Travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay

We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 38; no. 7; pp. 75012 - 75043
Main Authors Xu, Zhaoquan, Dong, Luke
Format Journal Article
LanguageEnglish
Published IOP Publishing 31.07.2025
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
DOI10.1088/1361-6544/addf0a

Cover

Abstract We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove that the delayed equation possesses a minimal wave speed, which is identical to that of the classical nonlocal dispersal Fisher-KPP equation without delay studied in previous works. Specifically, the delayed equation admits a travelling wave connecting the trivial steady state and a positive steady state if and only if the wave speed is greater than or equal to this minimal wave speed. This result highlights a significant observation: the delay does not affect the minimal wave speed of travelling waves, but may alter their shape. Additionally, we demonstrate theoretically that the equation can also admit monotone travelling waves when the mean of the delay kernel is small. The uniqueness of such monotone travelling waves, up to translation, is also confirmed.
AbstractList We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation to lack the comparison principle, thereby significantly increasing the complexity of studying propagation dynamics. In this paper, we prove that the delayed equation possesses a minimal wave speed, which is identical to that of the classical nonlocal dispersal Fisher-KPP equation without delay studied in previous works. Specifically, the delayed equation admits a travelling wave connecting the trivial steady state and a positive steady state if and only if the wave speed is greater than or equal to this minimal wave speed. This result highlights a significant observation: the delay does not affect the minimal wave speed of travelling waves, but may alter their shape. Additionally, we demonstrate theoretically that the equation can also admit monotone travelling waves when the mean of the delay kernel is small. The uniqueness of such monotone travelling waves, up to translation, is also confirmed.
Author Dong, Luke
Xu, Zhaoquan
Author_xml – sequence: 1
  givenname: Zhaoquan
  surname: Xu
  fullname: Xu, Zhaoquan
  organization: Jinan University Department of Mathematics, Guangzhou 510632, People’s Republic of China
– sequence: 2
  givenname: Luke
  surname: Dong
  fullname: Dong, Luke
  organization: Jinan University Department of Mathematics, Guangzhou 510632, People’s Republic of China
BookMark eNp1kMFOwzAQRC1UJNrCnaM_gFA7iRP3iCoKiEr0UI7Icrwb4ip1ip1S9e9xVMSN045GM7urNyEj1zkk5Jaze86knPGs4Ekh8nymAWqmL8j4zxqRMZsLnpQlF1dkEsKWMc5lmo3Jx8brb2xb6z7pMSoKJ6d31gRqHe0bpPFM2xndUrBhjz5EtbShQZ-8rtcUvw66t52jR9s3Q6T3tjr0CBSw1adrclnrNuDN75yS9-XjZvGcrN6eXhYPq8SkmegTblIoGQgBGtJyzmuAlImcFYZVsshNWsfvhdCFrGU0ZC4NgMw1aBQSscqmhJ33Gt-F4LFWe2932p8UZ2rAowYWamChznhi5e5csd1ebbuDd_HB_-M_zB1q9A
CODEN NONLE5
Cites_doi 10.1007/s00332-018-9445-2
10.1016/j.na.2010.09.032
10.1016/j.jde.2014.01.033
10.1016/j.jde.2022.01.047
10.1017/S0308210504000721
10.1016/S0025-5564(03)00041-5
10.1016/j.jde.2010.04.012
10.1016/j.anihpc.2012.07.005
10.1016/j.jde.2012.01.014
10.1016/j.jmaa.2008.05.057
10.1016/j.jde.2010.04.017
10.3934/dcds.2014.34.3511
10.1016/j.crma.2011.03.008
10.3934/dcds.2017042
10.1007/s00332-020-09642-9
10.1088/0951-7715/22/5/011
10.1007/BF02450783
10.3934/dcds.2003.9.925
10.1515/crll.1980.316.54
10.2977/prims/1260476648
10.1016/j.jmaa.2019.02.010
10.1017/S0308210500002523
10.1016/j.crma.2019.04.007
10.1016/j.jde.2010.11.011
10.3934/cpaa.2016.15.1193
10.1016/j.jde.2021.04.033
10.1016/j.jde.2010.01.009
10.1016/j.jde.2014.09.008
10.1016/0362-546X(78)90015-9
10.57262/die/1408366785
10.1088/0951-7715/22/12/002
10.1088/0951-7715/24/11/002
10.1090/proc/14235
10.1017/S0308210500000688
10.1090/S0002-9939-04-07432-5
10.1016/S0895-7177(00)00175-8
10.1007/s00208-011-0722-8
10.1090/tran/6602
10.1023/A:1016690424892
10.1023/A:1021889401235
ContentType Journal Article
Copyright 2025 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 IOP Publishing Ltd & London Mathematical Society. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/addf0a
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1361-6544
ExternalDocumentID 10_1088_1361_6544_addf0a
nonaddf0a
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 12071182
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
AEINN
CITATION
ID FETCH-LOGICAL-c235t-1c2d70d55dad2791fdd205406c0b864c2f95155a68f8b86848cdd84adae58eeb3
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Wed Sep 10 05:24:46 EDT 2025
Tue Jun 17 22:10:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c235t-1c2d70d55dad2791fdd205406c0b864c2f95155a68f8b86848cdd84adae58eeb3
Notes NON-108435.R1
PageCount 32
ParticipantIDs iop_journals_10_1088_1361_6544_addf0a
crossref_primary_10_1088_1361_6544_addf0a
PublicationCentury 2000
PublicationDate 2025-07-31
PublicationDateYYYYMMDD 2025-07-31
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-31
  day: 31
PublicationDecade 2020
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Wu (nonaddf0abib38) 2001; 13
Xu (nonaddf0abib41) 2021; 291
Shen (nonaddf0abib35) 2017; 37
Xu (nonaddf0abib40) 2014; 27
Carr (nonaddf0abib3) 2004; 132
Lim (nonaddf0abib24) 2016; 368
Pan (nonaddf0abib28) 2008; 346
Shen (nonaddf0abib34) 2016; 15
Zhang (nonaddf0abib44) 2012; 252
Schumacher (nonaddf0abib30) 1980; 1980
Coville (nonaddf0abib5) 2007; 137
Yagisita (nonaddf0abib43) 2009; 45
Xu (nonaddf0abib39) 2015; 258
Xu (nonaddf0abib42) 2022; 316
Diekmann (nonaddf0abib6) 1978; 6
Huang (nonaddf0abib18) 2003; 9
Wang (nonaddf0abib37) 2019; 147
Berestycki (nonaddf0abib2) 2009; 22
Jin (nonaddf0abib21) 2009; 22
Nadin (nonaddf0abib27) 2011; 349
Finkelshtein (nonaddf0abib13) 2019; 357
Sun (nonaddf0abib31) 2011; 74
Li (nonaddf0abib23) 2018; 28
Fang (nonaddf0abib10) 2010; 248
Kwong (nonaddf0abib22) 2010; 249
Roquejoffre (nonaddf0abib29) 2024
Medlock (nonaddf0abib26) 2003; 184
Aguerrea (nonaddf0abib1) 2012; 354
Finkelshtein (nonaddf0abib12) 2019; 475
Shen (nonaddf0abib33) 2012; 19
Hasik (nonaddf0abib19) 2014; 34
Gourley (nonaddf0abib16) 2003; 133A
Ducrot (nonaddf0abib8) 2014; 256
Gourley (nonaddf0abib15) 2000; 130
Fang (nonaddf0abib9) 2011; 24
Finkelshtein (nonaddf0abib11) 2019
Hasik (nonaddf0abib20) 2020; 30
Gourley (nonaddf0abib14) 2000; 32
Gomez (nonaddf0abib17) 2011; 250
Smith (nonaddf0abib36) 1995
Coville (nonaddf0abib4) 2013; 30
Diekmann (nonaddf0abib7) 1978; 2
Mallet-Paret (nonaddf0abib25) 1999; 11
Shen (nonaddf0abib32) 2010; 249
References_xml – volume: 28
  start-page: 1189
  year: 2018
  ident: nonaddf0abib23
  article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-018-9445-2
– volume: 74
  start-page: 814
  year: 2011
  ident: nonaddf0abib31
  article-title: Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2010.09.032
– volume: 256
  start-page: 3115
  year: 2014
  ident: nonaddf0abib8
  article-title: Asymptotic behaviour of travelling waves for the delayed Fisher-KPP equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2014.01.033
– volume: 19
  start-page: 73
  year: 2012
  ident: nonaddf0abib33
  article-title: Traveling wave solutions of spatially periodic nonlocal monostable equations
  publication-title: Commun. Appl. Nonlinear Anal.
– start-page: 1
  year: 2019
  ident: nonaddf0abib11
  article-title: Existence and properties of traveling waves for doubly nonlocal Fisher-KPP equations
  publication-title: Electron. J. Differ. Equ.
– volume: 316
  start-page: 197
  year: 2022
  ident: nonaddf0abib42
  article-title: Propagation dynamics in an integro-differential Fisher-KPP equation with degenerated reaction functions
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2022.01.047
– volume: 137
  start-page: 727
  year: 2007
  ident: nonaddf0abib5
  article-title: On a non-local equation arising in population dynamics
  publication-title: Proc. R. Soc. Edinburgh A
  doi: 10.1017/S0308210504000721
– volume: 184
  start-page: 201
  year: 2003
  ident: nonaddf0abib26
  article-title: Spreading disease: integro-differential equations old and new
  publication-title: Math. Biosci.
  doi: 10.1016/S0025-5564(03)00041-5
– volume: 249
  start-page: 747
  year: 2010
  ident: nonaddf0abib32
  article-title: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habits
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.04.012
– volume: 30
  start-page: 179
  year: 2013
  ident: nonaddf0abib4
  article-title: Pulsating fronts for nonlocal dispersion and KPP nonlinearity
  publication-title: Ann. Inst. Henri Poincaré C
  doi: 10.1016/j.anihpc.2012.07.005
– volume: 252
  start-page: 5096
  year: 2012
  ident: nonaddf0abib44
  article-title: Spreading speeds and traveling waves for nonlocal disspersal equations with degenerate monostable nonlineariy
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2012.01.014
– volume: 346
  start-page: 415
  year: 2008
  ident: nonaddf0abib28
  article-title: Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.05.057
– volume: 249
  start-page: 728
  year: 2010
  ident: nonaddf0abib22
  article-title: Existence and nonexistence of monotone traveling waves for the delayed Fisher equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.04.017
– volume: 34
  start-page: 3511
  year: 2014
  ident: nonaddf0abib19
  article-title: Slowly oscillating wavefronts of the KPP-Fisher delayed equation
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2014.34.3511
– volume: 349
  start-page: 553
  year: 2011
  ident: nonaddf0abib27
  article-title: Can a travelling wave connect two unstable states? Then case of the nonlocal Fisher equation
  publication-title: C. R. Acad. Sci., Paris I
  doi: 10.1016/j.crma.2011.03.008
– volume: 37
  start-page: 1013
  year: 2017
  ident: nonaddf0abib35
  article-title: Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2017042
– volume: 30
  start-page: 2989
  year: 2020
  ident: nonaddf0abib20
  article-title: On the geometric diversity of wavefronts for the scalar Kolmogorov ecological equation
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-020-09642-9
– volume: 22
  start-page: 1167
  year: 2009
  ident: nonaddf0abib21
  article-title: Spatial dynamics of a periodic population model with dispersal
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/22/5/011
– volume: 6
  start-page: 109
  year: 1978
  ident: nonaddf0abib6
  article-title: Thresholds and travelling waves for the geographical spread of an infection
  publication-title: J. Math. Biol.
  doi: 10.1007/BF02450783
– volume: 9
  start-page: 925
  year: 2003
  ident: nonaddf0abib18
  article-title: Existence of traveling wavefronts of delayed reaction diffusion systems without monotonicity
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2003.9.925
– volume: 1980
  start-page: 54
  year: 1980
  ident: nonaddf0abib30
  article-title: Travelling-front solutions for integro-differential equations. I
  publication-title: J. Reine Angew. Math.
  doi: 10.1515/crll.1980.316.54
– volume: 45
  start-page: 925
  year: 2009
  ident: nonaddf0abib43
  article-title: Existence and nonexistence of traveling waves for a nonlocal monostable equation
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1260476648
– volume: 475
  start-page: 94
  year: 2019
  ident: nonaddf0abib12
  article-title: Doubly nonlocal Fisher-KPP equation: speeds and uniqueness of traveling waves
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2019.02.010
– volume: 133A
  start-page: 527
  year: 2003
  ident: nonaddf0abib16
  article-title: Extinction and wavefront propagation in a reaction-diffusion model of a structured population with distributed maturation delay
  publication-title: Proc. R. Soc. Edinburgh A
  doi: 10.1017/S0308210500002523
– volume: 357
  start-page: 333
  year: 2019
  ident: nonaddf0abib13
  article-title: An Ikehara-type theorem for functions convergent to zero
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2019.04.007
– volume: 250
  start-page: 1767
  year: 2011
  ident: nonaddf0abib17
  article-title: Monotone traveling wavefronts of the KPP-Fisher delayed equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.11.011
– volume: 15
  start-page: 1193
  year: 2016
  ident: nonaddf0abib34
  article-title: Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2016.15.1193
– volume: 291
  start-page: 195
  year: 2021
  ident: nonaddf0abib41
  article-title: On uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delay
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2021.04.033
– volume: 248
  start-page: 2199
  year: 2010
  ident: nonaddf0abib10
  article-title: Existence and uniqueness of traveling waves for non-monotone integral equations with applications
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2010.01.009
– volume: 258
  start-page: 191
  year: 2015
  ident: nonaddf0abib39
  article-title: Regular traveling waves for a nonlocal diffusion equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2014.09.008
– volume: 2
  start-page: 721
  year: 1978
  ident: nonaddf0abib7
  article-title: On the bounded solutions of a nonlinear convolution equation
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(78)90015-9
– volume: 27
  start-page: 1073
  year: 2014
  ident: nonaddf0abib40
  article-title: Minimal wave speed and uniqueness of traveling waves for a nonlocal diffusion population model with spatio-temporal delays
  publication-title: Differ. Integral Equ.
  doi: 10.57262/die/1408366785
– volume: 22
  start-page: 2813
  year: 2009
  ident: nonaddf0abib2
  article-title: The non-local Fisher-KPP equation: travelling waves and steady states
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/22/12/002
– volume: 24
  start-page: 3043
  year: 2011
  ident: nonaddf0abib9
  article-title: Monotone wavefronts of the nonlocal Fisher-KPP equation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/11/002
– volume: 147
  start-page: 1467
  year: 2019
  ident: nonaddf0abib37
  article-title: Uniqueness and global stability of forced waves in a shifting environment
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/proc/14235
– volume: 130
  start-page: 1275
  year: 2000
  ident: nonaddf0abib15
  article-title: Dynamics of the diffusive Nicholson’s blowflies equation with distributed delays
  publication-title: Proc. R. Soc. Edinburgh A
  doi: 10.1017/S0308210500000688
– year: 2024
  ident: nonaddf0abib29
– year: 1995
  ident: nonaddf0abib36
– volume: 132
  start-page: 2433
  year: 2004
  ident: nonaddf0abib3
  article-title: Uniqueness of traveling waves for nonlocal monostable equations
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-04-07432-5
– volume: 32
  start-page: 843
  year: 2000
  ident: nonaddf0abib14
  article-title: Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delays
  publication-title: Math. Comput. Model.
  doi: 10.1016/S0895-7177(00)00175-8
– volume: 354
  start-page: 73
  year: 2012
  ident: nonaddf0abib1
  article-title: On uniqueness of semi-wavefronts: Diekmann-Kaper theory of a nonlinear convolution equation re-visited
  publication-title: Math. Ann.
  doi: 10.1007/s00208-011-0722-8
– volume: 368
  start-page: 8615
  year: 2016
  ident: nonaddf0abib24
  article-title: Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/tran/6602
– volume: 13
  start-page: 651
  year: 2001
  ident: nonaddf0abib38
  article-title: Traveling wave fronts of reaction-diffusion systems with delay
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1023/A:1016690424892
– volume: 11
  start-page: 1
  year: 1999
  ident: nonaddf0abib25
  article-title: The Fredholm althernative for functional differential equations of mixed type
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1023/A:1021889401235
SSID ssj0011823
Score 2.421956
Snippet We investigate the travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay. The introduction of delay causes the equation...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 75012
SubjectTerms 34B40
45E10
45K05
Fisher-KPP equation
nonlocal diffusion
travelling wave solutions, distributed delay
Title Travelling wave dynamics in the nonlocal dispersal Fisher-KPP equation with distributed delay
URI https://iopscience.iop.org/article/10.1088/1361-6544/addf0a
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zIujBj6k4v8hBDx4y2zRJUzyJOKYy3WGDHZSSNgkMoZu2Q_SvN2m6MUVBvKXltX28pH0v773-fgCcCB0IIkSAeKCp2aBogRKiEyRoSKQJj3WkbUK_e886A3I7pMMauJj_CzOeVJ_-lhk6oGBnwqohjp_7AfMRo4TYlhvtmeBo2RJX2uV989CblxBM4DznkQ9Dn1Y1yp_u8MUnLZnnLriY9gZ4nCnnOkueW9MiaaUf33Ab_6n9JlivQk946US3QE1lDbC2AEhojrpzFNe8AVbK9tA03wZPfctSVMJ3wzczgtIR2edwlEFzBczGWekVoRxZ6PHcjBypOrrr9aB6cYDi0GZ9rYij2VISWozK9x0waF_3rzqoImZAKQ5ogfwUy9CTlEohcRj5WkpsQz-WeglnJMU6sswxgnHNzQlOeColJ0IKRbky2_ddUDd6qT0AE5ZyKkKimYiI9AT3aBKKhGAsPayYbIKz2dTEE4e_EZd1c85ja8rYmjJ2pmyCU2P1uHoJ81_l9v8odwBWsWX7LTO5h6BevE7VkQlBiuS4XGqfDMrXIg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLYYCAQHHgPEeOYABw7d2jRJsyMCJl6DHZi0Cypp3UgIaQy6CcGvJ2m6CRBISNzcym1Tt40d2_0-gH2lQ8WUCj0Zam4WKFp5CdOJp3jE0ITHuqltQr99Lc667KLHeyXPafEvzNOgnPrrRnRAwc6EZUOcbAShCDzBGbMtN9pXjQHqCsxwMxXbnq7zm86kjGCC5wmXfBQFvKxT_nSWL36pYq79yc20luB-PEDXXfJYHw2Tevr-DbvxH3ewDItlCEqOnPoKTGX9Kix8AiY0W-0JmmtehdmiTTTNV-Hu1rIVFTDe5NVIBB2hfU4e-sQcQfpP_cI7EnywEOS5kRy5unfZ6ZDs2QGLE5v9tSqObitDYrEq39ag2zq9PT7zSoIGL6UhH3pBSjHykXNUSKNmoBGpDQFF6idSsJTqpmWQUUJqaXZIJlNEyRSqjMvMLOPXYdqMK9sAkohUchUxLVSToa-kz5NIJYxS9GkmsAaH48cTDxwOR1zUz6WMrTlja87YmbMGB8bycfkx5r_qbf5Rbw_mOiet-Or8-nIL5qklAC6Su9swPXwZZTsmKhkmu8Wb9wFMMNyG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Travelling+wave+dynamics+in+the+nonlocal+dispersal+Fisher-KPP+equation+with+distributed+delay&rft.jtitle=Nonlinearity&rft.au=Xu%2C+Zhaoquan&rft.au=Dong%2C+Luke&rft.date=2025-07-31&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=38&rft.issue=7&rft.spage=75012&rft_id=info:doi/10.1088%2F1361-6544%2Faddf0a&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_addf0a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon