Performance analysis of porous solar absorbers with high-temperature radiation cooling function
In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Ther...
Saved in:
Published in | Chinese physics B Vol. 34; no. 6; pp. 68102 - 68111 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/add4e3 |
Cover
Abstract | In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range (636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 μm. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range. |
---|---|
AbstractList | In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range (636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 μm. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range. |
Author | Hailati, Ahali Yu, Haiyan Wu, Xiaohu Li, Mingdong Ren, Xiaohan Chen, Anqi |
Author_xml | – sequence: 1 givenname: Haiyan surname: Yu fullname: Yu, Haiyan organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China – sequence: 2 givenname: Anqi surname: Chen fullname: Chen, Anqi organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China – sequence: 3 givenname: Mingdong surname: Li fullname: Li, Mingdong organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China – sequence: 4 givenname: Ahali surname: Hailati fullname: Hailati, Ahali organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China – sequence: 5 givenname: Xiaohu surname: Wu fullname: Wu, Xiaohu organization: Shandong Institute of Advanced Technology Thermal Science Research Center, Jinan 250100, China – sequence: 6 givenname: Xiaohan surname: Ren fullname: Ren, Xiaohan organization: Institute of Thermal Science and Technology, Shandong University , Jinan 250061, China |
BookMark | eNp1kE1LAzEQhoNUsK3ePeYHuDYfm208SvELCnrQc8huJt2UbbJMdpH-e7tUvHl6Yd55BuZZkFlMEQi55eyeM61XvFqXBWeqWlnnSpAXZC6Y0oXUspyR-V99RRY57xmrOBNyTswHoE94sLEBaqPtjjlkmjztE6Yx05w6i9TWOWENmOl3GFrahl1bDHDoAe0wIlC0LtghpEiblLoQd9SPsZkG1-TS2y7DzW8uydfz0-fmtdi-v7xtHrdFI6QaClELYTWX4P26VFI_OKm5A-dcBQJK1gCo2rHGWS69WNdOgdASJHNCMVdyuSTsfLfBlDOCNz2Gg8Wj4cxMgsxkwEwGzFnQCbk7IyH1Zp9GPH2f_1__AaBgbGU |
Cites_doi | 10.1016/j.apt.2015.05.004 10.1007/s11630-024-1918-z 10.12086/oee.2024.240154 10.3390/coatings13030531 10.1103/PhysRevLett.100.207402 10.1016/j.expthermflusci.2023.110966 10.1007/s10973-020-09535-9 10.1016/j.optmat.2020.109967 10.1016/j.rser.2021.110732 10.1007/s11468-023-02061-y 10.1088/1572-9494/acbe2d 10.3389/fmats.2021.781803 10.3390/en14144158 10.1109/TAP.1966.1138693 10.1038/s41467-020-15116-z 10.1016/j.infrared.2016.04.006 10.12086/oee.2024.240128 10.1103/PhysRevB.102.085410 10.1021/acsami.0c12790 10.1088/1572-9494/ad6852 10.2298/TSCI171125047Y 10.1016/j.tsep.2023.101680 10.1016/j.mtcomm.2023.106966 10.1016/j.energy.2024.132070 10.1016/j.solener.2022.04.032 10.1016/j.rser.2018.03.065 10.1016/j.jqsrt.2020.107156 10.1016/j.optlaseng.2024.108368 10.1039/D1TA00036E 10.29026/oea.2024.240036 10.1016/j.rinp.2023.106660 10.1016/j.renene.2022.07.098 10.30919/esee8c333 10.1016/j.cam.2022.114590 10.1016/j.applthermaleng.2023.121074 10.1016/j.ijthermalsci.2020.106750 10.29026/oea.2024.230194 10.1016/j.apenergy.2010.09.021 10.1103/PhysRevB.91.235137 |
ContentType | Journal Article |
Copyright | 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Chinese Physical Society and IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1674-1056/add4e3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
ExternalDocumentID | 10_1088_1674_1056_add4e3 cpb_34_6_068102 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 IJHAN IOP IZVLO KOT N5L PJBAE RIN RNS ROL RPA SY9 TCJ TGP U1G U5K W28 AAYXX CITATION |
ID | FETCH-LOGICAL-c235t-2b22a813eff745389d381deddd6e2e40cee5bd0cda13f27bd5e283e30d250d413 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu Jul 03 08:41:26 EDT 2025 Tue Jun 17 22:11:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-2b22a813eff745389d381deddd6e2e40cee5bd0cda13f27bd5e283e30d250d413 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1088_1674_1056_add4e3 iop_journals_10_1088_1674_1056_add4e3 |
PublicationCentury | 2000 |
PublicationDate | 20250601 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 20250601 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationYear | 2025 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Shahsavari (cpb_34_6_068102bib3) 2018; 90 Huang (cpb_34_6_068102bib25) 2021; 8 Yang (cpb_34_6_068102bib1) 2021; 139 Zhang (cpb_34_6_068102bib21) 2023; 13 Liu (cpb_34_6_068102bib28) 2021; 163 Farzan (cpb_34_6_068102bib6) 2023; 38 Kane (cpb_34_6_068102bib30) 1966; 14 Xiao (cpb_34_6_068102bib19) 2020; 102 Pham (cpb_34_6_068102bib22) 2021; 9 Yang (cpb_34_6_068102bib9) 2024; 7 Huang (cpb_34_6_068102bib27) 2024; 76 Zhang (cpb_34_6_068102bib7) 2024; 7 Bikbaev (cpb_34_6_068102bib11) 2020; 253 Wang (cpb_34_6_068102bib2) 2024; 33 Yu (cpb_34_6_068102bib33) 2019; 6 Li (cpb_34_6_068102bib35) 2023; 148 Chen (cpb_34_6_068102bib10) 2024; 51 Zhao (cpb_34_6_068102bib24) 2020; 12 Asif (cpb_34_6_068102bib34) 2023; 37 Lin (cpb_34_6_068102bib15) 2020; 11 Wu (cpb_34_6_068102bib20) 2022; 238 Agravat (cpb_34_6_068102bib23) 2024; 19 Wang (cpb_34_6_068102bib4) 2024; 51 Yu (cpb_34_6_068102bib38) 2020; 141 Yang (cpb_34_6_068102bib26) 2023; 51 Bai (cpb_34_6_068102bib31) 2022; 416 Guimarães (cpb_34_6_068102bib40) 2015; 26 Liang (cpb_34_6_068102bib12) 2023; 232 Qiao (cpb_34_6_068102bib8) 2011; 88 Yu (cpb_34_6_068102bib32) 2018; 22 Landy (cpb_34_6_068102bib13) 2008; 100 Li (cpb_34_6_068102bib17) 2024; 181 Mastellone (cpb_34_6_068102bib16) 2020; 107 Rodiet (cpb_34_6_068102bib39) 2016; 76 Qin (cpb_34_6_068102bib14) 2022; 197 Yu (cpb_34_6_068102bib29) 2021; 14 Sharma (cpb_34_6_068102bib5) 2024; 304 Querry (cpb_34_6_068102bib37) 1998 Yang (cpb_34_6_068102bib36) 2015; 91 Li (cpb_34_6_068102bib18) 2023; 75 |
References_xml | – volume: 26 start-page: 1094 year: 2015 ident: cpb_34_6_068102bib40 publication-title: Advanced Powder Technology doi: 10.1016/j.apt.2015.05.004 – volume: 33 start-page: 1109 year: 2024 ident: cpb_34_6_068102bib2 publication-title: Journal of Thermal Science doi: 10.1007/s11630-024-1918-z – volume: 51 year: 2024 ident: cpb_34_6_068102bib4 publication-title: Opto-Electron. Eng. doi: 10.12086/oee.2024.240154 – volume: 13 start-page: 531 year: 2023 ident: cpb_34_6_068102bib21 publication-title: Coatings doi: 10.3390/coatings13030531 – volume: 100 year: 2008 ident: cpb_34_6_068102bib13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 148 year: 2023 ident: cpb_34_6_068102bib35 publication-title: Experimental Thermal and Fluid Science doi: 10.1016/j.expthermflusci.2023.110966 – volume: 141 start-page: 351 year: 2020 ident: cpb_34_6_068102bib38 publication-title: Journal of Thermal Analysis Calorimetry doi: 10.1007/s10973-020-09535-9 – volume: 107 year: 2020 ident: cpb_34_6_068102bib16 publication-title: Optical Materials doi: 10.1016/j.optmat.2020.109967 – volume: 139 year: 2021 ident: cpb_34_6_068102bib1 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2021.110732 – volume: 19 start-page: 1071 year: 2024 ident: cpb_34_6_068102bib23 publication-title: Plasmonics doi: 10.1007/s11468-023-02061-y – volume: 75 year: 2023 ident: cpb_34_6_068102bib18 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/acbe2d – volume: 8 year: 2021 ident: cpb_34_6_068102bib25 publication-title: Frontiers in Materials doi: 10.3389/fmats.2021.781803 – volume: 14 start-page: 4158 year: 2021 ident: cpb_34_6_068102bib29 publication-title: Energies doi: 10.3390/en14144158 – volume: 14 start-page: 302 year: 1966 ident: cpb_34_6_068102bib30 publication-title: IEEE Transactions on Antennas and Propagation doi: 10.1109/TAP.1966.1138693 – volume: 11 start-page: 1389 year: 2020 ident: cpb_34_6_068102bib15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15116-z – volume: 76 start-page: 444 year: 2016 ident: cpb_34_6_068102bib39 publication-title: Infrared Physics & Technology doi: 10.1016/j.infrared.2016.04.006 – volume: 51 year: 2024 ident: cpb_34_6_068102bib10 publication-title: Opto-Electron. Eng. doi: 10.12086/oee.2024.240128 – volume: 102 year: 2020 ident: cpb_34_6_068102bib19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.085410 – volume: 12 year: 2020 ident: cpb_34_6_068102bib24 publication-title: ACS Applied Materials Interfaces doi: 10.1021/acsami.0c12790 – volume: 76 year: 2024 ident: cpb_34_6_068102bib27 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ad6852 – volume: 22 start-page: 629 year: 2018 ident: cpb_34_6_068102bib32 publication-title: Thermal Science doi: 10.2298/TSCI171125047Y – year: 1998 ident: cpb_34_6_068102bib37 – volume: 38 year: 2023 ident: cpb_34_6_068102bib6 publication-title: Thermal Science Engineering Progress doi: 10.1016/j.tsep.2023.101680 – volume: 37 year: 2023 ident: cpb_34_6_068102bib34 publication-title: Materials Today Communications doi: 10.1016/j.mtcomm.2023.106966 – volume: 304 year: 2024 ident: cpb_34_6_068102bib5 publication-title: Energy doi: 10.1016/j.energy.2024.132070 – volume: 238 start-page: 78 year: 2022 ident: cpb_34_6_068102bib20 publication-title: Solar Energy doi: 10.1016/j.solener.2022.04.032 – volume: 90 start-page: 275 year: 2018 ident: cpb_34_6_068102bib3 publication-title: Renewable Sustainable Energy Reviews doi: 10.1016/j.rser.2018.03.065 – volume: 253 year: 2020 ident: cpb_34_6_068102bib11 publication-title: Journal of Quantitative Spectroscopy Radiative Transfer doi: 10.1016/j.jqsrt.2020.107156 – volume: 181 year: 2024 ident: cpb_34_6_068102bib17 publication-title: Optics Lasers in Engineering doi: 10.1016/j.optlaseng.2024.108368 – volume: 9 start-page: 7508 year: 2021 ident: cpb_34_6_068102bib22 publication-title: Journal of Materials Chemistry A doi: 10.1039/D1TA00036E – volume: 7 year: 2024 ident: cpb_34_6_068102bib9 publication-title: Opto-Electronic Advances doi: 10.29026/oea.2024.240036 – volume: 51 year: 2023 ident: cpb_34_6_068102bib26 publication-title: Results in Physics doi: 10.1016/j.rinp.2023.106660 – volume: 197 start-page: 79 year: 2022 ident: cpb_34_6_068102bib14 publication-title: Renewable Energy doi: 10.1016/j.renene.2022.07.098 – volume: 6 start-page: 69 year: 2019 ident: cpb_34_6_068102bib33 publication-title: ES Energy & Environment doi: 10.30919/esee8c333 – volume: 416 year: 2022 ident: cpb_34_6_068102bib31 publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2022.114590 – volume: 232 year: 2023 ident: cpb_34_6_068102bib12 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2023.121074 – volume: 163 year: 2021 ident: cpb_34_6_068102bib28 publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2020.106750 – volume: 7 year: 2024 ident: cpb_34_6_068102bib7 publication-title: Opto-Electronic Advances doi: 10.29026/oea.2024.230194 – volume: 88 start-page: 848 year: 2011 ident: cpb_34_6_068102bib8 publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.09.021 – volume: 91 year: 2015 ident: cpb_34_6_068102bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.235137 |
SSID | ssj0061023 |
Score | 2.367242 |
Snippet | In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 68102 |
SubjectTerms | cooling radiation fishnet metamaterial microscale thermal radiation solar absorber thermal management |
Title | Performance analysis of porous solar absorbers with high-temperature radiation cooling function |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/add4e3 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB7aiuDFt1hf5KAHD6nbJPvCk4ilCmoPFnoQlmST9VDolu724q83s5v1hYJ4W5ZhN0wmM1-SmW8AToO-zCSPlUVuYUwF0x7FLRjlWeipIPWtDWE18v1DMByLu4k_acHley1MPneuv2cfa6LgWoUuIS66wLx5ig3jMeVGGN6GFWxcieZ9-zhq3HCAnAS422qk3R3lT1_4EpPa9r-fQsxgA56bwdWZJdPeslS99PUbb-M_R78J6w56kqtadAtaZrYNq1UKaFrsQDL6qCEg0nGVkDwjFqHny4IUuAkmUhX5QlnMSPAElyDbMUV6K8fNTBbIdYCTTdIc-wG9EIyc-GIXxoObp-shde0XaMq4X1KmGJNRn5ssC4X1i7G20V0brXVgmBGeDa--0l6qZZ9nLFTaNxarGO5pC6u0DY570JnlM7MPJFBKSplyX4pYGBEpaRc-85jhJlJezLpw3kxAMq9ZNpLqdjyKElRYggpLaoV14czqNnFLrfhV7uCPcoewxrCnb3WycgSdcrE0xxZolOqkMqg3HDvN0w |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZoEYiFN6I8PcDA4Da1ndeIgKrlUTpQqZuxY4cBqamadOHX40sc8RBISGxRdHmdnbvv7LvvEDoLujKVLFYWuYUx4VR7BEIwwtLQU0Hi2zkE1cgPw6A_5rcTf-L6nJa1MNnMmf62PayIgisVuoS4qAN58wQaxkPKDTesM9NpAy371hRDTtfgcVSb4gB4CSDiqq9w-5Q_3eWLX2rYZ39yM70N9Fy_YJVd8tpeFKqdvH3jbvzHF2yidQdB8WUlvoWWzHQbrZSpoEm-g8Too5YAS8dZgrMUW6SeLXKcQzCMpcqzubLYEcNKLgbWYwI0V46jGc-B8wAGHScZ9AV6weBB4cQuGvdunq76xLVhIAllfkGoolRGXWbSNOTWPsbaenlttNaBoYZ71s36SnuJll2W0lBp31jMYpinLbzS1knuoeY0m5p9hAOlpJQJ8yWPueGRktYAUI8aZiLlxbSFLupBELOKbUOUu-RRJEBpApQmKqW10LnVr3C_XP6r3MEf5U7R6ui6J-4Hw7tDtEahzW-52HKEmsV8YY4t9ijUSTm_3gGf7dM3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+analysis+of+porous+solar+absorbers+with+high-temperature+radiation+cooling+function&rft.jtitle=Chinese+physics+B&rft.au=Yu+%E4%BA%8E%2C+Haiyan+%E6%B5%B7%E7%87%95&rft.au=Chen+%E9%99%88%2C+Anqi+%E5%AE%89%E7%90%AA&rft.au=Li+%E6%9D%8E%2C+Mingdong+%E6%98%8E%E4%B8%9C&rft.au=Hailati+%E9%98%BF%2C+Ahali+%E5%93%88%E9%87%8C.%E6%B5%B7%E6%8B%89%E6%8F%90&rft.date=2025-06-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=34&rft.issue=6&rft.spage=68102&rft_id=info:doi/10.1088%2F1674-1056%2Fadd4e3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_add4e3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-1056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-1056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-1056&client=summon |