The influence of pH value on nitrate and nitrite formation in air-plasma-treated aqueous solutions

A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the so...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 27; no. 9; pp. 95508 - 95512
Main Authors ZHANG, Mingjia, LIN, Taiyu, LIU, Guangchao, WU, Binhong, WANG, Xin, CHEN, Qiang
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.09.2025
Subjects
Online AccessGet full text
ISSN1009-0630
2058-6272
DOI10.1088/2058-6272/adf039

Cover

Abstract A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the solution’s pH value. We measured the nitrate with a nitrate ion selective electrode and the nitrite with Griess assay. The results show that air is activated to form nitrogen oxides by discharge plasma, and the dissolution of these nitrogen oxides leads to the formation of nitrate and nitrite. The total nitrogen content of the nitrate and nitrite in the solution is independent, while the nitrate and nitrite production rates are dependent on the solution’s pH value. A high pH environment is beneficial for nitrite formation, while a low pH environment is better for nitrate production. Moreover, the production rates of both nitrate and nitrite are greater in the solution cathode than those in the solution anode.
AbstractList A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In order to trace the origin of the nitrate and nitrite, we investigated the processes of the nitrate and nitrite formation as a function of the solution’s pH value. We measured the nitrate with a nitrate ion selective electrode and the nitrite with Griess assay. The results show that air is activated to form nitrogen oxides by discharge plasma, and the dissolution of these nitrogen oxides leads to the formation of nitrate and nitrite. The total nitrogen content of the nitrate and nitrite in the solution is independent, while the nitrate and nitrite production rates are dependent on the solution’s pH value. A high pH environment is beneficial for nitrite formation, while a low pH environment is better for nitrate production. Moreover, the production rates of both nitrate and nitrite are greater in the solution cathode than those in the solution anode.
Author ZHANG, Mingjia
LIN, Taiyu
CHEN, Qiang
LIU, Guangchao
WU, Binhong
WANG, Xin
Author_xml – sequence: 1
  givenname: Mingjia
  surname: ZHANG
  fullname: ZHANG, Mingjia
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
– sequence: 2
  givenname: Taiyu
  surname: LIN
  fullname: LIN, Taiyu
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
– sequence: 3
  givenname: Guangchao
  surname: LIU
  fullname: LIU, Guangchao
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
– sequence: 4
  givenname: Binhong
  surname: WU
  fullname: WU, Binhong
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
– sequence: 5
  givenname: Xin
  surname: WANG
  fullname: WANG, Xin
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
– sequence: 6
  givenname: Qiang
  surname: CHEN
  fullname: CHEN, Qiang
  organization: Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Fujian Provincial Key Laboratory of Electromagnetic Wave Science and Detection Technology, Xiamen Key Laboratory of Multiphysics Electronic Information, Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, People’s Republic of China
BookMark eNp1kE9LAzEQxYNUsK3ePeYDGJs_3WR7lKJWKHip5zC7STBlm6zJruC3N2vFm6d5M_PeMPwWaBZisAjdMnrPaF2vOK1qIrniKzCOis0Fmv-NZmjOKN0QKgW9Qoucj5RW600t5qg5vFvsg-tGG1qLo8P9Dn9CaXEMOPghwWAxBPOjfdEuphMMvmx9wOAT6TvIJyBDssVqMHyMNo4Z59iNky1fo0sHXbY3v3WJ3p4eD9sd2b8-v2wf9qTlohpII7k0EhQX0jBgpiho6NqY1inOrG1loxjjijW2MWuoFAjJWaUcN6pS0okloue7bYo5J-t0n_wJ0pdmVE-M9ARET0D0mVGJ3J0jPvb6GMcUyoP_278BevRrjA
Cites_doi 10.1063/5.0078076
10.1039/B906567A
10.1088/1361-6463/aa8819
10.1016/j.apsusc.2022.155129
10.1016/j.mtadv.2022.100244
10.1021/jp302247k
10.1088/0022-3727/49/27/275201
10.1002/ppap.201200007
10.1002/ppap.202100172
10.1016/j.cej.2015.03.059
10.34343/ijpest.2020.14.e02006
10.1143/APEX.5.086201
10.1088/1361-6463/ab81cf
10.1088/1367-2630/11/11/115012
10.1063/1.4977921
10.1088/0022-3727/48/42/424005
10.3390/ma11060891
10.1016/j.electacta.2012.06.131
10.1021/acs.jchemed.0c01392
10.1088/2058-6272/ac0008
10.1007/s11090-009-9179-x
10.1088/1361-6595/aad66d
10.1016/j.rbc.2024.100026
10.1029/91JD01750
10.1080/15421406.2019.1597524
10.5194/acp-23-10901-2023
10.1002/ppap.200700154
10.1088/0741-3335/59/1/014031
10.1149/1945-7111/ac41f5
10.1351/pac200880092003
10.1088/2058-6272/ac66bb
10.1021/jp207447c
10.1016/j.cej.2013.09.090
10.1038/s41598-021-85392-2
10.1088/0963-0252/20/3/034014
10.1016/j.tsf.2009.07.156
10.1002/ppap.202100198
10.1016/j.tifs.2018.05.007
10.1002/ppap.202200059
10.1134/S1063780X18010075
10.1016/j.cej.2020.125381
10.3390/pr6120248
10.1021/ie050981u
10.1021/acs.langmuir.9b03654
10.3390/plasma1010005
10.3390/ma12172751
10.1088/0963-0252/8/3/201
10.1021/acssuschemeng.0c04432
10.1088/0963-0252/25/5/053002
10.1063/1.2988283
10.1140/epjd/e2019-100431-x
10.2166/wst.2019.035
ContentType Journal Article
Copyright 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing.
Copyright_xml – notice: 2025 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing.
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/adf039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-6272
ExternalDocumentID 10_1088_2058_6272_adf039
pstadf039
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
CITATION
ID FETCH-LOGICAL-c235t-b626d6a7236d1a1da72ab04ddcf721eec6b711271bebd4a57a362157f2d7576f3
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Thu Jul 31 01:01:57 EDT 2025
Tue Jul 29 22:11:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c235t-b626d6a7236d1a1da72ab04ddcf721eec6b711271bebd4a57a362157f2d7576f3
PageCount 5
ParticipantIDs iop_journals_10_1088_2058_6272_adf039
crossref_primary_10_1088_2058_6272_adf039
PublicationCentury 2000
PublicationDate 20250901
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250901
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2025
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Brettholle (pst_27_9_095508_bib2) 2010; 12
Shin (pst_27_9_095508_bib24) 2019; 678
Liu (pst_27_9_095508_bib18) 2016; 49
Chen (pst_27_9_095508_bib20) 2015; 48
pst_27_9_095508_bib47
Sander (pst_27_9_095508_bib46) 2023; 23
Thirumdas (pst_27_9_095508_bib39) 2018; 77
Xu (pst_27_9_095508_bib44) 2022; 24
Bratescu (pst_27_9_095508_bib30) 2011; 115
Toth (pst_27_9_095508_bib34) 2020; 8
Wu (pst_27_9_095508_bib36) 2021; 168
Che (pst_27_9_095508_bib28) 2020; 397
Lu (pst_27_9_095508_bib21) 2022; 19
He (pst_27_9_095508_bib53) 2017; 50
Kim (pst_27_9_095508_bib22) 2018; 11
Mariotti (pst_27_9_095508_bib17) 2012; 9
Zhou (pst_27_9_095508_bib38) 2020; 53
Filgueiras (pst_27_9_095508_bib41) 2021; 98
Prasertsung (pst_27_9_095508_bib10) 2019; 79
Bruggeman (pst_27_9_095508_bib1) 2021; 130
Wang (pst_27_9_095508_bib8) 2012; 83
Stratton (pst_27_9_095508_bib7) 2015; 273
Zhu (pst_27_9_095508_bib49) 2012; 116
Chokradjaroen (pst_27_9_095508_bib25) 2021; 11
Lin (pst_27_9_095508_bib51) 2020; 74
Hanson (pst_27_9_095508_bib50) 1991; 96
Kong (pst_27_9_095508_bib13) 2009; 11
Takeuchi (pst_27_9_095508_bib23) 2020; 14
Laroussi (pst_27_9_095508_bib12) 2018; 1
Phelps (pst_27_9_095508_bib43) 1999; 8
Delgado (pst_27_9_095508_bib42) 2020; 36
Chen (pst_27_9_095508_bib35) 2012; 5
Takai (pst_27_9_095508_bib31) 2008; 80
He (pst_27_9_095508_bib52) 2018; 27
Julák (pst_27_9_095508_bib40) 2018; 44
Ognier (pst_27_9_095508_bib4) 2009; 29
Kaneko (pst_27_9_095508_bib45) 2011; 20
Möller (pst_27_9_095508_bib48) 2024; 8
Ma (pst_27_9_095508_bib15) 2022; 19
Rezaei (pst_27_9_095508_bib16) 2019; 12
Liu (pst_27_9_095508_bib37) 2021; 23
Locke (pst_27_9_095508_bib6) 2006; 45
Saito (pst_27_9_095508_bib29) 2009; 518
Bruggeman (pst_27_9_095508_bib3) 2016; 25
Li (pst_27_9_095508_bib33) 2018; 6
Chokradjaroen (pst_27_9_095508_bib26) 2022; 14
Fridman (pst_27_9_095508_bib11) 2008; 5
Richmonds (pst_27_9_095508_bib19) 2008; 93
Jiang (pst_27_9_095508_bib5) 2014; 236
Jang (pst_27_9_095508_bib27) 2023; 608
Foster (pst_27_9_095508_bib9) 2017; 24
Weltmann (pst_27_9_095508_bib14) 2017; 59
Huang (pst_27_9_095508_bib32) 2022; 19
References_xml – volume: 130
  start-page: 200401
  year: 2021
  ident: pst_27_9_095508_bib1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0078076
– volume: 12
  start-page: 1750
  year: 2010
  ident: pst_27_9_095508_bib2
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B906567A
– volume: 50
  start-page: 445207
  year: 2017
  ident: pst_27_9_095508_bib53
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa8819
– volume: 608
  start-page: 155129
  year: 2023
  ident: pst_27_9_095508_bib27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155129
– volume: 14
  start-page: 100244
  year: 2022
  ident: pst_27_9_095508_bib26
  publication-title: Mater. Today Adv.
  doi: 10.1016/j.mtadv.2022.100244
– ident: pst_27_9_095508_bib47
– volume: 116
  start-page: 4466
  year: 2012
  ident: pst_27_9_095508_bib49
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp302247k
– volume: 49
  start-page: 275201
  year: 2016
  ident: pst_27_9_095508_bib18
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/27/275201
– volume: 9
  start-page: 1074
  year: 2012
  ident: pst_27_9_095508_bib17
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.201200007
– volume: 19
  start-page: 2100172
  year: 2022
  ident: pst_27_9_095508_bib21
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.202100172
– volume: 273
  start-page: 543
  year: 2015
  ident: pst_27_9_095508_bib7
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.059
– volume: 14
  start-page: e02006
  year: 2020
  ident: pst_27_9_095508_bib23
  publication-title: Int. J. Plasma Environ. Sci. Technol.
  doi: 10.34343/ijpest.2020.14.e02006
– volume: 5
  start-page: 086201
  year: 2012
  ident: pst_27_9_095508_bib35
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.086201
– volume: 53
  start-page: 303001
  year: 2020
  ident: pst_27_9_095508_bib38
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab81cf
– volume: 11
  start-page: 115012
  year: 2009
  ident: pst_27_9_095508_bib13
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/11/115012
– volume: 24
  start-page: 055501
  year: 2017
  ident: pst_27_9_095508_bib9
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4977921
– volume: 48
  start-page: 424005
  year: 2015
  ident: pst_27_9_095508_bib20
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/42/424005
– volume: 11
  start-page: 891
  year: 2018
  ident: pst_27_9_095508_bib22
  publication-title: Materials
  doi: 10.3390/ma11060891
– volume: 83
  start-page: 501
  year: 2012
  ident: pst_27_9_095508_bib8
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.06.131
– volume: 98
  start-page: 3303
  year: 2021
  ident: pst_27_9_095508_bib41
  publication-title: J. Chem. Educ.
  doi: 10.1021/acs.jchemed.0c01392
– volume: 23
  start-page: 075504
  year: 2021
  ident: pst_27_9_095508_bib37
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/ac0008
– volume: 29
  start-page: 261
  year: 2009
  ident: pst_27_9_095508_bib4
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-009-9179-x
– volume: 27
  start-page: 085010
  year: 2018
  ident: pst_27_9_095508_bib52
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/aad66d
– volume: 8
  start-page: 100026
  year: 2024
  ident: pst_27_9_095508_bib48
  publication-title: Red. Biochem. Chem.
  doi: 10.1016/j.rbc.2024.100026
– volume: 96
  start-page: 17307
  year: 1991
  ident: pst_27_9_095508_bib50
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/91JD01750
– volume: 678
  start-page: 20
  year: 2019
  ident: pst_27_9_095508_bib24
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2019.1597524
– volume: 23
  start-page: 10901
  year: 2023
  ident: pst_27_9_095508_bib46
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-23-10901-2023
– volume: 5
  start-page: 503
  year: 2008
  ident: pst_27_9_095508_bib11
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200700154
– volume: 59
  start-page: 014031
  year: 2017
  ident: pst_27_9_095508_bib14
  publication-title: Plasma Phys. Control. Fusion
  doi: 10.1088/0741-3335/59/1/014031
– volume: 168
  start-page: 123508
  year: 2021
  ident: pst_27_9_095508_bib36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac41f5
– volume: 80
  start-page: 2003
  year: 2008
  ident: pst_27_9_095508_bib31
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200880092003
– volume: 24
  start-page: 085502
  year: 2022
  ident: pst_27_9_095508_bib44
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/ac66bb
– volume: 115
  start-page: 24569
  year: 2011
  ident: pst_27_9_095508_bib30
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp207447c
– volume: 236
  start-page: 348
  year: 2014
  ident: pst_27_9_095508_bib5
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.090
– volume: 11
  start-page: 6261
  year: 2021
  ident: pst_27_9_095508_bib25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85392-2
– volume: 20
  start-page: 034014
  year: 2011
  ident: pst_27_9_095508_bib45
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/20/3/034014
– volume: 518
  start-page: 912
  year: 2009
  ident: pst_27_9_095508_bib29
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2009.07.156
– volume: 19
  start-page: 2100198
  year: 2022
  ident: pst_27_9_095508_bib32
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.202100198
– volume: 77
  start-page: 21
  year: 2018
  ident: pst_27_9_095508_bib39
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2018.05.007
– volume: 19
  start-page: 2200059
  year: 2022
  ident: pst_27_9_095508_bib15
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.202200059
– volume: 44
  start-page: 125
  year: 2018
  ident: pst_27_9_095508_bib40
  publication-title: Plasma Phys. Rep.
  doi: 10.1134/S1063780X18010075
– volume: 397
  start-page: 125381
  year: 2020
  ident: pst_27_9_095508_bib28
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125381
– volume: 6
  start-page: 248
  year: 2018
  ident: pst_27_9_095508_bib33
  publication-title: Processes
  doi: 10.3390/pr6120248
– volume: 45
  start-page: 882
  year: 2006
  ident: pst_27_9_095508_bib6
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050981u
– volume: 36
  start-page: 1156
  year: 2020
  ident: pst_27_9_095508_bib42
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03654
– volume: 1
  start-page: 47
  year: 2018
  ident: pst_27_9_095508_bib12
  publication-title: Plasma
  doi: 10.3390/plasma1010005
– volume: 12
  start-page: 2751
  year: 2019
  ident: pst_27_9_095508_bib16
  publication-title: Materials
  doi: 10.3390/ma12172751
– volume: 8
  start-page: R21
  year: 1999
  ident: pst_27_9_095508_bib43
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/8/3/201
– volume: 8
  start-page: 14845
  year: 2020
  ident: pst_27_9_095508_bib34
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04432
– volume: 25
  start-page: 053002
  year: 2016
  ident: pst_27_9_095508_bib3
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/25/5/053002
– volume: 93
  start-page: 131501
  year: 2008
  ident: pst_27_9_095508_bib19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2988283
– volume: 74
  start-page: 1
  year: 2020
  ident: pst_27_9_095508_bib51
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2019-100431-x
– volume: 79
  start-page: 967
  year: 2019
  ident: pst_27_9_095508_bib10
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2019.035
SSID ssj0054983
ssib023363536
Score 2.3468978
Snippet A DC air discharge plasma is operated over an aqueous solution of Na 2 SO 4 . Nitrate and nitrite are formed in the solution after the plasma treatment. In...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 95508
SubjectTerms air discharge plasma
nitrate
nitrite
pH value
plasma-liquid interface
Title The influence of pH value on nitrate and nitrite formation in air-plasma-treated aqueous solutions
URI https://iopscience.iop.org/article/10.1088/2058-6272/adf039
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5tRfDiW6wvctCDh9RtNo8tnkQsVfBxsNCDsCSbBIq4u7Tbi7_eyT6KioJ4m0N2N0xmMt9svswgdAouA0CZcWIDrQgLZUI0V5poqg2T1kpRdom4fxCjMbub8EkLXS7vwmR5vfX3QKwKBVcqrAlxEaTrPCKCSnqhjAvCQRut-MaV3rxvH5-abRjynqhi1_u__yIM6jPKn97wJSa14bufQsxwA700k6uYJa-9RaF7yfu3uo3_nP0mWq-hJ76qhm6hlk230WpJAU3mO0iDxeBp07MEZw7nI-xrgYOcYvB8X1QCq9SUMiBVvLz4CI9hNZ2RHKD4myIled0arCDmZIs5Xpr3LhoPb56vR6TuwEASGvKCaEh3jFCShsL0Vd-ApHTAjEkcZI7WJkJLAGyyry0sreJSQTzsc-mokZDIuHAPddIstfsIS5ZEdGAdhD_BgjDSgAyYo44NlBaW2y46b9YgzqtCG3F5QB5FsddZ7HUWVzrrojNQb1x72_zXcQd_HHeI1qhv61tSx45Qp5gt7DFgjUKflDb1AW_nzSY
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4JI6fqQjAqqWR-lApW7Bjm2pQqRRmy78ei6vChBISGw3OE5ytu--032-Q-gMjgwAZcaJ9bQizJcR0Vxpoqk2TForRd4l4rEvukN2N-Kjss9pfhdmkpSmvwliUSi4UGFJiAsgXOcBEVTSS2Wc57cvE-NqaJmDKc44Xb2nQWWKIfYJCoZ9lgEQvlfmKX-a5YtfqsG7P7mZzgZ6qT6wYJe8Nuepbkbv32o3_uMPNtF6CUHxVTF8Cy3ZeBut5FTQaLaDNOwcPK56l-CJw0kXZzXBQY4xWICsuARWscllQKx4cQESHsNqPCUJQPI3RXISuzVYge-ZzGd4sc130bBz-3zdJWUnBhJRn6dEQ9hjhJLUF6alWgYkpT1mTOQggrQ2EloCcJMtbWGJFZcKFqPFpaNGQkDj_D1Ujyex3UdYsiigbevADQrm-YEGhMAcdayttLDcNtBFtQ5hUhTcCPNEeRCEmd7CTG9hobcGOgcVh-Wpm_067uCP407R6uCmEz70-veHaI1mnX5zNtkRqqfTuT0G-JHqk3yLfQD6g9KK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+pH+value+on+nitrate+and+nitrite+formation+in+air-plasma-treated+aqueous+solutions&rft.jtitle=Plasma+science+%26+technology&rft.au=ZHANG+%E5%BC%A0%2C+Mingjia+%E6%98%8E%E4%BD%B3&rft.au=LIN+%E6%9E%97%2C+Taiyu+%E6%B3%B0%E5%AE%87&rft.au=LIU+%E5%88%98%2C+Guangchao+%E5%B9%BF%E8%B6%85&rft.au=WU+%E5%90%B4%2C+Binhong+%E6%BB%A8%E9%B8%BF&rft.date=2025-09-01&rft.issn=1009-0630&rft.eissn=2058-6272&rft.volume=27&rft.issue=9&rft.spage=95508&rft_id=info:doi/10.1088%2F2058-6272%2Fadf039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2058_6272_adf039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon