Travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay
We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove...
Saved in:
Published in | Nonlinearity Vol. 38; no. 7; pp. 75012 - 75043 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
31.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-7715 1361-6544 |
DOI | 10.1088/1361-6544/addf0a |
Cover
Abstract | We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove that the delayed equation possesses a minimal wave speed, which is identical to that of the classical nonlocal dispersal Fisher-KPP equation without delay studied in previous works. Specifically, the delayed equation admits a travelling wave connecting the trivial steady state and a positive steady state if and only if the wave speed is greater than or equal to this minimal wave speed. This result highlights a significant observation: the delay does not affect the minimal wave speed of travelling waves, but may alter their shape. Additionally, we demonstrate theoretically that the equation can also admit monotone travelling waves when the mean of the delay kernel is small. The uniqueness of such monotone travelling waves, up to translation, is also confirmed. |
---|---|
AbstractList | We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove that the delayed equation possesses a minimal wave speed, which is identical to that of the classical nonlocal dispersal Fisher-KPP equation without delay studied in previous works. Specifically, the delayed equation admits a travelling wave connecting the trivial steady state and a positive steady state if and only if the wave speed is greater than or equal to this minimal wave speed. This result highlights a significant observation: the delay does not affect the minimal wave speed of travelling waves, but may alter their shape. Additionally, we demonstrate theoretically that the equation can also admit monotone travelling waves when the mean of the delay kernel is small. The uniqueness of such monotone travelling waves, up to translation, is also confirmed. |
Author | Dong, Luke Xu, Zhaoquan |
Author_xml | – sequence: 1 givenname: Zhaoquan surname: Xu fullname: Xu, Zhaoquan organization: Jinan University Department of Mathematics, Guangzhou 510632, People’s Republic of China – sequence: 2 givenname: Luke surname: Dong fullname: Dong, Luke organization: Jinan University Department of Mathematics, Guangzhou 510632, People’s Republic of China |
BookMark | eNp1kMFOwzAQRC1UJNrCnaM_gFA7iRP3iCoKiEr0UI7Icrwb4ip1ip1S9e9xVMSN045GM7urNyEj1zkk5Jaze86knPGs4Ekh8nymAWqmL8j4zxqRMZsLnpQlF1dkEsKWMc5lmo3Jx8brb2xb6z7pMSoKJ6d31gRqHe0bpPFM2xndUrBhjz5EtbShQZ-8rtcUvw66t52jR9s3Q6T3tjr0CBSw1adrclnrNuDN75yS9-XjZvGcrN6eXhYPq8SkmegTblIoGQgBGtJyzmuAlImcFYZVsshNWsfvhdCFrGU0ZC4NgMw1aBQSscqmhJ33Gt-F4LFWe2932p8UZ2rAowYWamChznhi5e5csd1ebbuDd_HB_-M_zB1q9A |
CODEN | NONLE5 |
Cites_doi | 10.1007/s00332-018-9445-2 10.1016/j.na.2010.09.032 10.1016/j.jde.2014.01.033 10.1016/j.jde.2022.01.047 10.1017/S0308210504000721 10.1016/S0025-5564(03)00041-5 10.1016/j.jde.2010.04.012 10.1016/j.anihpc.2012.07.005 10.1016/j.jde.2012.01.014 10.1016/j.jmaa.2008.05.057 10.1016/j.jde.2010.04.017 10.3934/dcds.2014.34.3511 10.1016/j.crma.2011.03.008 10.3934/dcds.2017042 10.1007/s00332-020-09642-9 10.1088/0951-7715/22/5/011 10.1007/BF02450783 10.3934/dcds.2003.9.925 10.1515/crll.1980.316.54 10.2977/prims/1260476648 10.1016/j.jmaa.2019.02.010 10.1017/S0308210500002523 10.1016/j.crma.2019.04.007 10.1016/j.jde.2010.11.011 10.3934/cpaa.2016.15.1193 10.1016/j.jde.2021.04.033 10.1016/j.jde.2010.01.009 10.1016/j.jde.2014.09.008 10.1016/0362-546X(78)90015-9 10.57262/die/1408366785 10.1088/0951-7715/22/12/002 10.1088/0951-7715/24/11/002 10.1090/proc/14235 10.1017/S0308210500000688 10.1090/S0002-9939-04-07432-5 10.1016/S0895-7177(00)00175-8 10.1007/s00208-011-0722-8 10.1090/tran/6602 10.1023/A:1016690424892 10.1023/A:1021889401235 |
ContentType | Journal Article |
Copyright | 2025 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-6544/addf0a |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Physics |
EISSN | 1361-6544 |
ExternalDocumentID | 10_1088_1361_6544_addf0a nonaddf0a |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: No. 12071182 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX AEINN CITATION |
ID | FETCH-LOGICAL-c235t-1c2d70d55dad2791fdd205406c0b864c2f95155a68f8b86848cdd84adae58eeb3 |
IEDL.DBID | IOP |
ISSN | 0951-7715 |
IngestDate | Wed Sep 10 05:24:46 EDT 2025 Tue Jun 17 22:10:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c235t-1c2d70d55dad2791fdd205406c0b864c2f95155a68f8b86848cdd84adae58eeb3 |
Notes | NON-108435.R1 |
PageCount | 32 |
ParticipantIDs | iop_journals_10_1088_1361_6544_addf0a crossref_primary_10_1088_1361_6544_addf0a |
PublicationCentury | 2000 |
PublicationDate | 2025-07-31 |
PublicationDateYYYYMMDD | 2025-07-31 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinearity |
PublicationTitleAbbrev | Non |
PublicationTitleAlternate | Nonlinearity |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Wu (nonaddf0abib38) 2001; 13 Xu (nonaddf0abib41) 2021; 291 Shen (nonaddf0abib35) 2017; 37 Xu (nonaddf0abib40) 2014; 27 Carr (nonaddf0abib3) 2004; 132 Lim (nonaddf0abib24) 2016; 368 Pan (nonaddf0abib28) 2008; 346 Shen (nonaddf0abib34) 2016; 15 Zhang (nonaddf0abib44) 2012; 252 Schumacher (nonaddf0abib30) 1980; 1980 Coville (nonaddf0abib5) 2007; 137 Yagisita (nonaddf0abib43) 2009; 45 Xu (nonaddf0abib39) 2015; 258 Xu (nonaddf0abib42) 2022; 316 Diekmann (nonaddf0abib6) 1978; 6 Huang (nonaddf0abib18) 2003; 9 Wang (nonaddf0abib37) 2019; 147 Berestycki (nonaddf0abib2) 2009; 22 Jin (nonaddf0abib21) 2009; 22 Nadin (nonaddf0abib27) 2011; 349 Finkelshtein (nonaddf0abib13) 2019; 357 Sun (nonaddf0abib31) 2011; 74 Li (nonaddf0abib23) 2018; 28 Fang (nonaddf0abib10) 2010; 248 Kwong (nonaddf0abib22) 2010; 249 Roquejoffre (nonaddf0abib29) 2024 Medlock (nonaddf0abib26) 2003; 184 Aguerrea (nonaddf0abib1) 2012; 354 Finkelshtein (nonaddf0abib12) 2019; 475 Shen (nonaddf0abib33) 2012; 19 Hasik (nonaddf0abib19) 2014; 34 Gourley (nonaddf0abib16) 2003; 133A Ducrot (nonaddf0abib8) 2014; 256 Gourley (nonaddf0abib15) 2000; 130 Fang (nonaddf0abib9) 2011; 24 Finkelshtein (nonaddf0abib11) 2019 Hasik (nonaddf0abib20) 2020; 30 Gourley (nonaddf0abib14) 2000; 32 Gomez (nonaddf0abib17) 2011; 250 Smith (nonaddf0abib36) 1995 Coville (nonaddf0abib4) 2013; 30 Diekmann (nonaddf0abib7) 1978; 2 Mallet-Paret (nonaddf0abib25) 1999; 11 Shen (nonaddf0abib32) 2010; 249 |
References_xml | – volume: 28 start-page: 1189 year: 2018 ident: nonaddf0abib23 article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-018-9445-2 – volume: 74 start-page: 814 year: 2011 ident: nonaddf0abib31 article-title: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity publication-title: Nonlinear Anal. doi: 10.1016/j.na.2010.09.032 – volume: 256 start-page: 3115 year: 2014 ident: nonaddf0abib8 article-title: Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2014.01.033 – volume: 19 start-page: 73 year: 2012 ident: nonaddf0abib33 article-title: Traveling wave solutions of spatially periodic nonlocal monostable equations publication-title: Commun. Appl. Nonlinear Anal. – start-page: 1 year: 2019 ident: nonaddf0abib11 article-title: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations publication-title: Electron. J. Differ. Equ. – volume: 316 start-page: 197 year: 2022 ident: nonaddf0abib42 article-title: Propagation dynamics in an integro-differential Fisher-KPP equation with degenerated reaction functions publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2022.01.047 – volume: 137 start-page: 727 year: 2007 ident: nonaddf0abib5 article-title: On a non-local equation arising in population dynamics publication-title: Proc. R. Soc. Edinburgh A doi: 10.1017/S0308210504000721 – volume: 184 start-page: 201 year: 2003 ident: nonaddf0abib26 article-title: Spreading disease: integro-differential equations old and new publication-title: Math. Biosci. doi: 10.1016/S0025-5564(03)00041-5 – volume: 249 start-page: 747 year: 2010 ident: nonaddf0abib32 article-title: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habits publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.04.012 – volume: 30 start-page: 179 year: 2013 ident: nonaddf0abib4 article-title: Pulsating fronts for nonlocal dispersion and KPP nonlinearity publication-title: Ann. Inst. Henri Poincaré C doi: 10.1016/j.anihpc.2012.07.005 – volume: 252 start-page: 5096 year: 2012 ident: nonaddf0abib44 article-title: Spreading speeds and traveling waves for nonlocal disspersal equations with degenerate monostable nonlineariy publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2012.01.014 – volume: 346 start-page: 415 year: 2008 ident: nonaddf0abib28 article-title: Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.05.057 – volume: 249 start-page: 728 year: 2010 ident: nonaddf0abib22 article-title: Existence and nonexistence of monotone traveling waves for the delayed Fisher equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.04.017 – volume: 34 start-page: 3511 year: 2014 ident: nonaddf0abib19 article-title: Slowly oscillating wavefronts of the KPP-Fisher delayed equation publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2014.34.3511 – volume: 349 start-page: 553 year: 2011 ident: nonaddf0abib27 article-title: Can a travelling wave connect two unstable states? Then case of the nonlocal Fisher equation publication-title: C. R. Acad. Sci., Paris I doi: 10.1016/j.crma.2011.03.008 – volume: 37 start-page: 1013 year: 2017 ident: nonaddf0abib35 article-title: Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2017042 – volume: 30 start-page: 2989 year: 2020 ident: nonaddf0abib20 article-title: On the geometric diversity of wavefronts for the scalar Kolmogorov ecological equation publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-020-09642-9 – volume: 22 start-page: 1167 year: 2009 ident: nonaddf0abib21 article-title: Spatial dynamics of a periodic population model with dispersal publication-title: Nonlinearity doi: 10.1088/0951-7715/22/5/011 – volume: 6 start-page: 109 year: 1978 ident: nonaddf0abib6 article-title: Thresholds and travelling waves for the geographical spread of an infection publication-title: J. Math. Biol. doi: 10.1007/BF02450783 – volume: 9 start-page: 925 year: 2003 ident: nonaddf0abib18 article-title: Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2003.9.925 – volume: 1980 start-page: 54 year: 1980 ident: nonaddf0abib30 article-title: Travelling-front solutions for integro-differential equations. I publication-title: J. Reine Angew. Math. doi: 10.1515/crll.1980.316.54 – volume: 45 start-page: 925 year: 2009 ident: nonaddf0abib43 article-title: Existence and nonexistence of traveling waves for a nonlocal monostable equation publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1260476648 – volume: 475 start-page: 94 year: 2019 ident: nonaddf0abib12 article-title: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2019.02.010 – volume: 133A start-page: 527 year: 2003 ident: nonaddf0abib16 article-title: Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay publication-title: Proc. R. Soc. Edinburgh A doi: 10.1017/S0308210500002523 – volume: 357 start-page: 333 year: 2019 ident: nonaddf0abib13 article-title: An Ikehara-type theorem for functions convergent to zero publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2019.04.007 – volume: 250 start-page: 1767 year: 2011 ident: nonaddf0abib17 article-title: Monotone traveling wavefronts of the KPP-Fisher delayed equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.11.011 – volume: 15 start-page: 1193 year: 2016 ident: nonaddf0abib34 article-title: Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2016.15.1193 – volume: 291 start-page: 195 year: 2021 ident: nonaddf0abib41 article-title: On uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delay publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2021.04.033 – volume: 248 start-page: 2199 year: 2010 ident: nonaddf0abib10 article-title: Existence and uniqueness of traveling waves for non-monotone integral equations with applications publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.01.009 – volume: 258 start-page: 191 year: 2015 ident: nonaddf0abib39 article-title: Regular traveling waves for a nonlocal diffusion equation publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2014.09.008 – volume: 2 start-page: 721 year: 1978 ident: nonaddf0abib7 article-title: On the bounded solutions of a nonlinear convolution equation publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(78)90015-9 – volume: 27 start-page: 1073 year: 2014 ident: nonaddf0abib40 article-title: Minimal wave speed and uniqueness of traveling waves for a nonlocal diffusion population model with spatio-temporal delays publication-title: Differ. Integral Equ. doi: 10.57262/die/1408366785 – volume: 22 start-page: 2813 year: 2009 ident: nonaddf0abib2 article-title: The non-local Fisher-KPP equation: travelling waves and steady states publication-title: Nonlinearity doi: 10.1088/0951-7715/22/12/002 – volume: 24 start-page: 3043 year: 2011 ident: nonaddf0abib9 article-title: Monotone wavefronts of the nonlocal Fisher-KPP equation publication-title: Nonlinearity doi: 10.1088/0951-7715/24/11/002 – volume: 147 start-page: 1467 year: 2019 ident: nonaddf0abib37 article-title: Uniqueness and global stability of forced waves in a shifting environment publication-title: Proc. Am. Math. Soc. doi: 10.1090/proc/14235 – volume: 130 start-page: 1275 year: 2000 ident: nonaddf0abib15 article-title: Dynamics of the diffusive Nicholson’s blowflies equation with distributed delays publication-title: Proc. R. Soc. Edinburgh A doi: 10.1017/S0308210500000688 – year: 2024 ident: nonaddf0abib29 – year: 1995 ident: nonaddf0abib36 – volume: 132 start-page: 2433 year: 2004 ident: nonaddf0abib3 article-title: Uniqueness of traveling waves for nonlocal monostable equations publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-04-07432-5 – volume: 32 start-page: 843 year: 2000 ident: nonaddf0abib14 article-title: Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delays publication-title: Math. Comput. Model. doi: 10.1016/S0895-7177(00)00175-8 – volume: 354 start-page: 73 year: 2012 ident: nonaddf0abib1 article-title: On uniqueness of semi-wavefronts: Diekmann-Kaper theory of a nonlinear convolution equation re-visited publication-title: Math. Ann. doi: 10.1007/s00208-011-0722-8 – volume: 368 start-page: 8615 year: 2016 ident: nonaddf0abib24 article-title: Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion publication-title: Trans. Am. Math. Soc. doi: 10.1090/tran/6602 – volume: 13 start-page: 651 year: 2001 ident: nonaddf0abib38 article-title: Traveling wave fronts of reaction-diffusion systems with delay publication-title: J. Dyn. Differ. Equ. doi: 10.1023/A:1016690424892 – volume: 11 start-page: 1 year: 1999 ident: nonaddf0abib25 article-title: The Fredholm althernative for functional differential equations of mixed type publication-title: J. Dyn. Differ. Equ. doi: 10.1023/A:1021889401235 |
SSID | ssj0011823 |
Score | 2.421956 |
Snippet | We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 75012 |
SubjectTerms | 34B40 45E10 45K05 Fisher-KPP equation nonlocal diffusion travelling wave solutions, distributed delay |
Title | Travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay |
URI | https://iopscience.iop.org/article/10.1088/1361-6544/addf0a |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zIujBj6k4v8hBDx4y2zRJUzyJOKYy3WGDHZSSNgkMoZu2Q_SvN2m6MUVBvKXltX28pH0v773-fgCcCB0IIkSAeKCp2aBogRKiEyRoSKQJj3WkbUK_e886A3I7pMMauJj_CzOeVJ_-lhk6oGBnwqohjp_7AfMRo4TYlhvtmeBo2RJX2uV989CblxBM4DznkQ9Dn1Y1yp_u8MUnLZnnLriY9gZ4nCnnOkueW9MiaaUf33Ab_6n9JlivQk946US3QE1lDbC2AEhojrpzFNe8AVbK9tA03wZPfctSVMJ3wzczgtIR2edwlEFzBczGWekVoRxZ6PHcjBypOrrr9aB6cYDi0GZ9rYij2VISWozK9x0waF_3rzqoImZAKQ5ogfwUy9CTlEohcRj5WkpsQz-WeglnJMU6sswxgnHNzQlOeColJ0IKRbky2_ddUDd6qT0AE5ZyKkKimYiI9AT3aBKKhGAsPayYbIKz2dTEE4e_EZd1c85ja8rYmjJ2pmyCU2P1uHoJ81_l9v8odwBWsWX7LTO5h6BevE7VkQlBiuS4XGqfDMrXIg |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYYCAQHHgPEeOYABw7d2jRJsyMCJl6DHZi0Cypp3UgIaQy6CcGvJ2m6CRBISNzcym1Tt40d2_0-gH2lQ8WUCj0Zam4WKFp5CdOJp3jE0ITHuqltQr99Lc667KLHeyXPafEvzNOgnPrrRnRAwc6EZUOcbAShCDzBGbMtN9pXjQHqCsxwMxXbnq7zm86kjGCC5wmXfBQFvKxT_nSWL36pYq79yc20luB-PEDXXfJYHw2Tevr-DbvxH3ewDItlCEqOnPoKTGX9Kix8AiY0W-0JmmtehdmiTTTNV-Hu1rIVFTDe5NVIBB2hfU4e-sQcQfpP_cI7EnywEOS5kRy5unfZ6ZDs2QGLE5v9tSqObitDYrEq39ag2zq9PT7zSoIGL6UhH3pBSjHykXNUSKNmoBGpDQFF6idSsJTqpmWQUUJqaXZIJlNEyRSqjMvMLOPXYdqMK9sAkohUchUxLVSToa-kz5NIJYxS9GkmsAaH48cTDxwOR1zUz6WMrTlja87YmbMGB8bycfkx5r_qbf5Rbw_mOiet-Or8-nIL5qklAC6Su9swPXwZZTsmKhkmu8Wb9wFMMNyG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Travelling+wave+dynamics+in+the+nonlocal+dispersal+Fisher-KPP+equation+with+distributed+delay&rft.jtitle=Nonlinearity&rft.au=Xu%2C+Zhaoquan&rft.au=Dong%2C+Luke&rft.date=2025-07-31&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=38&rft.issue=7&rft.spage=75012&rft_id=info:doi/10.1088%2F1361-6544%2Faddf0a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_addf0a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |