286qUucmFFCYpcoeQxqPf4lxKyWIIb8lumsb_pjHWdMcYsJ3EpKUPEP8oKrbzIez1ptVdYFjrP2787P8_v4Q7k8XxTM-m86NduMtJdjjsO9yDwaa59s8RC22WLzoHZPDltn3-N-MnHO0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVkJcoLzEQgELgThFm9iOEx8qVOiGLi1VD1upN-P1o61Ek212q6pH_ha_jhknKVzg1tO-kk3WMzvzeTz-PkLeKeZT4R1PcmMElm7yxEiXJ8wLXjjObRmJtL8dyr1j8fUkP1kjv4a9MNhWOcTEGKhdY7FGPobEz5UEdJyNQ98WcbRbfVxcJqgghSutg5xG5yL7_uYapm_L7eku2Po9Y9Vk9nkv6RUGEsuwvUtKAT8iC3IuCnhmFdyZFPCKF8byNDWG2TKI3JVSWikCoKuAVEBZ8C71DIuhEP43Cl4onPiV1ZchC8hcyaxjMuJcpWOTIYGjwBz2V_6LMgH_SgYxw1Wb5EEPTelO50uPyJqvH5OHg-wD7aPAE_JzUp8hS0d9Sivfts1i1SzPl0lsq_OOHiHzw3kNj7gGhHans04MiMbdvheNg6sg9LxqPZ32dBV4mKnxbJ_MULYCvumgr6VSFGz7QScXc-_iUtlTcnwn4_yMrNdN7Z8TOmfIJwOn5CYgGDGmBJBZpEYoG-AiI_J2GF-96Ag7NEx00Aj61ggj8glH_vYA5NiObzTtqe7_srpQtvAyiNKUXHCTqdIBuPHgwTCrkkKNyAe0m8ZIsGqNNf2GBrhP5NTSO4CEJJbd2YhsDabVfYhY6j8O_eL_H78h98DT9cH0cP8luc9Qfzg2IG6R9VV75V8BKFrNX0fvo-T7Xbv7bwhtH70 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Ferroptosis-Related+Protein+Prediction+Through+Multimodal+Feature+Integration+and+Pre-Trained+Language+Model+Embeddings&rft.jtitle=Algorithms&rft.au=Zhou%2C+Jie&rft.au=Wang%2C+Chunhua&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft_id=info:doi/10.3390%2Fa18080465&rft.externalDocID=A853600522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |