Intelligent Frequency Domain Image Filtering Based on a Multilayer Neural Network with Multi-Valued Neurons

Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 461
Main Authors Aizenberg, Igor, Tovt, Yurii
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a18080461

Cover

Abstract Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural network—a multilayer neural network with multi-valued neurons (MLMVN)—for filtering two types of noise in digital images: additive Gaussian noise and multiplicative speckle noise. The proposed approach involves processing images as a set of overlapping patches in the frequency domain using MLMVN. Training was performed using a batch learning algorithm, which proved to be more efficient for big learning sets: it results in fewer learning epochs and a better generalization capability. Experimental results demonstrated that MLMVN achieves noise filtering quality comparable to well-established methods, such as the BM3D, Lee, and Frost filters. These findings suggest that MLMVN offers a viable framework for image denoising, particularly in scenarios where frequency domain processing is advantageous. Also, complex-valued logistic and hyperbolic tangent activation functions were used for multi-valued neurons for the first time and have shown their efficiency.
AbstractList Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their capacity to model complex nonlinear relationships between inputs and outputs. In this study, we explored the application of a complex-valued neural network—a multilayer neural network with multi-valued neurons (MLMVN)—for filtering two types of noise in digital images: additive Gaussian noise and multiplicative speckle noise. The proposed approach involves processing images as a set of overlapping patches in the frequency domain using MLMVN. Training was performed using a batch learning algorithm, which proved to be more efficient for big learning sets: it results in fewer learning epochs and a better generalization capability. Experimental results demonstrated that MLMVN achieves noise filtering quality comparable to well-established methods, such as the BM3D, Lee, and Frost filters. These findings suggest that MLMVN offers a viable framework for image denoising, particularly in scenarios where frequency domain processing is advantageous. Also, complex-valued logistic and hyperbolic tangent activation functions were used for multi-valued neurons for the first time and have shown their efficiency.
Audience Academic
Author Aizenberg, Igor
Tovt, Yurii
Author_xml – sequence: 1
  givenname: Igor
  orcidid: 0000-0002-5994-6568
  surname: Aizenberg
  fullname: Aizenberg, Igor
– sequence: 2
  givenname: Yurii
  orcidid: 0009-0000-9556-0630
  surname: Tovt
  fullname: Tovt, Yurii
BookMark eNpNkU1vFDEMhkeoSLSFA_8gEicO0-Z7kmMpLKxU4AJcI2_GM2Q7m5RMRtX-e7JMVSEfbNmvH1l-L5qzmCI2zVtGr4Sw9BqYoYZKzV4058xa20pjxdl_9avmYp73lGplNTtv7rex4DSFEWMhm4x_Foz-SD6mA4RItgcYkWzCVDCHOJIPMGNPUiRAvi5TCRMcMZNvuGSYaiqPKd-Tx1B-r-P2F0xLXTgJUpxfNy8HmGZ885Qvm5-bTz9uv7R33z9vb2_uWs-FZq1SlivsQXDQnDHjhYWdMBKpkUoB01J5obvBasGRCaW46hTIwVvq-c4bcdlsV26fYO8ecjhAProEwf1rpDw6yCX4CZ2h6I2WxmirpeyNQQ5G-s5TuwPsT6x3K-shp_qbubh9WnKs5zvBpbBaqa6rqqtVNUKFhjikksHX6PEQfHVoCLV_Y5TQlCp2wr5fF3xO85xxeD6TUXcy0j0bKf4CBa2Pjg
Cites_doi 10.1109/TASSP.1983.1164247
10.3390/jimaging11050160
10.1109/CVPR.2014.349
10.1002/jnm.2618
10.1109/TPAMI.1982.4767223
10.1145/3422622
10.1016/j.inffus.2025.103013
10.1016/j.ress.2013.08.004
10.1016/j.sigpro.2018.12.006
10.1016/j.sigpro.2015.07.017
10.3390/biomimetics8050388
10.1109/CCDC.2017.7978706
10.1007/978-3-642-20353-4
10.1109/IJCNN.2013.6707128
10.1109/TIM.2018.2847978
10.1007/s00500-006-0075-5
10.1109/TPWRD.2023.3270128
10.1016/j.neunet.2020.07.025
10.1016/0167-2789(92)90242-F
10.1155/2010/763847
10.1109/TIP.2007.911828
10.3390/a17080361
10.1016/j.patrec.2010.06.004
10.1063/5.0207005
10.1016/j.sigpro.2013.02.020
10.1201/9781003067832
10.1109/TIP.2017.2662206
10.1109/IJCNN.2013.6707132
10.1109/5.192071
10.1109/TPAMI.1980.4766994
10.1109/CVPR.2014.366
10.1016/j.cmpb.2020.105477
10.1109/TIP.2003.818640
10.1016/0734-189X(86)90029-0
10.1016/0167-8655(90)90117-K
10.3390/electronics11101589
10.1016/j.bspc.2019.101632
10.1007/s11063-017-9745-9
10.1137/0729012
10.1109/CIDM.2014.7008147
10.1109/TPAMI.2016.2596743
10.1016/j.neucom.2020.09.002
10.1117/12.974375
10.1109/TIP.2007.901238
10.1007/s40747-021-00428-4
10.1109/ICSTCC.2014.6982529
10.1109/CVPR.2015.7299163
10.1007/s00500-011-0755-7
10.1109/CVPR.2012.6247952
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOA
DOI 10.3390/a18080461
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8
A853600518
10_3390_a18080461
GeographicLocations United States
New Jersey
GeographicLocations_xml – name: New Jersey
– name: United States
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
PUEGO
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c2361-55925eda32a62118c39ab384e08455a1645c367f9632e13552575a4fc90c2bc83
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Mon Sep 01 19:39:27 EDT 2025
Fri Aug 29 05:19:20 EDT 2025
Tue Sep 02 04:00:05 EDT 2025
Thu Jul 31 00:32:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2361-55925eda32a62118c39ab384e08455a1645c367f9632e13552575a4fc90c2bc83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5994-6568
0009-0000-9556-0630
OpenAccessLink https://doaj.org/article/80ec8648869644d88e2a84c7c09baed8
PQID 3243965577
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8
proquest_journals_3243965577
gale_infotracacademiconefile_A853600518
crossref_primary_10_3390_a18080461
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Prasath (ref_9) 2010; 2010
Levesque (ref_34) 2024; 95
Portilla (ref_41) 2003; 12
ref_14
ref_58
Mairal (ref_42) 2008; 17
Pitas (ref_22) 1992; 80
ref_54
ref_52
ref_51
Luchetta (ref_57) 2019; 68
ref_17
Ilesanmi (ref_28) 2021; 7
Navab (ref_39) 2015; Volume 9351
ref_16
ref_59
Dabov (ref_4) 2007; 16
Aizenberg (ref_47) 2007; 11
ref_60
Goodfellow (ref_37) 2020; 63
Bovik (ref_24) 1983; 31
Jiang (ref_27) 2025; 118
ref_21
Fink (ref_55) 2014; 121
ref_20
Bindi (ref_53) 2023; 38
Lions (ref_7) 1992; 29
Yuan (ref_6) 2012; Volume 8532
Tian (ref_29) 2020; 131
Mafi (ref_5) 2019; 157
Wang (ref_11) 2013; 93
ref_35
Chao (ref_10) 2010; 31
ref_32
ref_30
Feng (ref_31) 2020; 414
Kim (ref_23) 1986; 35
Grasso (ref_56) 2019; 32
ref_38
Lee (ref_18) 1980; PAMI-2
Zamperoni (ref_25) 1990; 11
Grasso (ref_49) 2018; 48
Khammar (ref_26) 2024; 8
Zhang (ref_33) 2017; 26
Frost (ref_19) 1982; PAMI-4
ref_46
Bilge (ref_36) 2022; 29
ref_45
ref_44
ref_43
Chen (ref_13) 2017; 39
ref_40
Aizenberg (ref_61) 2012; 16
ref_1
ref_3
ref_2
Xu (ref_12) 2016; 119
ref_48
ref_8
Rudin (ref_15) 1992; 60
References_xml – volume: 31
  start-page: 1342
  year: 1983
  ident: ref_24
  article-title: A Generalization of Median Filtering Using Linear Combinations of Order Statistics
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1983.1164247
– volume: 29
  start-page: 101030
  year: 2022
  ident: ref_36
  article-title: Removal of Speckle Noises from Ultrasound Images Using Five Different Deep Learning Networks
  publication-title: Eng. Sci. Technol. Int. J.
– ident: ref_43
  doi: 10.3390/jimaging11050160
– ident: ref_16
  doi: 10.1109/CVPR.2014.349
– volume: 32
  start-page: e2618
  year: 2019
  ident: ref_56
  article-title: A Laplace Transform Approach to the Simulation of DC-DC Converters
  publication-title: Int. J. Numer. Model.
  doi: 10.1002/jnm.2618
– volume: PAMI-4
  start-page: 157
  year: 1982
  ident: ref_19
  article-title: A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1982.4767223
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_37
  article-title: Generative Adversarial Networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 118
  start-page: 103013
  year: 2025
  ident: ref_27
  article-title: Eficient Image Denoising Using Deep Learning: A Brief Survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.103013
– ident: ref_1
– volume: 121
  start-page: 198
  year: 2014
  ident: ref_55
  article-title: Predicting Component Reliability and Level of Degradation with Complex-Valued Neural Networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.08.004
– volume: 157
  start-page: 236
  year: 2019
  ident: ref_5
  article-title: A Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.12.006
– volume: 119
  start-page: 80
  year: 2016
  ident: ref_12
  article-title: An Improved Anisotropic Diffusion Filter with Semi-Adaptive Threshold for Edge Preservation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.07.017
– ident: ref_58
  doi: 10.3390/biomimetics8050388
– ident: ref_59
  doi: 10.1109/CCDC.2017.7978706
– ident: ref_46
  doi: 10.1007/978-3-642-20353-4
– ident: ref_48
  doi: 10.1109/IJCNN.2013.6707128
– volume: 68
  start-page: 439
  year: 2019
  ident: ref_57
  article-title: MLMVNNN for Parameter Fault Detection in PWM DC–DC Converters and Its Applications for Buck and Boost DC–DC Converters
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2847978
– volume: 11
  start-page: 169
  year: 2007
  ident: ref_47
  article-title: Multilayer Feedforward Neural Network Based on Multi-Valued Neurons (MLMVN) and a Backpropagation Learning Algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-006-0075-5
– volume: 38
  start-page: 3227
  year: 2023
  ident: ref_53
  article-title: Frequency Characterization of Medium Voltage Cables for Fault Prevention Through Multi-Valued Neural Networks and Power Line Communication Technologies
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2023.3270128
– volume: 131
  start-page: 251
  year: 2020
  ident: ref_29
  article-title: Deep Learning on Image Denoising: An Overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– ident: ref_8
– volume: 60
  start-page: 259
  year: 1992
  ident: ref_15
  article-title: Nonlinear Total Variation Based Noise Removal Algorithms
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(92)90242-F
– volume: 2010
  start-page: 763847
  year: 2010
  ident: ref_9
  article-title: Well-Posed Inhomogeneous Nonlinear Diffusion Scheme for Digital Image Denoising
  publication-title: J. Appl. Math.
  doi: 10.1155/2010/763847
– volume: Volume 9351
  start-page: 234
  year: 2015
  ident: ref_39
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
– volume: 17
  start-page: 53
  year: 2008
  ident: ref_42
  article-title: Sparse Representation for Color Image Restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.911828
– ident: ref_52
  doi: 10.3390/a17080361
– volume: 31
  start-page: 2012
  year: 2010
  ident: ref_10
  article-title: An Improved Anisotropic Diffusion Model for Detail- and Edge-Preserving Smoothing
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.06.004
– volume: 95
  start-page: 063508
  year: 2024
  ident: ref_34
  article-title: Neural Network Denoising of X-Ray Images from High-Energy-Density Experiments
  publication-title: Rev. Sci. Instruments
  doi: 10.1063/5.0207005
– volume: 93
  start-page: 2548
  year: 2013
  ident: ref_11
  article-title: Image Denoising Using Modified Perona–Malik Model Based on Directional Laplacian
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.02.020
– ident: ref_20
  doi: 10.1201/9781003067832
– volume: 26
  start-page: 3142
  year: 2017
  ident: ref_33
  article-title: Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– ident: ref_51
  doi: 10.1109/IJCNN.2013.6707132
– volume: 80
  start-page: 1893
  year: 1992
  ident: ref_22
  article-title: Order Statistics in Digital Image Processing
  publication-title: Proc. IEEE
  doi: 10.1109/5.192071
– ident: ref_45
– volume: PAMI-2
  start-page: 165
  year: 1980
  ident: ref_18
  article-title: Digital Image Enhancement and Noise Filtering by Use of Local Statistics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1980.4766994
– ident: ref_17
  doi: 10.1109/CVPR.2014.366
– ident: ref_32
  doi: 10.1016/j.cmpb.2020.105477
– ident: ref_30
– volume: 12
  start-page: 1338
  year: 2003
  ident: ref_41
  article-title: Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.818640
– volume: 8
  start-page: 1
  year: 2024
  ident: ref_26
  article-title: Visual Intelligence: Machine Learning Approaches to Image Filtering and Identification
  publication-title: Int. J. Sci. Res. Eng. Manag.
– volume: 35
  start-page: 234
  year: 1986
  ident: ref_23
  article-title: Rank Algorithms for Picture Processing
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(86)90029-0
– ident: ref_3
– volume: 11
  start-page: 81
  year: 1990
  ident: ref_25
  article-title: Some Adaptive Rank Order Filters for Image Enhancement
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(90)90117-K
– ident: ref_54
  doi: 10.3390/electronics11101589
– ident: ref_38
  doi: 10.1016/j.bspc.2019.101632
– volume: 48
  start-page: 389
  year: 2018
  ident: ref_49
  article-title: A Multi-Valued Neuron Based Complex ELM Neural Network
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-017-9745-9
– ident: ref_40
– volume: 29
  start-page: 182
  year: 1992
  ident: ref_7
  article-title: Image Selective Smoothing and Edge Detection by Nonlinear Diffusion
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729012
– ident: ref_60
  doi: 10.1109/CIDM.2014.7008147
– ident: ref_44
– ident: ref_21
– volume: 39
  start-page: 1256
  year: 2017
  ident: ref_13
  article-title: Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 414
  start-page: 346
  year: 2020
  ident: ref_31
  article-title: Ultrasound Image De-Speckling by a Hybrid Deep Network with Transferred Filtering and Structural Prior
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.002
– volume: Volume 8532
  start-page: 853210
  year: 2012
  ident: ref_6
  article-title: Speckle Noise Reduction in SAR Images Ship Detection
  publication-title: Proceedings of the SPIE, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012
  doi: 10.1117/12.974375
– volume: 16
  start-page: 2080
  year: 2007
  ident: ref_4
  article-title: Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– volume: 7
  start-page: 2179
  year: 2021
  ident: ref_28
  article-title: Methods for Image Denoising Using Convolutional Neural Network: A Review
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00428-4
– ident: ref_2
– ident: ref_50
  doi: 10.1109/ICSTCC.2014.6982529
– ident: ref_14
  doi: 10.1109/CVPR.2015.7299163
– volume: 16
  start-page: 563
  year: 2012
  ident: ref_61
  article-title: A Modified Learning Algorithm for the Multilayer Neural Network with Multi-Valued Neurons Based on the Complex QR Decomposition
  publication-title: Soft Comput.
  doi: 10.1007/s00500-011-0755-7
– ident: ref_35
  doi: 10.1109/CVPR.2012.6247952
SSID ssj0065961
Score 2.3451858
Snippet Neural networks have shown significant promise in the field of image processing, particularly for tasks such as denoising and restoration, due to their...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 461
SubjectTerms Algorithms
complex-valued neural networks
Data mining
Fourier transforms
frequency domain
Frequency domain analysis
Gaussian noise
image denoising
Image filters
Image processing
Learning strategies
Machine learning
MLMVN
Multilayers
Neural networks
Neurons
Noise reduction
Partial differential equations
Random noise
Signal processing
speckle noise
Ultrasonic imaging
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV03T8UwELYoCwsd0WUhJKaIFNuxJ0QLRYIJEJvl9hACEnjvMfDvuUuchxhgyRA7cnS-7vN3hOynVjrli5B4LyFAcZ4nVuY2SS1TgjmXDkq8nHxzKy7v2fUjf4wJt1Esq-x1YquofeMwR34Ihr9QgvOyPHr_SLBrFJ6uxhYa02Q2A0uDfC6ri14TC65E1qEJFRDaH5oMQRSZyH7ZoBaq_y-F3FqZapHMR_eQHnf7uUSmQr1MFvrWCzRK4gp5uZpAaY5pNezqob_oWfMGkT69egMtQatnPAkH00RPwFR52tTU0PbC7asBR5siLgesddsVglPMyHbDyYN5_YQPWuCOerRK7qvzu9PLJPZNSBxCqSQQJOQ8eFPkRkB8J12hjC0kC6lknBsIkLgrRDkA2ctDBg4HiC03bOBU6nLrZLFGZuqmDuuEcmbBhymZGygJD_AeEB8vUzxkxuRBbpC9npL6vYPH0BBWILn1hNwb5ARpPJmAiNbti2b4pKOAaJkGJwWoEwE8wryUITewZOlSZU3wsNIB7pBGuRsPjTPx-gD8JyJY6WPwOwSqGJi53W-ijgI50j_ss_n_8BaZy7HFb1vjt01mxsPPsAN-x9jutsz1DQsB1uk
  priority: 102
  providerName: ProQuest
Title Intelligent Frequency Domain Image Filtering Based on a Multilayer Neural Network with Multi-Valued Neurons
URI https://www.proquest.com/docview/3243965577
https://doaj.org/article/80ec8648869644d88e2a84c7c09baed8
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI5gXLjwRgzGFCEkThVpm6TJkcHKQ2JCiCFuUZKmEmLr0DYO_HucppvggLhwbRs1smP7c2t_RuiUGGFlkbqoKAQkKLZgkRGJiYihklNrSZn55uT7Ab8Z0rsX9vJt1JevCQv0wEFw54I4KzgcMw5raSGES7SgNrNEGu2Kus2XSLJIpoIP5kzyOPAIpZDUn-vY0ydSHv-IPjVJ_2-uuI4v-RbaaIAhvggb2kYrrtpBm4uhC7ixwV30drsk0ZzjfBoqoT_x1WQMOT6-HYN_wPmr_wcOQQn3IEgVeFJhjetW25EGiI09Iwe8axBKwLH_FhtuR8969AELasqOaraHhnn_6fImaiYmRNaTqESQHiTMFTpNNIfMTthUapMK6oigjGlIjZhNeVaC1SUuBqgBBss0La0kNjFWpPuoVU0qd4AwowbQS0ZtKUHcJeAGz4wXS-ZirRMn2uhkIUn1HogxFCQUXtxqKe426nkZLx_wXNb1BdCwajSs_tJwG515DSlvcfOptrppHIB9eu4qdQGIg3vnAk92FkpUjSnOFCDGVHLGsuzwP3ZzhNYTPwK4rgHsoNZ8-uGOAZfMTRetivy6i9Z6_cHDY7c-kF9Fu-HR
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAX3qgtBSwE4hQ18Sv2AaEu7WqXtiuEWtSb8WtR1TYpu1uh_il-IzN5LOIAt15ySJw4Gn-eh-35hpA3udfBRJ6yGDUEKCHKzGvms9wLo0QI-azE5OSjqRqfiE-n8nSN_OpzYfBYZa8TG0Ud64Br5Dtg-LlRUpblh6sfGVaNwt3VvoRGC4uDdPMTQrbF-8kejO9bxkb7xx_HWVdVIAtINJKBC81kio4zpyD60YEb57kWKddCSgfhgwxclTNAJksFmGMAtXRiFkwemA-aw3fvkHWBGa0Dsj7cn37-0ut-JY0qWv4izk2-4wqkbRSq-MvqNcUB_mUCGrs2ekjudw4p3W0R9IispeoxedAXe6Dd3H9Czicr8s4lHc3bE9g3dK--dGcVnVyCXqKjM9x7B2NIh2AcI60r6miT4nvhwLWnyAQCfU3bo-cU14Dbx9lXd3ENLzRUIdXiKTm5FZk-I4OqrtIGoVJ48JpKEWZGwwX8FWTkK4xMhXMs6U3yupekvWoJOSwEMihuuxL3JhmijFcNkEO7uVHPv9tuSlqdp6AVKDAFqBRR68QcdFmG3HiXIvT0DkfI4kxfzl1wXcIC_CdyZtld8HQUKjVoud0Pou1UwML-AezW_x-_InfHx0eH9nAyPXhO7jEsMNycMNwmg-X8Or0Ar2fpX3ZQo-TbbaP7NwPzEkk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAX3oiWAhYCcYo28Sv2AaGWJXQprDhQ1JvxK6iiTdrdrVD_Gr-OmTwWcYBbLzkkThyNP8_DHn9DyIvc62AiT1mMGgKUEGXmNfNZ7oVRIoS8LvFw8qe52j8UH47k0Qb5NZ6FwbTKUSd2ijq2AdfIJ2D4uVFSluWkHtIiPk-rN2fnGVaQwp3WsZxGD5GDdPkTwrfl69kUxvolY9W7L2_3s6HCQBaQdCQDd5rJFB1nTkEkpAM3znMtUq6FlA5CCRm4KmtAKUsFmGYAuHSiDiYPzAfN4bvXyPWSlwYDP129H62AkkYVPZMR5yafuAIJHIUq_rJ_XZmAfxmDzsJVd8itwTWluz2W7pKN1Nwjt8eyD3TQAvfJj9maxnNFq0Wfi31Jp-2pO27o7BQ0FK2OcRcezCLdAzMZadtQR7vDvicOnHyKnCDQ17xPQqe4Gtw_zr66kwt4oSMNaZYPyOGVSPQh2WzaJj0iVAoP_lMpQm00XMBzQW6-wshUOMeS3iLPR0nas56aw0JIg-K2a3FvkT2U8boBsml3N9rFdztMTqvzFLQCVaYAnyJqnZiDLsuQG-9ShJ5e4QhZnPOrhQtuOLoA_4nsWXYXfB6F6g1a7oyDaAdlsLR_oLv9_8fPyA3AtP04mx88JjcZVhruUg13yOZqcZGegPuz8k87nFHy7aqB_Rv7-BUZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Frequency+Domain+Image+Filtering+Based+on+a+Multilayer+Neural+Network+with+Multi-Valued+Neurons&rft.jtitle=Algorithms&rft.au=Igor+Aizenberg&rft.au=Yurii+Tovt&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=18&rft.issue=8&rft.spage=461&rft_id=info:doi/10.3390%2Fa18080461&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_80ec8648869644d88e2a84c7c09baed8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon