Performance analysis of porous solar absorbers with high-temperature radiation cooling function

In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Ther...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 34; no. 6; pp. 68102 - 68111
Main Authors Yu, Haiyan, Chen, Anqi, Li, Mingdong, Hailati, Ahali, Wu, Xiaohu, Ren, Xiaohan
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.06.2025
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/add4e3

Cover

Abstract In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range (636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 μm. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range.
AbstractList In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range (636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 μm. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range.
Author Hailati, Ahali
Yu, Haiyan
Wu, Xiaohu
Li, Mingdong
Ren, Xiaohan
Chen, Anqi
Author_xml – sequence: 1
  givenname: Haiyan
  surname: Yu
  fullname: Yu, Haiyan
  organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China
– sequence: 2
  givenname: Anqi
  surname: Chen
  fullname: Chen, Anqi
  organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China
– sequence: 3
  givenname: Mingdong
  surname: Li
  fullname: Li, Mingdong
  organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China
– sequence: 4
  givenname: Ahali
  surname: Hailati
  fullname: Hailati, Ahali
  organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China
– sequence: 5
  givenname: Xiaohu
  surname: Wu
  fullname: Wu, Xiaohu
  organization: Shandong Institute of Advanced Technology Thermal Science Research Center, Jinan 250100, China
– sequence: 6
  givenname: Xiaohan
  surname: Ren
  fullname: Ren, Xiaohan
  organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China
BookMark eNp1kE1LAzEQhoNUsK3ePeYHuDYfm208SvELCnrQc8huJt2UbbJMdpH-e7tUvHl6Yd55BuZZkFlMEQi55eyeM61XvFqXBWeqWlnnSpAXZC6Y0oXUspyR-V99RRY57xmrOBNyTswHoE94sLEBaqPtjjlkmjztE6Yx05w6i9TWOWENmOl3GFrahl1bDHDoAe0wIlC0LtghpEiblLoQd9SPsZkG1-TS2y7DzW8uydfz0-fmtdi-v7xtHrdFI6QaClELYTWX4P26VFI_OKm5A-dcBQJK1gCo2rHGWS69WNdOgdASJHNCMVdyuSTsfLfBlDOCNz2Gg8Wj4cxMgsxkwEwGzFnQCbk7IyH1Zp9GPH2f_1__AaBgbGU
Cites_doi 10.1016/j.apt.2015.05.004
10.1007/s11630-024-1918-z
10.12086/oee.2024.240154
10.3390/coatings13030531
10.1103/PhysRevLett.100.207402
10.1016/j.expthermflusci.2023.110966
10.1007/s10973-020-09535-9
10.1016/j.optmat.2020.109967
10.1016/j.rser.2021.110732
10.1007/s11468-023-02061-y
10.1088/1572-9494/acbe2d
10.3389/fmats.2021.781803
10.3390/en14144158
10.1109/TAP.1966.1138693
10.1038/s41467-020-15116-z
10.1016/j.infrared.2016.04.006
10.12086/oee.2024.240128
10.1103/PhysRevB.102.085410
10.1021/acsami.0c12790
10.1088/1572-9494/ad6852
10.2298/TSCI171125047Y
10.1016/j.tsep.2023.101680
10.1016/j.mtcomm.2023.106966
10.1016/j.energy.2024.132070
10.1016/j.solener.2022.04.032
10.1016/j.rser.2018.03.065
10.1016/j.jqsrt.2020.107156
10.1016/j.optlaseng.2024.108368
10.1039/D1TA00036E
10.29026/oea.2024.240036
10.1016/j.rinp.2023.106660
10.1016/j.renene.2022.07.098
10.30919/esee8c333
10.1016/j.cam.2022.114590
10.1016/j.applthermaleng.2023.121074
10.1016/j.ijthermalsci.2020.106750
10.29026/oea.2024.230194
10.1016/j.apenergy.2010.09.021
10.1103/PhysRevB.91.235137
ContentType Journal Article
Copyright 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1674-1056/add4e3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
ExternalDocumentID 10_1088_1674_1056_add4e3
cpb_34_6_068102
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
W28
AAYXX
CITATION
ID FETCH-LOGICAL-c235t-2b22a813eff745389d381deddd6e2e40cee5bd0cda13f27bd5e283e30d250d413
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu Jul 03 08:41:26 EDT 2025
Tue Jun 17 22:11:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c235t-2b22a813eff745389d381deddd6e2e40cee5bd0cda13f27bd5e283e30d250d413
PageCount 10
ParticipantIDs crossref_primary_10_1088_1674_1056_add4e3
iop_journals_10_1088_1674_1056_add4e3
PublicationCentury 2000
PublicationDate 20250601
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 20250601
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationYear 2025
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Shahsavari (cpb_34_6_068102bib3) 2018; 90
Huang (cpb_34_6_068102bib25) 2021; 8
Yang (cpb_34_6_068102bib1) 2021; 139
Zhang (cpb_34_6_068102bib21) 2023; 13
Liu (cpb_34_6_068102bib28) 2021; 163
Farzan (cpb_34_6_068102bib6) 2023; 38
Kane (cpb_34_6_068102bib30) 1966; 14
Xiao (cpb_34_6_068102bib19) 2020; 102
Pham (cpb_34_6_068102bib22) 2021; 9
Yang (cpb_34_6_068102bib9) 2024; 7
Huang (cpb_34_6_068102bib27) 2024; 76
Zhang (cpb_34_6_068102bib7) 2024; 7
Bikbaev (cpb_34_6_068102bib11) 2020; 253
Wang (cpb_34_6_068102bib2) 2024; 33
Yu (cpb_34_6_068102bib33) 2019; 6
Li (cpb_34_6_068102bib35) 2023; 148
Chen (cpb_34_6_068102bib10) 2024; 51
Zhao (cpb_34_6_068102bib24) 2020; 12
Asif (cpb_34_6_068102bib34) 2023; 37
Lin (cpb_34_6_068102bib15) 2020; 11
Wu (cpb_34_6_068102bib20) 2022; 238
Agravat (cpb_34_6_068102bib23) 2024; 19
Wang (cpb_34_6_068102bib4) 2024; 51
Yu (cpb_34_6_068102bib38) 2020; 141
Yang (cpb_34_6_068102bib26) 2023; 51
Bai (cpb_34_6_068102bib31) 2022; 416
Guimarães (cpb_34_6_068102bib40) 2015; 26
Liang (cpb_34_6_068102bib12) 2023; 232
Qiao (cpb_34_6_068102bib8) 2011; 88
Yu (cpb_34_6_068102bib32) 2018; 22
Landy (cpb_34_6_068102bib13) 2008; 100
Li (cpb_34_6_068102bib17) 2024; 181
Mastellone (cpb_34_6_068102bib16) 2020; 107
Rodiet (cpb_34_6_068102bib39) 2016; 76
Qin (cpb_34_6_068102bib14) 2022; 197
Yu (cpb_34_6_068102bib29) 2021; 14
Sharma (cpb_34_6_068102bib5) 2024; 304
Querry (cpb_34_6_068102bib37) 1998
Yang (cpb_34_6_068102bib36) 2015; 91
Li (cpb_34_6_068102bib18) 2023; 75
References_xml – volume: 26
  start-page: 1094
  year: 2015
  ident: cpb_34_6_068102bib40
  publication-title: Advanced Powder Technology
  doi: 10.1016/j.apt.2015.05.004
– volume: 33
  start-page: 1109
  year: 2024
  ident: cpb_34_6_068102bib2
  publication-title: Journal of Thermal Science
  doi: 10.1007/s11630-024-1918-z
– volume: 51
  year: 2024
  ident: cpb_34_6_068102bib4
  publication-title: Opto-Electron. Eng.
  doi: 10.12086/oee.2024.240154
– volume: 13
  start-page: 531
  year: 2023
  ident: cpb_34_6_068102bib21
  publication-title: Coatings
  doi: 10.3390/coatings13030531
– volume: 100
  year: 2008
  ident: cpb_34_6_068102bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 148
  year: 2023
  ident: cpb_34_6_068102bib35
  publication-title: Experimental Thermal and Fluid Science
  doi: 10.1016/j.expthermflusci.2023.110966
– volume: 141
  start-page: 351
  year: 2020
  ident: cpb_34_6_068102bib38
  publication-title: Journal of Thermal Analysis Calorimetry
  doi: 10.1007/s10973-020-09535-9
– volume: 107
  year: 2020
  ident: cpb_34_6_068102bib16
  publication-title: Optical Materials
  doi: 10.1016/j.optmat.2020.109967
– volume: 139
  year: 2021
  ident: cpb_34_6_068102bib1
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2021.110732
– volume: 19
  start-page: 1071
  year: 2024
  ident: cpb_34_6_068102bib23
  publication-title: Plasmonics
  doi: 10.1007/s11468-023-02061-y
– volume: 75
  year: 2023
  ident: cpb_34_6_068102bib18
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/acbe2d
– volume: 8
  year: 2021
  ident: cpb_34_6_068102bib25
  publication-title: Frontiers in Materials
  doi: 10.3389/fmats.2021.781803
– volume: 14
  start-page: 4158
  year: 2021
  ident: cpb_34_6_068102bib29
  publication-title: Energies
  doi: 10.3390/en14144158
– volume: 14
  start-page: 302
  year: 1966
  ident: cpb_34_6_068102bib30
  publication-title: IEEE Transactions on Antennas and Propagation
  doi: 10.1109/TAP.1966.1138693
– volume: 11
  start-page: 1389
  year: 2020
  ident: cpb_34_6_068102bib15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15116-z
– volume: 76
  start-page: 444
  year: 2016
  ident: cpb_34_6_068102bib39
  publication-title: Infrared Physics & Technology
  doi: 10.1016/j.infrared.2016.04.006
– volume: 51
  year: 2024
  ident: cpb_34_6_068102bib10
  publication-title: Opto-Electron. Eng.
  doi: 10.12086/oee.2024.240128
– volume: 102
  year: 2020
  ident: cpb_34_6_068102bib19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.085410
– volume: 12
  year: 2020
  ident: cpb_34_6_068102bib24
  publication-title: ACS Applied Materials Interfaces
  doi: 10.1021/acsami.0c12790
– volume: 76
  year: 2024
  ident: cpb_34_6_068102bib27
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ad6852
– volume: 22
  start-page: 629
  year: 2018
  ident: cpb_34_6_068102bib32
  publication-title: Thermal Science
  doi: 10.2298/TSCI171125047Y
– year: 1998
  ident: cpb_34_6_068102bib37
– volume: 38
  year: 2023
  ident: cpb_34_6_068102bib6
  publication-title: Thermal Science Engineering Progress
  doi: 10.1016/j.tsep.2023.101680
– volume: 37
  year: 2023
  ident: cpb_34_6_068102bib34
  publication-title: Materials Today Communications
  doi: 10.1016/j.mtcomm.2023.106966
– volume: 304
  year: 2024
  ident: cpb_34_6_068102bib5
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132070
– volume: 238
  start-page: 78
  year: 2022
  ident: cpb_34_6_068102bib20
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2022.04.032
– volume: 90
  start-page: 275
  year: 2018
  ident: cpb_34_6_068102bib3
  publication-title: Renewable Sustainable Energy Reviews
  doi: 10.1016/j.rser.2018.03.065
– volume: 253
  year: 2020
  ident: cpb_34_6_068102bib11
  publication-title: Journal of Quantitative Spectroscopy Radiative Transfer
  doi: 10.1016/j.jqsrt.2020.107156
– volume: 181
  year: 2024
  ident: cpb_34_6_068102bib17
  publication-title: Optics Lasers in Engineering
  doi: 10.1016/j.optlaseng.2024.108368
– volume: 9
  start-page: 7508
  year: 2021
  ident: cpb_34_6_068102bib22
  publication-title: Journal of Materials Chemistry A
  doi: 10.1039/D1TA00036E
– volume: 7
  year: 2024
  ident: cpb_34_6_068102bib9
  publication-title: Opto-Electronic Advances
  doi: 10.29026/oea.2024.240036
– volume: 51
  year: 2023
  ident: cpb_34_6_068102bib26
  publication-title: Results in Physics
  doi: 10.1016/j.rinp.2023.106660
– volume: 197
  start-page: 79
  year: 2022
  ident: cpb_34_6_068102bib14
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2022.07.098
– volume: 6
  start-page: 69
  year: 2019
  ident: cpb_34_6_068102bib33
  publication-title: ES Energy & Environment
  doi: 10.30919/esee8c333
– volume: 416
  year: 2022
  ident: cpb_34_6_068102bib31
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2022.114590
– volume: 232
  year: 2023
  ident: cpb_34_6_068102bib12
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2023.121074
– volume: 163
  year: 2021
  ident: cpb_34_6_068102bib28
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2020.106750
– volume: 7
  year: 2024
  ident: cpb_34_6_068102bib7
  publication-title: Opto-Electronic Advances
  doi: 10.29026/oea.2024.230194
– volume: 88
  start-page: 848
  year: 2011
  ident: cpb_34_6_068102bib8
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.09.021
– volume: 91
  year: 2015
  ident: cpb_34_6_068102bib36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.235137
SSID ssj0061023
Score 2.367242
Snippet In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 68102
SubjectTerms cooling radiation
fishnet metamaterial
microscale thermal radiation
solar absorber
thermal management
Title Performance analysis of porous solar absorbers with high-temperature radiation cooling function
URI https://iopscience.iop.org/article/10.1088/1674-1056/add4e3
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD6nbJPvCk4ilCmoPFnoQlmST9VDolu724q83s5v1hYJ4W5ZhN0wmM1-SmW8AToO-zCSPlUVuYUwF0x7FLRjlWeipIPWtDWE18v1DMByLu4k_acHley1MPneuv2cfa6LgWoUuIS66wLx5ig3jMeVGGN6GFWxcieZ9-zhq3HCAnAS422qk3R3lT1_4EpPa9r-fQsxgA56bwdWZJdPeslS99PUbb-M_R78J6w56kqtadAtaZrYNq1UKaFrsQDL6qCEg0nGVkDwjFqHny4IUuAkmUhX5QlnMSPAElyDbMUV6K8fNTBbIdYCTTdIc-wG9EIyc-GIXxoObp-shde0XaMq4X1KmGJNRn5ssC4X1i7G20V0brXVgmBGeDa--0l6qZZ9nLFTaNxarGO5pC6u0DY570JnlM7MPJFBKSplyX4pYGBEpaRc-85jhJlJezLpw3kxAMq9ZNpLqdjyKElRYggpLaoV14czqNnFLrfhV7uCPcoewxrCnb3WycgSdcrE0xxZolOqkMqg3HDvN0w
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4Da1ndeIgKrlUTpQqZuxY4cBqamadOHX40sc8RBISGxRdHmdnbvv7LvvEDoLujKVLFYWuYUx4VR7BEIwwtLQU0Hi2zkE1cgPw6A_5rcTf-L6nJa1MNnMmf62PayIgisVuoS4qAN58wQaxkPKDTesM9NpAy371hRDTtfgcVSb4gB4CSDiqq9w-5Q_3eWLX2rYZ39yM70N9Fy_YJVd8tpeFKqdvH3jbvzHF2yidQdB8WUlvoWWzHQbrZSpoEm-g8Too5YAS8dZgrMUW6SeLXKcQzCMpcqzubLYEcNKLgbWYwI0V46jGc-B8wAGHScZ9AV6weBB4cQuGvdunq76xLVhIAllfkGoolRGXWbSNOTWPsbaenlttNaBoYZ71s36SnuJll2W0lBp31jMYpinLbzS1knuoeY0m5p9hAOlpJQJ8yWPueGRktYAUI8aZiLlxbSFLupBELOKbUOUu-RRJEBpApQmKqW10LnVr3C_XP6r3MEf5U7R6ui6J-4Hw7tDtEahzW-52HKEmsV8YY4t9ijUSTm_3gGf7dM3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+porous+solar+absorbers+with+high-temperature+radiation+cooling+function&rft.jtitle=Chinese+physics+B&rft.au=Yu+%E4%BA%8E%2C+Haiyan+%E6%B5%B7%E7%87%95&rft.au=Chen+%E9%99%88%2C+Anqi+%E5%AE%89%E7%90%AA&rft.au=Li+%E6%9D%8E%2C+Mingdong+%E6%98%8E%E4%B8%9C&rft.au=Hailati+%E9%98%BF%2C+Ahali+%E5%93%88%E9%87%8C.%E6%B5%B7%E6%8B%89%E6%8F%90&rft.date=2025-06-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=34&rft.issue=6&rft.spage=68102&rft_id=info:doi/10.1088%2F1674-1056%2Fadd4e3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_add4e3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon