The influence of pH value on nitrate and nitrite formation in air-plasma-treated aqueous solutions
A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the so...
Saved in:
Published in | Plasma science & technology Vol. 27; no. 9; pp. 95508 - 95512 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.09.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 2058-6272 |
DOI | 10.1088/2058-6272/adf039 |
Cover
Abstract | A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the solution’s pH value. We measured the nitrate with a nitrate ion selective electrode and the nitrite with Griess assay. The results show that air is activated to form nitrogen oxides by discharge plasma, and the dissolution of these nitrogen oxides leads to the formation of nitrate and nitrite. The total nitrogen content of the nitrate and nitrite in the solution is independent, while the nitrate and nitrite production rates are dependent on the solution’s pH value. A high pH environment is beneficial for nitrite formation, while a low pH environment is better for nitrate production. Moreover, the production rates of both nitrate and nitrite are greater in the solution cathode than those in the solution anode. |
---|---|
AbstractList | A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the solution’s pH value. We measured the nitrate with a nitrate ion selective electrode and the nitrite with Griess assay. The results show that air is activated to form nitrogen oxides by discharge plasma, and the dissolution of these nitrogen oxides leads to the formation of nitrate and nitrite. The total nitrogen content of the nitrate and nitrite in the solution is independent, while the nitrate and nitrite production rates are dependent on the solution’s pH value. A high pH environment is beneficial for nitrite formation, while a low pH environment is better for nitrate production. Moreover, the production rates of both nitrate and nitrite are greater in the solution cathode than those in the solution anode. |
Author | ZHANG, Mingjia LIN, Taiyu CHEN, Qiang LIU, Guangchao WU, Binhong WANG, Xin |
Author_xml | – sequence: 1 givenname: Mingjia surname: ZHANG fullname: ZHANG, Mingjia organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China – sequence: 2 givenname: Taiyu surname: LIN fullname: LIN, Taiyu organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China – sequence: 3 givenname: Guangchao surname: LIU fullname: LIU, Guangchao organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China – sequence: 4 givenname: Binhong surname: WU fullname: WU, Binhong organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China – sequence: 5 givenname: Xin surname: WANG fullname: WANG, Xin organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China – sequence: 6 givenname: Qiang surname: CHEN fullname: CHEN, Qiang organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China |
BookMark | eNp1kE9LAzEQxYNUsK3ePeYDGJs_3WR7lKJWKHip5zC7STBlm6zJruC3N2vFm6d5M_PeMPwWaBZisAjdMnrPaF2vOK1qIrniKzCOis0Fmv-NZmjOKN0QKgW9Qoucj5RW600t5qg5vFvsg-tGG1qLo8P9Dn9CaXEMOPghwWAxBPOjfdEuphMMvmx9wOAT6TvIJyBDssVqMHyMNo4Z59iNky1fo0sHXbY3v3WJ3p4eD9sd2b8-v2wf9qTlohpII7k0EhQX0jBgpiho6NqY1inOrG1loxjjijW2MWuoFAjJWaUcN6pS0okloue7bYo5J-t0n_wJ0pdmVE-M9ARET0D0mVGJ3J0jPvb6GMcUyoP_278BevRrjA |
Cites_doi | 10.1063/5.0078076 10.1039/B906567A 10.1088/1361-6463/aa8819 10.1016/j.apsusc.2022.155129 10.1016/j.mtadv.2022.100244 10.1021/jp302247k 10.1088/0022-3727/49/27/275201 10.1002/ppap.201200007 10.1002/ppap.202100172 10.1016/j.cej.2015.03.059 10.34343/ijpest.2020.14.e02006 10.1143/APEX.5.086201 10.1088/1361-6463/ab81cf 10.1088/1367-2630/11/11/115012 10.1063/1.4977921 10.1088/0022-3727/48/42/424005 10.3390/ma11060891 10.1016/j.electacta.2012.06.131 10.1021/acs.jchemed.0c01392 10.1088/2058-6272/ac0008 10.1007/s11090-009-9179-x 10.1088/1361-6595/aad66d 10.1016/j.rbc.2024.100026 10.1029/91JD01750 10.1080/15421406.2019.1597524 10.5194/acp-23-10901-2023 10.1002/ppap.200700154 10.1088/0741-3335/59/1/014031 10.1149/1945-7111/ac41f5 10.1351/pac200880092003 10.1088/2058-6272/ac66bb 10.1021/jp207447c 10.1016/j.cej.2013.09.090 10.1038/s41598-021-85392-2 10.1088/0963-0252/20/3/034014 10.1016/j.tsf.2009.07.156 10.1002/ppap.202100198 10.1016/j.tifs.2018.05.007 10.1002/ppap.202200059 10.1134/S1063780X18010075 10.1016/j.cej.2020.125381 10.3390/pr6120248 10.1021/ie050981u 10.1021/acs.langmuir.9b03654 10.3390/plasma1010005 10.3390/ma12172751 10.1088/0963-0252/8/3/201 10.1021/acssuschemeng.0c04432 10.1088/0963-0252/25/5/053002 10.1063/1.2988283 10.1140/epjd/e2019-100431-x 10.2166/wst.2019.035 |
ContentType | Journal Article |
Copyright | 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. |
Copyright_xml | – notice: 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/adf039 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-6272 |
ExternalDocumentID | 10_1088_2058_6272_adf039 pstadf039 |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN IJHAN IOP IZVLO LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX CITATION |
ID | FETCH-LOGICAL-c235t-b626d6a7236d1a1da72ab04ddcf721eec6b711271bebd4a57a362157f2d7576f3 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Thu Jul 31 01:01:57 EDT 2025 Tue Jul 29 22:11:25 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-b626d6a7236d1a1da72ab04ddcf721eec6b711271bebd4a57a362157f2d7576f3 |
PageCount | 5 |
ParticipantIDs | iop_journals_10_1088_2058_6272_adf039 crossref_primary_10_1088_2058_6272_adf039 |
PublicationCentury | 2000 |
PublicationDate | 20250901 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 9 year: 2025 text: 20250901 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2025 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Brettholle (pst_27_9_095508_bib2) 2010; 12 Shin (pst_27_9_095508_bib24) 2019; 678 Liu (pst_27_9_095508_bib18) 2016; 49 Chen (pst_27_9_095508_bib20) 2015; 48 pst_27_9_095508_bib47 Sander (pst_27_9_095508_bib46) 2023; 23 Thirumdas (pst_27_9_095508_bib39) 2018; 77 Xu (pst_27_9_095508_bib44) 2022; 24 Bratescu (pst_27_9_095508_bib30) 2011; 115 Toth (pst_27_9_095508_bib34) 2020; 8 Wu (pst_27_9_095508_bib36) 2021; 168 Che (pst_27_9_095508_bib28) 2020; 397 Lu (pst_27_9_095508_bib21) 2022; 19 He (pst_27_9_095508_bib53) 2017; 50 Kim (pst_27_9_095508_bib22) 2018; 11 Mariotti (pst_27_9_095508_bib17) 2012; 9 Zhou (pst_27_9_095508_bib38) 2020; 53 Filgueiras (pst_27_9_095508_bib41) 2021; 98 Prasertsung (pst_27_9_095508_bib10) 2019; 79 Bruggeman (pst_27_9_095508_bib1) 2021; 130 Wang (pst_27_9_095508_bib8) 2012; 83 Stratton (pst_27_9_095508_bib7) 2015; 273 Zhu (pst_27_9_095508_bib49) 2012; 116 Chokradjaroen (pst_27_9_095508_bib25) 2021; 11 Lin (pst_27_9_095508_bib51) 2020; 74 Hanson (pst_27_9_095508_bib50) 1991; 96 Kong (pst_27_9_095508_bib13) 2009; 11 Takeuchi (pst_27_9_095508_bib23) 2020; 14 Laroussi (pst_27_9_095508_bib12) 2018; 1 Phelps (pst_27_9_095508_bib43) 1999; 8 Delgado (pst_27_9_095508_bib42) 2020; 36 Chen (pst_27_9_095508_bib35) 2012; 5 Takai (pst_27_9_095508_bib31) 2008; 80 He (pst_27_9_095508_bib52) 2018; 27 Julák (pst_27_9_095508_bib40) 2018; 44 Ognier (pst_27_9_095508_bib4) 2009; 29 Kaneko (pst_27_9_095508_bib45) 2011; 20 Möller (pst_27_9_095508_bib48) 2024; 8 Ma (pst_27_9_095508_bib15) 2022; 19 Rezaei (pst_27_9_095508_bib16) 2019; 12 Liu (pst_27_9_095508_bib37) 2021; 23 Locke (pst_27_9_095508_bib6) 2006; 45 Saito (pst_27_9_095508_bib29) 2009; 518 Bruggeman (pst_27_9_095508_bib3) 2016; 25 Li (pst_27_9_095508_bib33) 2018; 6 Chokradjaroen (pst_27_9_095508_bib26) 2022; 14 Fridman (pst_27_9_095508_bib11) 2008; 5 Richmonds (pst_27_9_095508_bib19) 2008; 93 Jiang (pst_27_9_095508_bib5) 2014; 236 Jang (pst_27_9_095508_bib27) 2023; 608 Foster (pst_27_9_095508_bib9) 2017; 24 Weltmann (pst_27_9_095508_bib14) 2017; 59 Huang (pst_27_9_095508_bib32) 2022; 19 |
References_xml | – volume: 130 start-page: 200401 year: 2021 ident: pst_27_9_095508_bib1 publication-title: J. Appl. Phys. doi: 10.1063/5.0078076 – volume: 12 start-page: 1750 year: 2010 ident: pst_27_9_095508_bib2 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B906567A – volume: 50 start-page: 445207 year: 2017 ident: pst_27_9_095508_bib53 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa8819 – volume: 608 start-page: 155129 year: 2023 ident: pst_27_9_095508_bib27 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155129 – volume: 14 start-page: 100244 year: 2022 ident: pst_27_9_095508_bib26 publication-title: Mater. Today Adv. doi: 10.1016/j.mtadv.2022.100244 – ident: pst_27_9_095508_bib47 – volume: 116 start-page: 4466 year: 2012 ident: pst_27_9_095508_bib49 publication-title: J. Phys. Chem. A doi: 10.1021/jp302247k – volume: 49 start-page: 275201 year: 2016 ident: pst_27_9_095508_bib18 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/27/275201 – volume: 9 start-page: 1074 year: 2012 ident: pst_27_9_095508_bib17 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.201200007 – volume: 19 start-page: 2100172 year: 2022 ident: pst_27_9_095508_bib21 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.202100172 – volume: 273 start-page: 543 year: 2015 ident: pst_27_9_095508_bib7 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.059 – volume: 14 start-page: e02006 year: 2020 ident: pst_27_9_095508_bib23 publication-title: Int. J. Plasma Environ. Sci. Technol. doi: 10.34343/ijpest.2020.14.e02006 – volume: 5 start-page: 086201 year: 2012 ident: pst_27_9_095508_bib35 publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.086201 – volume: 53 start-page: 303001 year: 2020 ident: pst_27_9_095508_bib38 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab81cf – volume: 11 start-page: 115012 year: 2009 ident: pst_27_9_095508_bib13 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/11/115012 – volume: 24 start-page: 055501 year: 2017 ident: pst_27_9_095508_bib9 publication-title: Phys. Plasmas doi: 10.1063/1.4977921 – volume: 48 start-page: 424005 year: 2015 ident: pst_27_9_095508_bib20 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/42/424005 – volume: 11 start-page: 891 year: 2018 ident: pst_27_9_095508_bib22 publication-title: Materials doi: 10.3390/ma11060891 – volume: 83 start-page: 501 year: 2012 ident: pst_27_9_095508_bib8 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.06.131 – volume: 98 start-page: 3303 year: 2021 ident: pst_27_9_095508_bib41 publication-title: J. Chem. Educ. doi: 10.1021/acs.jchemed.0c01392 – volume: 23 start-page: 075504 year: 2021 ident: pst_27_9_095508_bib37 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/ac0008 – volume: 29 start-page: 261 year: 2009 ident: pst_27_9_095508_bib4 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-009-9179-x – volume: 27 start-page: 085010 year: 2018 ident: pst_27_9_095508_bib52 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/aad66d – volume: 8 start-page: 100026 year: 2024 ident: pst_27_9_095508_bib48 publication-title: Red. Biochem. Chem. doi: 10.1016/j.rbc.2024.100026 – volume: 96 start-page: 17307 year: 1991 ident: pst_27_9_095508_bib50 publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/91JD01750 – volume: 678 start-page: 20 year: 2019 ident: pst_27_9_095508_bib24 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2019.1597524 – volume: 23 start-page: 10901 year: 2023 ident: pst_27_9_095508_bib46 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-23-10901-2023 – volume: 5 start-page: 503 year: 2008 ident: pst_27_9_095508_bib11 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200700154 – volume: 59 start-page: 014031 year: 2017 ident: pst_27_9_095508_bib14 publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/59/1/014031 – volume: 168 start-page: 123508 year: 2021 ident: pst_27_9_095508_bib36 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac41f5 – volume: 80 start-page: 2003 year: 2008 ident: pst_27_9_095508_bib31 publication-title: Pure Appl. Chem. doi: 10.1351/pac200880092003 – volume: 24 start-page: 085502 year: 2022 ident: pst_27_9_095508_bib44 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/ac66bb – volume: 115 start-page: 24569 year: 2011 ident: pst_27_9_095508_bib30 publication-title: J. Phys. Chem. C doi: 10.1021/jp207447c – volume: 236 start-page: 348 year: 2014 ident: pst_27_9_095508_bib5 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.090 – volume: 11 start-page: 6261 year: 2021 ident: pst_27_9_095508_bib25 publication-title: Sci. Rep. doi: 10.1038/s41598-021-85392-2 – volume: 20 start-page: 034014 year: 2011 ident: pst_27_9_095508_bib45 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/20/3/034014 – volume: 518 start-page: 912 year: 2009 ident: pst_27_9_095508_bib29 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2009.07.156 – volume: 19 start-page: 2100198 year: 2022 ident: pst_27_9_095508_bib32 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.202100198 – volume: 77 start-page: 21 year: 2018 ident: pst_27_9_095508_bib39 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2018.05.007 – volume: 19 start-page: 2200059 year: 2022 ident: pst_27_9_095508_bib15 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.202200059 – volume: 44 start-page: 125 year: 2018 ident: pst_27_9_095508_bib40 publication-title: Plasma Phys. Rep. doi: 10.1134/S1063780X18010075 – volume: 397 start-page: 125381 year: 2020 ident: pst_27_9_095508_bib28 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125381 – volume: 6 start-page: 248 year: 2018 ident: pst_27_9_095508_bib33 publication-title: Processes doi: 10.3390/pr6120248 – volume: 45 start-page: 882 year: 2006 ident: pst_27_9_095508_bib6 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050981u – volume: 36 start-page: 1156 year: 2020 ident: pst_27_9_095508_bib42 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03654 – volume: 1 start-page: 47 year: 2018 ident: pst_27_9_095508_bib12 publication-title: Plasma doi: 10.3390/plasma1010005 – volume: 12 start-page: 2751 year: 2019 ident: pst_27_9_095508_bib16 publication-title: Materials doi: 10.3390/ma12172751 – volume: 8 start-page: R21 year: 1999 ident: pst_27_9_095508_bib43 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/8/3/201 – volume: 8 start-page: 14845 year: 2020 ident: pst_27_9_095508_bib34 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c04432 – volume: 25 start-page: 053002 year: 2016 ident: pst_27_9_095508_bib3 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/25/5/053002 – volume: 93 start-page: 131501 year: 2008 ident: pst_27_9_095508_bib19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2988283 – volume: 74 start-page: 1 year: 2020 ident: pst_27_9_095508_bib51 publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2019-100431-x – volume: 79 start-page: 967 year: 2019 ident: pst_27_9_095508_bib10 publication-title: Water Sci. Technol. doi: 10.2166/wst.2019.035 |
SSID | ssj0054983 ssib023363536 |
Score | 2.3468978 |
Snippet | A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 95508 |
SubjectTerms | air discharge plasma nitrate nitrite pH value plasma-liquid interface |
Title | The influence of pH value on nitrate and nitrite formation in air-plasma-treated aqueous solutions |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/adf039 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5tRfDiW6wvctCDh9RtNo8tnkQsVfBxsNCDsCSbBIq4u7Tbi7_eyT6KioJ4m0N2N0xmMt9svswgdAouA0CZcWIDrQgLZUI0V5poqg2T1kpRdom4fxCjMbub8EkLXS7vwmR5vfX3QKwKBVcqrAlxEaTrPCKCSnqhjAvCQRut-MaV3rxvH5-abRjynqhi1_u__yIM6jPKn97wJSa14bufQsxwA700k6uYJa-9RaF7yfu3uo3_nP0mWq-hJ76qhm6hlk230WpJAU3mO0iDxeBp07MEZw7nI-xrgYOcYvB8X1QCq9SUMiBVvLz4CI9hNZ2RHKD4myIled0arCDmZIs5Xpr3LhoPb56vR6TuwEASGvKCaEh3jFCShsL0Vd-ApHTAjEkcZI7WJkJLAGyyry0sreJSQTzsc-mokZDIuHAPddIstfsIS5ZEdGAdhD_BgjDSgAyYo44NlBaW2y46b9YgzqtCG3F5QB5FsddZ7HUWVzrrojNQb1x72_zXcQd_HHeI1qhv61tSx45Qp5gt7DFgjUKflDb1AW_nzSY |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4JI6fqQjAqqWR-lApW7Bjm2pQqRRmy78ei6vChBISGw3OE5ytu--032-Q-gMjgwAZcaJ9bQizJcR0Vxpoqk2TForRd4l4rEvukN2N-Kjss9pfhdmkpSmvwliUSi4UGFJiAsgXOcBEVTSS2Wc57cvE-NqaJmDKc44Xb2nQWWKIfYJCoZ9lgEQvlfmKX-a5YtfqsG7P7mZzgZ6qT6wYJe8Nuepbkbv32o3_uMPNtF6CUHxVTF8Cy3ZeBut5FTQaLaDNOwcPK56l-CJw0kXZzXBQY4xWICsuARWscllQKx4cQESHsNqPCUJQPI3RXISuzVYge-ZzGd4sc130bBz-3zdJWUnBhJRn6dEQ9hjhJLUF6alWgYkpT1mTOQggrQ2EloCcJMtbWGJFZcKFqPFpaNGQkDj_D1Ujyex3UdYsiigbevADQrm-YEGhMAcdayttLDcNtBFtQ5hUhTcCPNEeRCEmd7CTG9hobcGOgcVh-Wpm_067uCP407R6uCmEz70-veHaI1mnX5zNtkRqqfTuT0G-JHqk3yLfQD6g9KK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+pH+value+on+nitrate+and+nitrite+formation+in+air-plasma-treated+aqueous+solutions&rft.jtitle=Plasma+science+%26+technology&rft.au=ZHANG+%E5%BC%A0%2C+Mingjia+%E6%98%8E%E4%BD%B3&rft.au=LIN+%E6%9E%97%2C+Taiyu+%E6%B3%B0%E5%AE%87&rft.au=LIU+%E5%88%98%2C+Guangchao+%E5%B9%BF%E8%B6%85&rft.au=WU+%E5%90%B4%2C+Binhong+%E6%BB%A8%E9%B8%BF&rft.date=2025-09-01&rft.issn=1009-0630&rft.eissn=2058-6272&rft.volume=27&rft.issue=9&rft.spage=95508&rft_id=info:doi/10.1088%2F2058-6272%2Fadf039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2058_6272_adf039 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |