The topology of local computing in networks
For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typical...
Saved in:
Published in | Journal of applied and computational topology Vol. 8; no. 4; pp. 1069 - 1098 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typically a shared memory consisting of a collection of read-write registers) or message-passing enabling direct communication between any pair of processes. This paper aims to examine the use of protocol complexes in the study of network computing. In this case, processes are located at the network nodes and communicate by exchanging messages only along the network’s edges (i.e., not every pair of processes can directly communicate). There are several reasons why applying the topological approach to network computing can be challenging, and a prominent one is that node identifiers yield protocol complexes whose sizes grow exponentially with the size of the underlying network. However, many of the problems studied in this context are of local nature, and their definitions do not depend on the identifiers or the network size. We leverage this independence to meet the above challenge and present
local
protocol complexes, whose sizes do not depend on the network size. As an application of the “compacted” protocol complexes, we reformulate the celebrated lower bound of
Ω
(
log
∗
n
)
rounds for 3-coloring the
n
-node ring in the topological framework. |
---|---|
AbstractList | For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typically a shared memory consisting of a collection of read-write registers) or message-passing enabling direct communication between any pair of processes. This paper aims to examine the use of protocol complexes in the study of network computing. In this case, processes are located at the network nodes and communicate by exchanging messages only along the network’s edges (i.e., not every pair of processes can directly communicate). There are several reasons why applying the topological approach to network computing can be challenging, and a prominent one is that node identifiers yield protocol complexes whose sizes grow exponentially with the size of the underlying network. However, many of the problems studied in this context are of local nature, and their definitions do not depend on the identifiers or the network size. We leverage this independence to meet the above challenge and present
local
protocol complexes, whose sizes do not depend on the network size. As an application of the “compacted” protocol complexes, we reformulate the celebrated lower bound of
Ω
(
log
∗
n
)
rounds for 3-coloring the
n
-node ring in the topological framework. |
Author | Fraigniaud, Pierre Paz, Ami |
Author_xml | – sequence: 1 givenname: Pierre surname: Fraigniaud fullname: Fraigniaud, Pierre organization: Institut de Recherche en Informatique Fondamentale, CNRS, Université Paris Cité – sequence: 2 givenname: Ami orcidid: 0000-0002-6629-8335 surname: Paz fullname: Paz, Ami email: ami.paz@lisn.fr organization: Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS, Université Paris-Saclay |
BookMark | eNp9jz1PwzAURS1UJErpH2DKjgz280ecEVVAkSqxlNlyHDsEUjuyU6H-ewJBjEzvDu9c3XOJFiEGh9A1JbeUkPIuc8qlwgQ4JoQqgeUZWgKTJaYl44u_DPICrXPuasIoSCYlXaKb_ZsrxjjEPranIvqij9b0hY2H4Th2oS26UAQ3fsb0ka_QuTd9duvfu0Kvjw_7zRbvXp6eN_c7bIEJiX3dNMxC42vPHasaKZRgwhjhlbQVc7UD7qXnIOqmBuqsIUBMpcAoYMYAWyGYe22KOSfn9ZC6g0knTYn-NtazsZ6M9Y-xlhPEZihPz6F1Sb_HYwrTzv-oLyv6Wu4 |
Cites_doi | 10.1137/0221015 10.1007/s00446-010-0108-2 10.1145/2108242.2108245 10.1137/S0097539793254571 10.1016/j.tcs.2020.10.012 10.1007/s00446-018-0328-4 10.1145/331524.331529 10.1007/PL00008933 10.1145/3149.214121 10.1137/16M1081439 10.1145/2431211.2431223 10.1137/S0097539796307698 10.1137/S0097539701397412 10.1145/277697.277722 10.1137/1.9780898719772 10.1145/2611462.2611505 10.1145/3519270.3538422 10.1145/2332432.2332483 10.1016/B978-0-12-404578-1.00003-6 10.1109/FOCS.2019.00037 10.1145/3293611.3331611 10.1145/258533.258652 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s41468-024-00185-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2367-1734 |
EndPage | 1098 |
ExternalDocumentID | 10_1007_s41468_024_00185_6 |
GrantInformation_xml | – fundername: ANR grantid: 20-CE48-0006 |
GroupedDBID | -EM 0R~ 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYUE ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFQWF AGDGC AGMZJ AGQEE AGRTI AHKAY AHSBF AIAKS AIGIU AILAN AITGF AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FIGPU FINBP FNLPD FSGXE GGCAI IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c2356-fbdd3c2dfbf4e39d658535aa5f86c93ebe24f6f425bdb21eca020a982a823aa23 |
ISSN | 2367-1726 |
IngestDate | Tue Jul 01 03:06:33 EDT 2025 Fri Feb 21 02:37:54 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Theory of computation Distributed graph algorithms Combinatorial topology Distributed computing Distributed algorithms |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2356-fbdd3c2dfbf4e39d658535aa5f86c93ebe24f6f425bdb21eca020a982a823aa23 |
ORCID | 0000-0002-6629-8335 |
OpenAccessLink | https://hal.science/hal-04799384v1/file/2003.03255v2.pdf |
PageCount | 30 |
ParticipantIDs | crossref_primary_10_1007_s41468_024_00185_6 springer_journals_10_1007_s41468_024_00185_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Journal of applied and computational topology |
PublicationTitleAbbrev | J Appl. and Comput. Topology |
PublicationYear | 2024 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Attiya, Castañeda, Herlihy, Paz (CR1) 2019; 48 CR2 Linial (CR20) 1992; 21 CR4 CR19 Saks, Zaharoglou (CR23) 2000; 29 Naor, Stockmeyer (CR21) 1995; 24 CR16 Suomela (CR24) 2013; 45 Castañeda, Fraigniaud, Paz, Rajsbaum, Roy, Travers (CR7) 2021; 849 CR15 CR14 CR13 CR12 CR22 CR10 Fischer, Lynch, Paterson (CR9) 1985; 32 Hoest, Shavit (CR18) 2006; 36 Castañeda, Rajsbaum (CR6) 2012; 59 Fajstrup (CR8) 2016 Goubault, Mimram, Tasson (CR11) 2018; 31 Herlihy, Shavit (CR17) 1999; 46 Castañeda, Rajsbaum (CR5) 2010; 22 Borowsky, Gafni, Lynch, Rajsbaum (CR3) 2001; 14 185_CR12 185_CR22 185_CR14 185_CR4 MJ Fischer (185_CR9) 1985; 32 185_CR13 185_CR16 185_CR2 185_CR15 A Castañeda (185_CR6) 2012; 59 N Linial (185_CR20) 1992; 21 185_CR19 H Attiya (185_CR1) 2019; 48 E Borowsky (185_CR3) 2001; 14 A Castañeda (185_CR5) 2010; 22 G Hoest (185_CR18) 2006; 36 ME Saks (185_CR23) 2000; 29 É Goubault (185_CR11) 2018; 31 A Castañeda (185_CR7) 2021; 849 M Naor (185_CR21) 1995; 24 L Fajstrup (185_CR8) 2016 J Suomela (185_CR24) 2013; 45 185_CR10 M Herlihy (185_CR17) 1999; 46 |
References_xml | – ident: CR22 – ident: CR19 – volume: 21 start-page: 193 issue: 1 year: 1992 end-page: 201 ident: CR20 article-title: Locality in distributed graph algorithms publication-title: SIAM J. Comput. doi: 10.1137/0221015 – volume: 22 start-page: 287 issue: 5–6 year: 2010 end-page: 301 ident: CR5 article-title: New combinatorial topology bounds for renaming: the lower bound publication-title: Distrib. Comput. doi: 10.1007/s00446-010-0108-2 – volume: 59 start-page: 3:1 issue: 1 year: 2012 end-page: 3:49 ident: CR6 article-title: New combinatorial topology bounds for renaming: the upper bound publication-title: J. ACM doi: 10.1145/2108242.2108245 – volume: 24 start-page: 1259 issue: 6 year: 1995 end-page: 1277 ident: CR21 article-title: What can be computed locally? publication-title: SIAM J. Comput. doi: 10.1137/S0097539793254571 – volume: 849 start-page: 121 year: 2021 end-page: 137 ident: CR7 article-title: A topological perspective on distributed network algorithms publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.10.012 – ident: CR4 – volume: 31 start-page: 289 issue: 4 year: 2018 end-page: 316 ident: CR11 article-title: Geometric and combinatorial views on asynchronous computability publication-title: Distrib. Comput. doi: 10.1007/s00446-018-0328-4 – ident: CR14 – ident: CR15 – ident: CR2 – ident: CR16 – volume: 46 start-page: 858 issue: 6 year: 1999 end-page: 923 ident: CR17 article-title: The topological structure of asynchronous computability publication-title: J. ACM doi: 10.1145/331524.331529 – ident: CR12 – volume: 14 start-page: 127 issue: 3 year: 2001 end-page: 146 ident: CR3 article-title: The BG distributed simulation algorithm publication-title: Distrib. Comput. doi: 10.1007/PL00008933 – ident: CR13 – volume: 32 start-page: 374 issue: 2 year: 1985 end-page: 382 ident: CR9 article-title: Impossibility of distributed consensus with one faulty process publication-title: J. ACM doi: 10.1145/3149.214121 – ident: CR10 – volume: 48 start-page: 1 issue: 1 year: 2019 end-page: 32 ident: CR1 article-title: Bounds on the step and namespace complexity of renaming publication-title: SIAM J. Comput. doi: 10.1137/16M1081439 – year: 2016 ident: CR8 publication-title: Eric Goubault – volume: 45 start-page: 24:1 issue: 2 year: 2013 end-page: 24:40 ident: CR24 article-title: Survey of local algorithms publication-title: ACM Comput. Surv. doi: 10.1145/2431211.2431223 – volume: 29 start-page: 1449 issue: 5 year: 2000 end-page: 1483 ident: CR23 article-title: Wait-free k-set agreement is impossible: the topology of public knowledge publication-title: SIAM J. Comput. doi: 10.1137/S0097539796307698 – volume: 36 start-page: 457 issue: 2 year: 2006 end-page: 497 ident: CR18 article-title: Toward a topological characterization of asynchronous complexity publication-title: SIAM J. Comput. doi: 10.1137/S0097539701397412 – ident: 185_CR14 doi: 10.1145/277697.277722 – ident: 185_CR22 doi: 10.1137/1.9780898719772 – volume: 36 start-page: 457 issue: 2 year: 2006 ident: 185_CR18 publication-title: SIAM J. Comput. doi: 10.1137/S0097539701397412 – volume: 14 start-page: 127 issue: 3 year: 2001 ident: 185_CR3 publication-title: Distrib. Comput. doi: 10.1007/PL00008933 – ident: 185_CR19 doi: 10.1145/2611462.2611505 – volume: 21 start-page: 193 issue: 1 year: 1992 ident: 185_CR20 publication-title: SIAM J. Comput. doi: 10.1137/0221015 – ident: 185_CR10 doi: 10.1145/3519270.3538422 – volume-title: Eric Goubault year: 2016 ident: 185_CR8 – volume: 29 start-page: 1449 issue: 5 year: 2000 ident: 185_CR23 publication-title: SIAM J. Comput. doi: 10.1137/S0097539796307698 – volume: 48 start-page: 1 issue: 1 year: 2019 ident: 185_CR1 publication-title: SIAM J. Comput. doi: 10.1137/16M1081439 – volume: 22 start-page: 287 issue: 5–6 year: 2010 ident: 185_CR5 publication-title: Distrib. Comput. doi: 10.1007/s00446-010-0108-2 – ident: 185_CR15 doi: 10.1145/2332432.2332483 – ident: 185_CR13 doi: 10.1016/B978-0-12-404578-1.00003-6 – ident: 185_CR2 doi: 10.1109/FOCS.2019.00037 – volume: 849 start-page: 121 year: 2021 ident: 185_CR7 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2020.10.012 – volume: 46 start-page: 858 issue: 6 year: 1999 ident: 185_CR17 publication-title: J. ACM doi: 10.1145/331524.331529 – volume: 24 start-page: 1259 issue: 6 year: 1995 ident: 185_CR21 publication-title: SIAM J. Comput. doi: 10.1137/S0097539793254571 – volume: 45 start-page: 24:1 issue: 2 year: 2013 ident: 185_CR24 publication-title: ACM Comput. Surv. doi: 10.1145/2431211.2431223 – volume: 31 start-page: 289 issue: 4 year: 2018 ident: 185_CR11 publication-title: Distrib. Comput. doi: 10.1007/s00446-018-0328-4 – ident: 185_CR12 – ident: 185_CR4 doi: 10.1145/3293611.3331611 – volume: 32 start-page: 374 issue: 2 year: 1985 ident: 185_CR9 publication-title: J. ACM doi: 10.1145/3149.214121 – volume: 59 start-page: 3:1 issue: 1 year: 2012 ident: 185_CR6 publication-title: J. ACM doi: 10.1145/2108242.2108245 – ident: 185_CR16 doi: 10.1145/258533.258652 |
SSID | ssib031263661 ssj0002734731 |
Score | 2.2672234 |
Snippet | For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
StartPage | 1069 |
SubjectTerms | Algebraic Topology Computational Science and Engineering Mathematical and Computational Biology Mathematics Mathematics and Statistics |
Title | The topology of local computing in networks |
URI | https://link.springer.com/article/10.1007/s41468-024-00185-6 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWBAPEV5KQMbBCV24iZji6gqpFYMrdQtsmMbFYkUtenCr-fiOI9SiihLFFmXKM53Od9d7jsjdKvalIaCC5t4GSUn9InNZODYQmKHKCZFm2eB4mBI-2PveeJPqvYEml2S8of480deyX9QhTHANWPJboFseVMYgHPAF46AMBz_jHGa73Kgf5TrhUlXiS9Tw1VJ8jLvxQYnlBkn1LDb4LoiOVjctwR4zqavyZQtc8cTVtOqbPaF6TR0531aTyJgr6ySWk0ifktDVpmwyiplHd9s8HpM_-r6mMlKGrMa1LTHq5lIiEHD2nLrOvku1GumPK_eWHiaG6Yf2XEzokS1cJXlhGXrZS0cgXCkhSO6i5oY4gfcQM1Or9sdFqaGuJgSaii9b6bLT1vvXllO0FCsNNFy7SlW3ZjVf-jaNRkdogMDp9XJFeQI7cjkGO0Pyoa8ixOUVdZYBaTWTFlaVaxSVaxpYhWqcorGvafRY982-2TYMSY-tRUXgsRYKK48SUIBTqVPfMZ8FdA4JPCZYk9RBdaZC45dGTOIEVgYYBZgwhgmZ6iRzBJ5jixK4pAKX7gB5R6HWJyDPx2AaVbMYUw6LXRXTDv6yNuhRJvffgvdF28mMp_N4hfxi-3EL9FepcpXqJHOl_IaPMSU3xi0vwCrG2Bt |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+topology+of+local+computing+in+networks&rft.jtitle=Journal+of+applied+and+computational+topology&rft.au=Fraigniaud%2C+Pierre&rft.au=Paz%2C+Ami&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2367-1726&rft.eissn=2367-1734&rft.volume=8&rft.issue=4&rft.spage=1069&rft.epage=1098&rft_id=info:doi/10.1007%2Fs41468-024-00185-6&rft.externalDocID=10_1007_s41468_024_00185_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-1726&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-1726&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-1726&client=summon |