Effective working regions of the grating chip for planar-integrated magneto-optics trap
We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident laser beam, we identify four effective working regions of the laser beam contributing to MOT: a central region corresponding to the downward inc...
Saved in:
Published in | Chinese physics B Vol. 34; no. 7; pp. 74211 - 74215 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/adcb9c |
Cover
Abstract | We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident laser beam, we identify four effective working regions of the laser beam contributing to MOT: a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams. The latter three regions are the effective regions of the grating chip. It is demonstrated that only three 3.5 mm radius grating regions can produce a MOT that is capable of trapping 10 5 atoms with a temperature below 150 μK, retaining over 60% of atoms compared to a complete grating chip. This finding suggests that more than 60% of the grating chip area can be saved for other on-chip components, such as metasurfaces and nanophotonic devices, without significantly compromising MOT performance, paving the way for more compact and versatile atom–photon interfaces. |
---|---|
AbstractList | We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident laser beam, we identify four effective working regions of the laser beam contributing to MOT: a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams. The latter three regions are the effective regions of the grating chip. It is demonstrated that only three 3.5 mm radius grating regions can produce a MOT that is capable of trapping 10 5 atoms with a temperature below 150 μK, retaining over 60% of atoms compared to a complete grating chip. This finding suggests that more than 60% of the grating chip area can be saved for other on-chip components, such as metasurfaces and nanophotonic devices, without significantly compromising MOT performance, paving the way for more compact and versatile atom–photon interfaces. |
Author | Wang, Ling-Xiao Xiang, Guo-Yong Chen, Liang Guo, Guang-Can Zou, Chang-Ling Li, Chuan-Feng Huang, Chang-Jiang |
Author_xml | – sequence: 1 givenname: Chang-Jiang surname: Huang fullname: Huang, Chang-Jiang organization: University of Science and Technology of China CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China – sequence: 2 givenname: Ling-Xiao surname: Wang fullname: Wang, Ling-Xiao organization: University of Science and Technology of China CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China – sequence: 3 givenname: Liang surname: Chen fullname: Chen, Liang organization: University of Science and Technology of China CAS Center for Excellence in Quantum Information and Quantum Physics, Hefei 230026, China – sequence: 4 givenname: Chuan-Feng surname: Li fullname: Li, Chuan-Feng organization: University of Science and Technology of China Hefei National Laboratory, Hefei 230088, China – sequence: 5 givenname: Guang-Can surname: Guo fullname: Guo, Guang-Can organization: University of Science and Technology of China Hefei National Laboratory, Hefei 230088, China – sequence: 6 givenname: Chang-Ling surname: Zou fullname: Zou, Chang-Ling organization: University of Science and Technology of China Hefei National Laboratory, Hefei 230088, China – sequence: 7 givenname: Guo-Yong surname: Xiang fullname: Xiang, Guo-Yong organization: University of Science and Technology of China Hefei National Laboratory, Hefei 230088, China |
BookMark | eNp1kE9PAyEQxYmpiW317pEPIBbYXZg9mqb-SZp40XgkLIUttYUNoMZvbzc13jxNMu-9yfzeDE1CDBaha0ZvGQVYMCFrwmgjFnpjutacoSmnDZAKqnqCpn_yBZrlvKNUMMqrKXpbOWdN8Z8Wf8X07kOPk-19DBlHh8vW4j7pMq7N1g_YxYSHvQ46ER-KHTW7wQfdB1siiUPxJuOS9HCJzp3eZ3v1O-fo9X71snwk6-eHp-XdmhheNYV0suZ11QGjhhvOAVwnANpO6qZyIDdgW9F2QtQggTuojWRSMscafWQU2lVzRE93TYo5J-vUkPxBp2_FqBqLUSO5GsnVqZhj5OYU8XFQu_iRwvHB_-0_f_tn4Q |
Cites_doi | 10.3788/COL 10.1103/RevModPhys.94.041001 10.1063/1.3486679 10.1103/PRXQuantum.3.030316 10.1021/nl2024867 10.1126/science.aah3778 10.1126/sciadv.aax0800 10.1103/RevModPhys.87.637 10.1364/OE.17.013601 10.1364/OE.17.014109 10.1103/RevModPhys.81.1051 10.1103/RevModPhys.82.2313 10.1364/OE.23.008948 10.1364/OE.538445 10.1364/OL.21.001177 10.1126/science.1103346 10.1088/0953-4075/49/20/202001 10.1038/s41586-023-06927-3 10.1126/science.1140300 10.1364/OL.35.003453 10.1103/PhysRevApplied.11.064023 10.1038/s41467-023-38818-6 10.1103/PhysRevLett.59.2631 10.1088/0256-307X/42/3/034203 10.1103/PhysRevLett.128.083605 10.1103/PhysRevLett.125.191101 10.1038/nnano.2013.47 10.1364/OE.518268 10.1007/s00340-015-6287-6 10.1103/PhysRevLett.109.063602 10.1103/PhysRevApplied.17.034031 10.1103/PhysRevLett.123.233604 10.1038/s41377-023-01081-x 10.1103/PhysRevA.72.032509 10.1038/nature07241 10.1126/science.aah3752 10.1364/JOSAB.6.002023 10.1103/PhysRevLett.104.203603 10.1088/0034-4885/77/12/126401 10.1016/j.optcom.2022.128087 10.1103/RevModPhys.85.553 10.1038/s41566-023-01227-8 10.1088/1367-2630/13/4/043029 10.1364/OPTICAQ.532260 10.1038/35106500 10.1038/nphys1773 10.1038/s41467-022-31410-4 |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/adcb9c |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_adcb9c cpb_34_7_074211 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX CITATION |
ID | FETCH-LOGICAL-c235t-b74243b810c2c2288fb6889b7a53f87d8e969b6648782f84c71771f15acb96af3 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Wed Jul 16 16:45:52 EDT 2025 Wed Jul 16 05:28:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-b74243b810c2c2288fb6889b7a53f87d8e969b6648782f84c71771f15acb96af3 |
PageCount | 5 |
ParticipantIDs | iop_journals_10_1088_1674_1056_adcb9c crossref_primary_10_1088_1674_1056_adcb9c |
PublicationCentury | 2000 |
PublicationDate | 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250701 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Bluvstein (cpb_34_7_074211bib11) 2024; 626 McGilligan (cpb_34_7_074211bib23) 2015; 23 Cotter (cpb_34_7_074211bib24) 2016; 122 Lee (cpb_34_7_074211bib17) 1996; 21 Wu (cpb_34_7_074211bib13) 2019; 5 Ritsch (cpb_34_7_074211bib32) 2013; 85 Zhuang (cpb_34_7_074211bib42) 2021; 19 Fujiwara (cpb_34_7_074211bib38) 2011; 11 Hsu (cpb_34_7_074211bib35) 2022; 3 Duan (cpb_34_7_074211bib1) 2001; 414 Nshii (cpb_34_7_074211bib22) 2013; 8 Chen (cpb_34_7_074211bib36) 2024; 32 Yang (cpb_34_7_074211bib34) 2019; 123 Vangeleyn (cpb_34_7_074211bib21) 2010; 35 Ludlow (cpb_34_7_074211bib15) 2015; 87 Lee (cpb_34_7_074211bib25) 2022; 13 Chou (cpb_34_7_074211bib3) 2007; 316 Le Kien (cpb_34_7_074211bib37) 2005; 72 Blumenthal (cpb_34_7_074211bib41) 2024; 2 Yu (cpb_34_7_074211bib28) 2024; 32 Saffman (cpb_34_7_074211bib7) 2010; 82 Raab (cpb_34_7_074211bib16) 1987; 59 Vetsch (cpb_34_7_074211bib30) 2010; 104 Ropp (cpb_34_7_074211bib44) 2023; 12 Huang (cpb_34_7_074211bib29) 2025; 42 Wang (cpb_34_7_074211bib6) 2022; 128 Dalibard (cpb_34_7_074211bib47) 1989; 6 Saffman (cpb_34_7_074211bib10) 2016; 49 Endres (cpb_34_7_074211bib8) 2016; 354 Barredo (cpb_34_7_074211bib9) 2016; 354 Amico (cpb_34_7_074211bib43) 2022; 94 Duan (cpb_34_7_074211bib26) 2022; 513 Dang (cpb_34_7_074211bib31) 2010; 97 Isichenko (cpb_34_7_074211bib45) 2023; 14 Chen (cpb_34_7_074211bib27) 2022; 17 Cronin (cpb_34_7_074211bib12) 2009; 81 Pollock (cpb_34_7_074211bib19) 2009; 17 Radnaev (cpb_34_7_074211bib5) 2010; 6 Matsukevich (cpb_34_7_074211bib2) 2004; 306 Yuan (cpb_34_7_074211bib4) 2008; 454 Goldman (cpb_34_7_074211bib33) 2014; 77 Barker (cpb_34_7_074211bib40) 2019; 11 Asenbaum (cpb_34_7_074211bib14) 2020; 125 Yalla (cpb_34_7_074211bib39) 2012; 109 Yu (cpb_34_7_074211bib46) 2023; 17 Vangeleyn (cpb_34_7_074211bib18) 2009; 17 Pollock (cpb_34_7_074211bib20) 2011; 13 |
References_xml | – volume: 19 year: 2021 ident: cpb_34_7_074211bib42 publication-title: Chin. Opt. Lett. doi: 10.3788/COL – volume: 94 year: 2022 ident: cpb_34_7_074211bib43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.94.041001 – volume: 97 year: 2010 ident: cpb_34_7_074211bib31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3486679 – volume: 3 year: 2022 ident: cpb_34_7_074211bib35 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.030316 – volume: 11 start-page: 4362 year: 2011 ident: cpb_34_7_074211bib38 publication-title: Nano Lett. doi: 10.1021/nl2024867 – volume: 354 start-page: 1021 year: 2016 ident: cpb_34_7_074211bib9 publication-title: Science doi: 10.1126/science.aah3778 – volume: 5 year: 2019 ident: cpb_34_7_074211bib13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0800 – volume: 87 start-page: 637 year: 2015 ident: cpb_34_7_074211bib15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.637 – volume: 17 year: 2009 ident: cpb_34_7_074211bib18 publication-title: Opt. Express doi: 10.1364/OE.17.013601 – volume: 17 year: 2009 ident: cpb_34_7_074211bib19 publication-title: Opt. Express doi: 10.1364/OE.17.014109 – volume: 81 start-page: 1051 year: 2009 ident: cpb_34_7_074211bib12 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.1051 – volume: 82 start-page: 2313 year: 2010 ident: cpb_34_7_074211bib7 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2313 – volume: 23 start-page: 8948 year: 2015 ident: cpb_34_7_074211bib23 publication-title: Opt. Express doi: 10.1364/OE.23.008948 – volume: 32 year: 2024 ident: cpb_34_7_074211bib36 publication-title: Opt. Express doi: 10.1364/OE.538445 – volume: 21 start-page: 1177 year: 1996 ident: cpb_34_7_074211bib17 publication-title: Opt. Lett. doi: 10.1364/OL.21.001177 – volume: 306 start-page: 663 year: 2004 ident: cpb_34_7_074211bib2 publication-title: Science doi: 10.1126/science.1103346 – volume: 49 year: 2016 ident: cpb_34_7_074211bib10 publication-title: J. Phys. B: At. Mol. Opt. Phys. doi: 10.1088/0953-4075/49/20/202001 – volume: 626 start-page: 58 year: 2024 ident: cpb_34_7_074211bib11 publication-title: Nature doi: 10.1038/s41586-023-06927-3 – volume: 316 start-page: 1316 year: 2007 ident: cpb_34_7_074211bib3 publication-title: Science doi: 10.1126/science.1140300 – volume: 35 start-page: 3453 year: 2010 ident: cpb_34_7_074211bib21 publication-title: Opt. Lett. doi: 10.1364/OL.35.003453 – volume: 11 year: 2019 ident: cpb_34_7_074211bib40 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.064023 – volume: 14 start-page: 3080 year: 2023 ident: cpb_34_7_074211bib45 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38818-6 – volume: 59 start-page: 2631 year: 1987 ident: cpb_34_7_074211bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.59.2631 – volume: 42 year: 2025 ident: cpb_34_7_074211bib29 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/42/3/034203 – volume: 128 year: 2022 ident: cpb_34_7_074211bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.083605 – volume: 125 year: 2020 ident: cpb_34_7_074211bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.191101 – volume: 8 start-page: 321 year: 2013 ident: cpb_34_7_074211bib22 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2013.47 – volume: 32 start-page: 8919 year: 2024 ident: cpb_34_7_074211bib28 publication-title: Opt. Express doi: 10.1364/OE.518268 – volume: 122 start-page: 1 year: 2016 ident: cpb_34_7_074211bib24 publication-title: Appl. Phys. B doi: 10.1007/s00340-015-6287-6 – volume: 109 year: 2012 ident: cpb_34_7_074211bib39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.063602 – volume: 17 year: 2022 ident: cpb_34_7_074211bib27 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.034031 – volume: 123 year: 2019 ident: cpb_34_7_074211bib34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.233604 – volume: 12 start-page: 83 year: 2023 ident: cpb_34_7_074211bib44 publication-title: Light Sci. Appl. doi: 10.1038/s41377-023-01081-x – volume: 72 year: 2005 ident: cpb_34_7_074211bib37 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.032509 – volume: 454 start-page: 1098 year: 2008 ident: cpb_34_7_074211bib4 publication-title: Nature doi: 10.1038/nature07241 – volume: 354 start-page: 1024 year: 2016 ident: cpb_34_7_074211bib8 publication-title: Science doi: 10.1126/science.aah3752 – volume: 6 start-page: 2023 year: 1989 ident: cpb_34_7_074211bib47 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.6.002023 – volume: 104 year: 2010 ident: cpb_34_7_074211bib30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.203603 – volume: 77 year: 2014 ident: cpb_34_7_074211bib33 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/77/12/126401 – volume: 513 year: 2022 ident: cpb_34_7_074211bib26 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2022.128087 – volume: 85 start-page: 553 year: 2013 ident: cpb_34_7_074211bib32 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.553 – volume: 17 start-page: 666 year: 2023 ident: cpb_34_7_074211bib46 publication-title: Nat. Photon. doi: 10.1038/s41566-023-01227-8 – volume: 13 year: 2011 ident: cpb_34_7_074211bib20 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/4/043029 – volume: 2 start-page: 444 year: 2024 ident: cpb_34_7_074211bib41 publication-title: Optica Quantum doi: 10.1364/OPTICAQ.532260 – volume: 414 start-page: 413 year: 2001 ident: cpb_34_7_074211bib1 publication-title: Nature doi: 10.1038/35106500 – volume: 6 start-page: 894 year: 2010 ident: cpb_34_7_074211bib5 publication-title: Nat. Phys. doi: 10.1038/nphys1773 – volume: 13 start-page: 5131 year: 2022 ident: cpb_34_7_074211bib25 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31410-4 |
SSID | ssj0061023 |
Score | 2.3697171 |
Snippet | We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap (MOT). By scanning a blocking point in the incident... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 74211 |
SubjectTerms | cold atoms grating chip magneto-optical trap (MOT) |
Title | Effective working regions of the grating chip for planar-integrated magneto-optics trap |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/adcb9c |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7WFcGLb3F9kYMePGS322eKJxGXVfBxcHEPQknSREVty24XwV_vpOkuKgrirZRpmn5NJ98k028ADmTkqNBnHg281KXIwAPKtOPQWJriItqJYmUW9C-vwv7AvxgGwwYcz_6FyYva9bfx0AoFWwjrhDjWMXnz1BSM7_BUiljOwbwpXGmG9_n1zdQNh0aTwERbU-t6j_KnFr7MSXN4309TTG8Z7qeds5klz-1JKdry_Ztu4z97vwJLNfUkJ9Z0FRoqW4OFKgVUjtfhzgoZo_cjb3YFnZiqDTgqSa4J8kRiZCXMafn4VBAku6R44Rkf0ZnkREpe-UOmypzmhZF_JuWIFxsw6J3dnvZpXXaBStcLSiowWvY9wbqOdKXrMqZFyFgsIh54mkUpU3EYixDfMLILzXyJEWHU1d2A4_OEXHub0MzyTG0BwUtYmgoPvSryHFcwzX2V-hpZRojNqhYcTYFPCquukVS74owlBqjEAJVYoFpwiJgm9Sc2_tVu-492O7Domlq-VertLjTL0UTtIcEoxX41kD4ADdDJrg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVoEYgLO6KsPsCBg9s0q3NEQNWylB6o6C14BQQkUZsKia9nnAUBAgmJWxTZTvzijN_Y4zcIHYjAUr5LHeI50ibAwD1CtWWRUJjkItoKQmUW9K_6fnfono-8UZnnND8Lk6Sl6W_CZSEUXEBYBsTRlombJyZhfItJwUPRSqWuoVkPTLGJ6epdDypT7BtdAuNxVTXKfcqfWvkyL9Xg2Z-mmc4SuqtesIgueWpOM94Ub9-0G__Rg2W0WFJQfFwUX0EzKl5Fc3koqJisodtC0BisIH4tVtKxyd4AoxMnGgNfxEZewtwWD48pBtKL02cWszH5kJ6Q-IXdxypLSJIaGWicjVm6joads5uTLinTLxBhO15GOHjNrsNp2xK2sG1KNfcpDXnAPEfTQFIV-iH34UsDy9DUFeAZBm3d9hj0yWfa2UD1OInVJsJQhUrJHbCuwHdsTjVzlXQ1sA0fmlUNdFSBH6WFykaU745TGhmwIgNWVIDVQIeAa1T-apNfy239sdw-mh-cdqLLXv9iGy3YJr1vHo27g-rZeKp2gXNkfC8fV-9NsM8S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+working+regions+of+the+grating+chip+for+planar-integrated+magneto-optics+trap&rft.jtitle=Chinese+physics+B&rft.au=Huang%2C+Chang-Jiang&rft.au=Wang%2C+Ling-Xiao&rft.au=Chen%2C+Liang&rft.au=Li%2C+Chuan-Feng&rft.date=2025-07-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=1674-1056&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1088%2F1674-1056%2Fadcb9c&rft.externalDocID=cpb_34_7_074211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |