Intelligent Frequency Domain Image Filtering Based on a Multilayer Neural Network with Multi-Valued Neurons
Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 461 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a18080461 |
Cover
Abstract | Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural network—a multilayer neural network with multi-valued neurons (MLMVN)—for filtering two types of noise in digital images: additive Gaussian noise and multiplicative speckle noise. The proposed approach involves processing images as a set of overlapping patches in the frequency domain using MLMVN. Training was performed using a batch learning algorithm, which proved to be more efficient for big learning sets: it results in fewer learning epochs and a better generalization capability. Experimental results demonstrated that MLMVN achieves noise filtering quality comparable to well-established methods, such as the BM3D, Lee, and Frost filters. These findings suggest that MLMVN offers a viable framework for image denoising, particularly in scenarios where frequency domain processing is advantageous. Also, complex-valued logistic and hyperbolic tangent activation functions were used for multi-valued neurons for the first time and have shown their efficiency. |
---|---|
AbstractList | Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural network—a multilayer neural network with multi-valued neurons (MLMVN)—for filtering two types of noise in digital images: additive Gaussian noise and multiplicative speckle noise. The proposed approach involves processing images as a set of overlapping patches in the frequency domain using MLMVN. Training was performed using a batch learning algorithm, which proved to be more efficient for big learning sets: it results in fewer learning epochs and a better generalization capability. Experimental results demonstrated that MLMVN achieves noise filtering quality comparable to well-established methods, such as the BM3D, Lee, and Frost filters. These findings suggest that MLMVN offers a viable framework for image denoising, particularly in scenarios where frequency domain processing is advantageous. Also, complex-valued logistic and hyperbolic tangent activation functions were used for multi-valued neurons for the first time and have shown their efficiency. |
Audience | Academic |
Author | Aizenberg, Igor Tovt, Yurii |
Author_xml | – sequence: 1 givenname: Igor orcidid: 0000-0002-5994-6568 surname: Aizenberg fullname: Aizenberg, Igor – sequence: 2 givenname: Yurii orcidid: 0009-0000-9556-0630 surname: Tovt fullname: Tovt, Yurii |
BookMark | eNpNkU1vFDEMhkeoSLSFA_8gEicO0-Z7kmMpLKxU4AJcI2_GM2Q7m5RMRtX-e7JMVSEfbNmvH1l-L5qzmCI2zVtGr4Sw9BqYoYZKzV4058xa20pjxdl_9avmYp73lGplNTtv7rex4DSFEWMhm4x_Foz-SD6mA4RItgcYkWzCVDCHOJIPMGNPUiRAvi5TCRMcMZNvuGSYaiqPKd-Tx1B-r-P2F0xLXTgJUpxfNy8HmGZ885Qvm5-bTz9uv7R33z9vb2_uWs-FZq1SlivsQXDQnDHjhYWdMBKpkUoB01J5obvBasGRCaW46hTIwVvq-c4bcdlsV26fYO8ecjhAProEwf1rpDw6yCX4CZ2h6I2WxmirpeyNQQ5G-s5TuwPsT6x3K-shp_qbubh9WnKs5zvBpbBaqa6rqqtVNUKFhjikksHX6PEQfHVoCLV_Y5TQlCp2wr5fF3xO85xxeD6TUXcy0j0bKf4CBa2Pjg |
Cites_doi | 10.1109/TASSP.1983.1164247 10.3390/jimaging11050160 10.1109/CVPR.2014.349 10.1002/jnm.2618 10.1109/TPAMI.1982.4767223 10.1145/3422622 10.1016/j.inffus.2025.103013 10.1016/j.ress.2013.08.004 10.1016/j.sigpro.2018.12.006 10.1016/j.sigpro.2015.07.017 10.3390/biomimetics8050388 10.1109/CCDC.2017.7978706 10.1007/978-3-642-20353-4 10.1109/IJCNN.2013.6707128 10.1109/TIM.2018.2847978 10.1007/s00500-006-0075-5 10.1109/TPWRD.2023.3270128 10.1016/j.neunet.2020.07.025 10.1016/0167-2789(92)90242-F 10.1155/2010/763847 10.1109/TIP.2007.911828 10.3390/a17080361 10.1016/j.patrec.2010.06.004 10.1063/5.0207005 10.1016/j.sigpro.2013.02.020 10.1201/9781003067832 10.1109/TIP.2017.2662206 10.1109/IJCNN.2013.6707132 10.1109/5.192071 10.1109/TPAMI.1980.4766994 10.1109/CVPR.2014.366 10.1016/j.cmpb.2020.105477 10.1109/TIP.2003.818640 10.1016/0734-189X(86)90029-0 10.1016/0167-8655(90)90117-K 10.3390/electronics11101589 10.1016/j.bspc.2019.101632 10.1007/s11063-017-9745-9 10.1137/0729012 10.1109/CIDM.2014.7008147 10.1109/TPAMI.2016.2596743 10.1016/j.neucom.2020.09.002 10.1117/12.974375 10.1109/TIP.2007.901238 10.1007/s40747-021-00428-4 10.1109/ICSTCC.2014.6982529 10.1109/CVPR.2015.7299163 10.1007/s00500-011-0755-7 10.1109/CVPR.2012.6247952 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U DOA |
DOI | 10.3390/a18080461 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8 A853600518 10_3390_a18080461 |
GeographicLocations | United States New Jersey |
GeographicLocations_xml | – name: New Jersey – name: United States |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS PUEGO 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c2361-55925eda32a62118c39ab384e08455a1645c367f9632e13552575a4fc90c2bc83 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Mon Sep 01 19:39:27 EDT 2025 Fri Aug 29 05:19:20 EDT 2025 Tue Sep 02 04:00:05 EDT 2025 Thu Jul 31 00:32:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2361-55925eda32a62118c39ab384e08455a1645c367f9632e13552575a4fc90c2bc83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5994-6568 0009-0000-9556-0630 |
OpenAccessLink | https://doaj.org/article/80ec8648869644d88e2a84c7c09baed8 |
PQID | 3243965577 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8 proquest_journals_3243965577 gale_infotracacademiconefile_A853600518 crossref_primary_10_3390_a18080461 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Prasath (ref_9) 2010; 2010 Levesque (ref_34) 2024; 95 Portilla (ref_41) 2003; 12 ref_14 ref_58 Mairal (ref_42) 2008; 17 Pitas (ref_22) 1992; 80 ref_54 ref_52 ref_51 Luchetta (ref_57) 2019; 68 ref_17 Ilesanmi (ref_28) 2021; 7 Navab (ref_39) 2015; Volume 9351 ref_16 ref_59 Dabov (ref_4) 2007; 16 Aizenberg (ref_47) 2007; 11 ref_60 Goodfellow (ref_37) 2020; 63 Bovik (ref_24) 1983; 31 Jiang (ref_27) 2025; 118 ref_21 Fink (ref_55) 2014; 121 ref_20 Bindi (ref_53) 2023; 38 Lions (ref_7) 1992; 29 Yuan (ref_6) 2012; Volume 8532 Tian (ref_29) 2020; 131 Mafi (ref_5) 2019; 157 Wang (ref_11) 2013; 93 ref_35 Chao (ref_10) 2010; 31 ref_32 ref_30 Feng (ref_31) 2020; 414 Kim (ref_23) 1986; 35 Grasso (ref_56) 2019; 32 ref_38 Lee (ref_18) 1980; PAMI-2 Zamperoni (ref_25) 1990; 11 Grasso (ref_49) 2018; 48 Khammar (ref_26) 2024; 8 Zhang (ref_33) 2017; 26 Frost (ref_19) 1982; PAMI-4 ref_46 Bilge (ref_36) 2022; 29 ref_45 ref_44 ref_43 Chen (ref_13) 2017; 39 ref_40 Aizenberg (ref_61) 2012; 16 ref_1 ref_3 ref_2 Xu (ref_12) 2016; 119 ref_48 ref_8 Rudin (ref_15) 1992; 60 |
References_xml | – volume: 31 start-page: 1342 year: 1983 ident: ref_24 article-title: A Generalization of Median Filtering Using Linear Combinations of Order Statistics publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1983.1164247 – volume: 29 start-page: 101030 year: 2022 ident: ref_36 article-title: Removal of Speckle Noises from Ultrasound Images Using Five Different Deep Learning Networks publication-title: Eng. Sci. Technol. Int. J. – ident: ref_43 doi: 10.3390/jimaging11050160 – ident: ref_16 doi: 10.1109/CVPR.2014.349 – volume: 32 start-page: e2618 year: 2019 ident: ref_56 article-title: A Laplace Transform Approach to the Simulation of DC-DC Converters publication-title: Int. J. Numer. Model. doi: 10.1002/jnm.2618 – volume: PAMI-4 start-page: 157 year: 1982 ident: ref_19 article-title: A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1982.4767223 – volume: 63 start-page: 139 year: 2020 ident: ref_37 article-title: Generative Adversarial Networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 118 start-page: 103013 year: 2025 ident: ref_27 article-title: Eficient Image Denoising Using Deep Learning: A Brief Survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.103013 – ident: ref_1 – volume: 121 start-page: 198 year: 2014 ident: ref_55 article-title: Predicting Component Reliability and Level of Degradation with Complex-Valued Neural Networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2013.08.004 – volume: 157 start-page: 236 year: 2019 ident: ref_5 article-title: A Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.12.006 – volume: 119 start-page: 80 year: 2016 ident: ref_12 article-title: An Improved Anisotropic Diffusion Filter with Semi-Adaptive Threshold for Edge Preservation publication-title: Signal Process. doi: 10.1016/j.sigpro.2015.07.017 – ident: ref_58 doi: 10.3390/biomimetics8050388 – ident: ref_59 doi: 10.1109/CCDC.2017.7978706 – ident: ref_46 doi: 10.1007/978-3-642-20353-4 – ident: ref_48 doi: 10.1109/IJCNN.2013.6707128 – volume: 68 start-page: 439 year: 2019 ident: ref_57 article-title: MLMVNNN for Parameter Fault Detection in PWM DC–DC Converters and Its Applications for Buck and Boost DC–DC Converters publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2018.2847978 – volume: 11 start-page: 169 year: 2007 ident: ref_47 article-title: Multilayer Feedforward Neural Network Based on Multi-Valued Neurons (MLMVN) and a Backpropagation Learning Algorithm publication-title: Soft Comput. doi: 10.1007/s00500-006-0075-5 – volume: 38 start-page: 3227 year: 2023 ident: ref_53 article-title: Frequency Characterization of Medium Voltage Cables for Fault Prevention Through Multi-Valued Neural Networks and Power Line Communication Technologies publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2023.3270128 – volume: 131 start-page: 251 year: 2020 ident: ref_29 article-title: Deep Learning on Image Denoising: An Overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.025 – ident: ref_8 – volume: 60 start-page: 259 year: 1992 ident: ref_15 article-title: Nonlinear Total Variation Based Noise Removal Algorithms publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/0167-2789(92)90242-F – volume: 2010 start-page: 763847 year: 2010 ident: ref_9 article-title: Well-Posed Inhomogeneous Nonlinear Diffusion Scheme for Digital Image Denoising publication-title: J. Appl. Math. doi: 10.1155/2010/763847 – volume: Volume 9351 start-page: 234 year: 2015 ident: ref_39 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 – volume: 17 start-page: 53 year: 2008 ident: ref_42 article-title: Sparse Representation for Color Image Restoration publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.911828 – ident: ref_52 doi: 10.3390/a17080361 – volume: 31 start-page: 2012 year: 2010 ident: ref_10 article-title: An Improved Anisotropic Diffusion Model for Detail- and Edge-Preserving Smoothing publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2010.06.004 – volume: 95 start-page: 063508 year: 2024 ident: ref_34 article-title: Neural Network Denoising of X-Ray Images from High-Energy-Density Experiments publication-title: Rev. Sci. Instruments doi: 10.1063/5.0207005 – volume: 93 start-page: 2548 year: 2013 ident: ref_11 article-title: Image Denoising Using Modified Perona–Malik Model Based on Directional Laplacian publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.02.020 – ident: ref_20 doi: 10.1201/9781003067832 – volume: 26 start-page: 3142 year: 2017 ident: ref_33 article-title: Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – ident: ref_51 doi: 10.1109/IJCNN.2013.6707132 – volume: 80 start-page: 1893 year: 1992 ident: ref_22 article-title: Order Statistics in Digital Image Processing publication-title: Proc. IEEE doi: 10.1109/5.192071 – ident: ref_45 – volume: PAMI-2 start-page: 165 year: 1980 ident: ref_18 article-title: Digital Image Enhancement and Noise Filtering by Use of Local Statistics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1980.4766994 – ident: ref_17 doi: 10.1109/CVPR.2014.366 – ident: ref_32 doi: 10.1016/j.cmpb.2020.105477 – ident: ref_30 – volume: 12 start-page: 1338 year: 2003 ident: ref_41 article-title: Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.818640 – volume: 8 start-page: 1 year: 2024 ident: ref_26 article-title: Visual Intelligence: Machine Learning Approaches to Image Filtering and Identification publication-title: Int. J. Sci. Res. Eng. Manag. – volume: 35 start-page: 234 year: 1986 ident: ref_23 article-title: Rank Algorithms for Picture Processing publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(86)90029-0 – ident: ref_3 – volume: 11 start-page: 81 year: 1990 ident: ref_25 article-title: Some Adaptive Rank Order Filters for Image Enhancement publication-title: Pattern Recognit. Lett. doi: 10.1016/0167-8655(90)90117-K – ident: ref_54 doi: 10.3390/electronics11101589 – ident: ref_38 doi: 10.1016/j.bspc.2019.101632 – volume: 48 start-page: 389 year: 2018 ident: ref_49 article-title: A Multi-Valued Neuron Based Complex ELM Neural Network publication-title: Neural Process. Lett. doi: 10.1007/s11063-017-9745-9 – ident: ref_40 – volume: 29 start-page: 182 year: 1992 ident: ref_7 article-title: Image Selective Smoothing and Edge Detection by Nonlinear Diffusion publication-title: SIAM J. Numer. Anal. doi: 10.1137/0729012 – ident: ref_60 doi: 10.1109/CIDM.2014.7008147 – ident: ref_44 – ident: ref_21 – volume: 39 start-page: 1256 year: 2017 ident: ref_13 article-title: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 414 start-page: 346 year: 2020 ident: ref_31 article-title: Ultrasound Image De-Speckling by a Hybrid Deep Network with Transferred Filtering and Structural Prior publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.002 – volume: Volume 8532 start-page: 853210 year: 2012 ident: ref_6 article-title: Speckle Noise Reduction in SAR Images Ship Detection publication-title: Proceedings of the SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012 doi: 10.1117/12.974375 – volume: 16 start-page: 2080 year: 2007 ident: ref_4 article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – volume: 7 start-page: 2179 year: 2021 ident: ref_28 article-title: Methods for Image Denoising Using Convolutional Neural Network: A Review publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00428-4 – ident: ref_2 – ident: ref_50 doi: 10.1109/ICSTCC.2014.6982529 – ident: ref_14 doi: 10.1109/CVPR.2015.7299163 – volume: 16 start-page: 563 year: 2012 ident: ref_61 article-title: A Modified Learning Algorithm for the Multilayer Neural Network with Multi-Valued Neurons Based on the Complex QR Decomposition publication-title: Soft Comput. doi: 10.1007/s00500-011-0755-7 – ident: ref_35 doi: 10.1109/CVPR.2012.6247952 |
SSID | ssj0065961 |
Score | 2.3451858 |
Snippet | Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 461 |
SubjectTerms | Algorithms complex-valued neural networks Data mining Fourier transforms frequency domain Frequency domain analysis Gaussian noise image denoising Image filters Image processing Learning strategies Machine learning MLMVN Multilayers Neural networks Neurons Noise reduction Partial differential equations Random noise Signal processing speckle noise Ultrasonic imaging |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV03T8UwELYoCwsd0WUhJKaIFNuxJ0QLRYIJEJvl9hACEnjvMfDvuUuchxhgyRA7cnS-7vN3hOynVjrli5B4LyFAcZ4nVuY2SS1TgjmXDkq8nHxzKy7v2fUjf4wJt1Esq-x1YquofeMwR34Ihr9QgvOyPHr_SLBrFJ6uxhYa02Q2A0uDfC6ri14TC65E1qEJFRDaH5oMQRSZyH7ZoBaq_y-F3FqZapHMR_eQHnf7uUSmQr1MFvrWCzRK4gp5uZpAaY5pNezqob_oWfMGkT69egMtQatnPAkH00RPwFR52tTU0PbC7asBR5siLgesddsVglPMyHbDyYN5_YQPWuCOerRK7qvzu9PLJPZNSBxCqSQQJOQ8eFPkRkB8J12hjC0kC6lknBsIkLgrRDkA2ctDBg4HiC03bOBU6nLrZLFGZuqmDuuEcmbBhymZGygJD_AeEB8vUzxkxuRBbpC9npL6vYPH0BBWILn1hNwb5ARpPJmAiNbti2b4pKOAaJkGJwWoEwE8wryUITewZOlSZU3wsNIB7pBGuRsPjTPx-gD8JyJY6WPwOwSqGJi53W-ijgI50j_ss_n_8BaZy7HFb1vjt01mxsPPsAN-x9jutsz1DQsB1uk priority: 102 providerName: ProQuest |
Title | Intelligent Frequency Domain Image Filtering Based on a Multilayer Neural Network with Multi-Valued Neurons |
URI | https://www.proquest.com/docview/3243965577 https://doaj.org/article/80ec8648869644d88e2a84c7c09baed8 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gXLjwRgzGFCEkThVpm6TJkcHKQ2JCiCFuUZKmEmLr0DYO_HucppvggLhwbRs1smP7c2t_RuiUGGFlkbqoKAQkKLZgkRGJiYihklNrSZn55uT7Ab8Z0rsX9vJt1JevCQv0wEFw54I4KzgcMw5raSGES7SgNrNEGu2Kus2XSLJIpoIP5kzyOPAIpZDUn-vY0ydSHv-IPjVJ_2-uuI4v-RbaaIAhvggb2kYrrtpBm4uhC7ixwV30drsk0ZzjfBoqoT_x1WQMOT6-HYN_wPmr_wcOQQn3IEgVeFJhjetW25EGiI09Iwe8axBKwLH_FhtuR8969AELasqOaraHhnn_6fImaiYmRNaTqESQHiTMFTpNNIfMTthUapMK6oigjGlIjZhNeVaC1SUuBqgBBss0La0kNjFWpPuoVU0qd4AwowbQS0ZtKUHcJeAGz4wXS-ZirRMn2uhkIUn1HogxFCQUXtxqKe426nkZLx_wXNb1BdCwajSs_tJwG515DSlvcfOptrppHIB9eu4qdQGIg3vnAk92FkpUjSnOFCDGVHLGsuzwP3ZzhNYTPwK4rgHsoNZ8-uGOAZfMTRetivy6i9Z6_cHDY7c-kF9Fu-HR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAX3qgtBSwE4hQ18Sv2AaEu7WqXtiuEWtSb8WtR1TYpu1uh_il-IzN5LOIAt15ySJw4Gn-eh-35hpA3udfBRJ6yGDUEKCHKzGvms9wLo0QI-azE5OSjqRqfiE-n8nSN_OpzYfBYZa8TG0Ud64Br5Dtg-LlRUpblh6sfGVaNwt3VvoRGC4uDdPMTQrbF-8kejO9bxkb7xx_HWVdVIAtINJKBC81kio4zpyD60YEb57kWKddCSgfhgwxclTNAJksFmGMAtXRiFkwemA-aw3fvkHWBGa0Dsj7cn37-0ut-JY0qWv4izk2-4wqkbRSq-MvqNcUB_mUCGrs2ekjudw4p3W0R9IispeoxedAXe6Dd3H9Czicr8s4lHc3bE9g3dK--dGcVnVyCXqKjM9x7B2NIh2AcI60r6miT4nvhwLWnyAQCfU3bo-cU14Dbx9lXd3ENLzRUIdXiKTm5FZk-I4OqrtIGoVJ48JpKEWZGwwX8FWTkK4xMhXMs6U3yupekvWoJOSwEMihuuxL3JhmijFcNkEO7uVHPv9tuSlqdp6AVKDAFqBRR68QcdFmG3HiXIvT0DkfI4kxfzl1wXcIC_CdyZtld8HQUKjVoud0Pou1UwML-AezW_x-_InfHx0eH9nAyPXhO7jEsMNycMNwmg-X8Or0Ar2fpX3ZQo-TbbaP7NwPzEkk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiWAhYCcYo28Sv2AaGWJXQprDhQ1JvxK6iiTdrdrVD_Gr-OmTwWcYBbLzkkThyNP8_DHn9DyIvc62AiT1mMGgKUEGXmNfNZ7oVRIoS8LvFw8qe52j8UH47k0Qb5NZ6FwbTKUSd2ijq2AdfIJ2D4uVFSluWkHtIiPk-rN2fnGVaQwp3WsZxGD5GDdPkTwrfl69kUxvolY9W7L2_3s6HCQBaQdCQDd5rJFB1nTkEkpAM3znMtUq6FlA5CCRm4KmtAKUsFmGYAuHSiDiYPzAfN4bvXyPWSlwYDP129H62AkkYVPZMR5yafuAIJHIUq_rJ_XZmAfxmDzsJVd8itwTWluz2W7pKN1Nwjt8eyD3TQAvfJj9maxnNFq0Wfi31Jp-2pO27o7BQ0FK2OcRcezCLdAzMZadtQR7vDvicOnHyKnCDQ17xPQqe4Gtw_zr66kwt4oSMNaZYPyOGVSPQh2WzaJj0iVAoP_lMpQm00XMBzQW6-wshUOMeS3iLPR0nas56aw0JIg-K2a3FvkT2U8boBsml3N9rFdztMTqvzFLQCVaYAnyJqnZiDLsuQG-9ShJ5e4QhZnPOrhQtuOLoA_4nsWXYXfB6F6g1a7oyDaAdlsLR_oLv9_8fPyA3AtP04mx88JjcZVhruUg13yOZqcZGegPuz8k87nFHy7aqB_Rv7-BUZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Frequency+Domain+Image+Filtering+Based+on+a+Multilayer+Neural+Network+with+Multi-Valued+Neurons&rft.jtitle=Algorithms&rft.au=Igor+Aizenberg&rft.au=Yurii+Tovt&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=461&rft_id=info:doi/10.3390%2Fa18080461&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |