The topology of local computing in networks

For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typical...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied and computational topology Vol. 8; no. 4; pp. 1069 - 1098
Main Authors Fraigniaud, Pierre, Paz, Ami
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typically a shared memory consisting of a collection of read-write registers) or message-passing enabling direct communication between any pair of processes. This paper aims to examine the use of protocol complexes in the study of network computing. In this case, processes are located at the network nodes and communicate by exchanging messages only along the network’s edges (i.e., not every pair of processes can directly communicate). There are several reasons why applying the topological approach to network computing can be challenging, and a prominent one is that node identifiers yield protocol complexes whose sizes grow exponentially with the size of the underlying network. However, many of the problems studied in this context are of local nature, and their definitions do not depend on the identifiers or the network size. We leverage this independence to meet the above challenge and present local protocol complexes, whose sizes do not depend on the network size. As an application of the “compacted” protocol complexes, we reformulate the celebrated lower bound of Ω ( log ∗ n ) rounds for 3-coloring the n -node ring in the topological framework.
AbstractList For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes and directed algebraic topology. In both cases, the considered computational model generally assumes communication via shared objects (typically a shared memory consisting of a collection of read-write registers) or message-passing enabling direct communication between any pair of processes. This paper aims to examine the use of protocol complexes in the study of network computing. In this case, processes are located at the network nodes and communicate by exchanging messages only along the network’s edges (i.e., not every pair of processes can directly communicate). There are several reasons why applying the topological approach to network computing can be challenging, and a prominent one is that node identifiers yield protocol complexes whose sizes grow exponentially with the size of the underlying network. However, many of the problems studied in this context are of local nature, and their definitions do not depend on the identifiers or the network size. We leverage this independence to meet the above challenge and present local protocol complexes, whose sizes do not depend on the network size. As an application of the “compacted” protocol complexes, we reformulate the celebrated lower bound of Ω ( log ∗ n ) rounds for 3-coloring the n -node ring in the topological framework.
Author Fraigniaud, Pierre
Paz, Ami
Author_xml – sequence: 1
  givenname: Pierre
  surname: Fraigniaud
  fullname: Fraigniaud, Pierre
  organization: Institut de Recherche en Informatique Fondamentale, CNRS, Université Paris Cité
– sequence: 2
  givenname: Ami
  orcidid: 0000-0002-6629-8335
  surname: Paz
  fullname: Paz, Ami
  email: ami.paz@lisn.fr
  organization: Laboratoire Interdisciplinaire des Sciences du Numérique, CNRS, Université Paris-Saclay
BookMark eNp9jz1PwzAURS1UJErpH2DKjgz280ecEVVAkSqxlNlyHDsEUjuyU6H-ewJBjEzvDu9c3XOJFiEGh9A1JbeUkPIuc8qlwgQ4JoQqgeUZWgKTJaYl44u_DPICrXPuasIoSCYlXaKb_ZsrxjjEPranIvqij9b0hY2H4Th2oS26UAQ3fsb0ka_QuTd9duvfu0Kvjw_7zRbvXp6eN_c7bIEJiX3dNMxC42vPHasaKZRgwhjhlbQVc7UD7qXnIOqmBuqsIUBMpcAoYMYAWyGYe22KOSfn9ZC6g0knTYn-NtazsZ6M9Y-xlhPEZihPz6F1Sb_HYwrTzv-oLyv6Wu4
Cites_doi 10.1137/0221015
10.1007/s00446-010-0108-2
10.1145/2108242.2108245
10.1137/S0097539793254571
10.1016/j.tcs.2020.10.012
10.1007/s00446-018-0328-4
10.1145/331524.331529
10.1007/PL00008933
10.1145/3149.214121
10.1137/16M1081439
10.1145/2431211.2431223
10.1137/S0097539796307698
10.1137/S0097539701397412
10.1145/277697.277722
10.1137/1.9780898719772
10.1145/2611462.2611505
10.1145/3519270.3538422
10.1145/2332432.2332483
10.1016/B978-0-12-404578-1.00003-6
10.1109/FOCS.2019.00037
10.1145/3293611.3331611
10.1145/258533.258652
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s41468-024-00185-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2367-1734
EndPage 1098
ExternalDocumentID 10_1007_s41468_024_00185_6
GrantInformation_xml – fundername: ANR
  grantid: 20-CE48-0006
GroupedDBID -EM
0R~
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYUE
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AGRTI
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c2356-fbdd3c2dfbf4e39d658535aa5f86c93ebe24f6f425bdb21eca020a982a823aa23
ISSN 2367-1726
IngestDate Tue Jul 01 03:06:33 EDT 2025
Fri Feb 21 02:37:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Theory of computation
Distributed graph algorithms
Combinatorial topology
Distributed computing
Distributed algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2356-fbdd3c2dfbf4e39d658535aa5f86c93ebe24f6f425bdb21eca020a982a823aa23
ORCID 0000-0002-6629-8335
OpenAccessLink https://hal.science/hal-04799384v1/file/2003.03255v2.pdf
PageCount 30
ParticipantIDs crossref_primary_10_1007_s41468_024_00185_6
springer_journals_10_1007_s41468_024_00185_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Journal of applied and computational topology
PublicationTitleAbbrev J Appl. and Comput. Topology
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Attiya, Castañeda, Herlihy, Paz (CR1) 2019; 48
CR2
Linial (CR20) 1992; 21
CR4
CR19
Saks, Zaharoglou (CR23) 2000; 29
Naor, Stockmeyer (CR21) 1995; 24
CR16
Suomela (CR24) 2013; 45
Castañeda, Fraigniaud, Paz, Rajsbaum, Roy, Travers (CR7) 2021; 849
CR15
CR14
CR13
CR12
CR22
CR10
Fischer, Lynch, Paterson (CR9) 1985; 32
Hoest, Shavit (CR18) 2006; 36
Castañeda, Rajsbaum (CR6) 2012; 59
Fajstrup (CR8) 2016
Goubault, Mimram, Tasson (CR11) 2018; 31
Herlihy, Shavit (CR17) 1999; 46
Castañeda, Rajsbaum (CR5) 2010; 22
Borowsky, Gafni, Lynch, Rajsbaum (CR3) 2001; 14
185_CR12
185_CR22
185_CR14
185_CR4
MJ Fischer (185_CR9) 1985; 32
185_CR13
185_CR16
185_CR2
185_CR15
A Castañeda (185_CR6) 2012; 59
N Linial (185_CR20) 1992; 21
185_CR19
H Attiya (185_CR1) 2019; 48
E Borowsky (185_CR3) 2001; 14
A Castañeda (185_CR5) 2010; 22
G Hoest (185_CR18) 2006; 36
ME Saks (185_CR23) 2000; 29
É Goubault (185_CR11) 2018; 31
A Castañeda (185_CR7) 2021; 849
M Naor (185_CR21) 1995; 24
L Fajstrup (185_CR8) 2016
J Suomela (185_CR24) 2013; 45
185_CR10
M Herlihy (185_CR17) 1999; 46
References_xml – ident: CR22
– ident: CR19
– volume: 21
  start-page: 193
  issue: 1
  year: 1992
  end-page: 201
  ident: CR20
  article-title: Locality in distributed graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221015
– volume: 22
  start-page: 287
  issue: 5–6
  year: 2010
  end-page: 301
  ident: CR5
  article-title: New combinatorial topology bounds for renaming: the lower bound
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-010-0108-2
– volume: 59
  start-page: 3:1
  issue: 1
  year: 2012
  end-page: 3:49
  ident: CR6
  article-title: New combinatorial topology bounds for renaming: the upper bound
  publication-title: J. ACM
  doi: 10.1145/2108242.2108245
– volume: 24
  start-page: 1259
  issue: 6
  year: 1995
  end-page: 1277
  ident: CR21
  article-title: What can be computed locally?
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793254571
– volume: 849
  start-page: 121
  year: 2021
  end-page: 137
  ident: CR7
  article-title: A topological perspective on distributed network algorithms
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.10.012
– ident: CR4
– volume: 31
  start-page: 289
  issue: 4
  year: 2018
  end-page: 316
  ident: CR11
  article-title: Geometric and combinatorial views on asynchronous computability
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-018-0328-4
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR16
– volume: 46
  start-page: 858
  issue: 6
  year: 1999
  end-page: 923
  ident: CR17
  article-title: The topological structure of asynchronous computability
  publication-title: J. ACM
  doi: 10.1145/331524.331529
– ident: CR12
– volume: 14
  start-page: 127
  issue: 3
  year: 2001
  end-page: 146
  ident: CR3
  article-title: The BG distributed simulation algorithm
  publication-title: Distrib. Comput.
  doi: 10.1007/PL00008933
– ident: CR13
– volume: 32
  start-page: 374
  issue: 2
  year: 1985
  end-page: 382
  ident: CR9
  article-title: Impossibility of distributed consensus with one faulty process
  publication-title: J. ACM
  doi: 10.1145/3149.214121
– ident: CR10
– volume: 48
  start-page: 1
  issue: 1
  year: 2019
  end-page: 32
  ident: CR1
  article-title: Bounds on the step and namespace complexity of renaming
  publication-title: SIAM J. Comput.
  doi: 10.1137/16M1081439
– year: 2016
  ident: CR8
  publication-title: Eric Goubault
– volume: 45
  start-page: 24:1
  issue: 2
  year: 2013
  end-page: 24:40
  ident: CR24
  article-title: Survey of local algorithms
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431223
– volume: 29
  start-page: 1449
  issue: 5
  year: 2000
  end-page: 1483
  ident: CR23
  article-title: Wait-free k-set agreement is impossible: the topology of public knowledge
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796307698
– volume: 36
  start-page: 457
  issue: 2
  year: 2006
  end-page: 497
  ident: CR18
  article-title: Toward a topological characterization of asynchronous complexity
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701397412
– ident: 185_CR14
  doi: 10.1145/277697.277722
– ident: 185_CR22
  doi: 10.1137/1.9780898719772
– volume: 36
  start-page: 457
  issue: 2
  year: 2006
  ident: 185_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539701397412
– volume: 14
  start-page: 127
  issue: 3
  year: 2001
  ident: 185_CR3
  publication-title: Distrib. Comput.
  doi: 10.1007/PL00008933
– ident: 185_CR19
  doi: 10.1145/2611462.2611505
– volume: 21
  start-page: 193
  issue: 1
  year: 1992
  ident: 185_CR20
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221015
– ident: 185_CR10
  doi: 10.1145/3519270.3538422
– volume-title: Eric Goubault
  year: 2016
  ident: 185_CR8
– volume: 29
  start-page: 1449
  issue: 5
  year: 2000
  ident: 185_CR23
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796307698
– volume: 48
  start-page: 1
  issue: 1
  year: 2019
  ident: 185_CR1
  publication-title: SIAM J. Comput.
  doi: 10.1137/16M1081439
– volume: 22
  start-page: 287
  issue: 5–6
  year: 2010
  ident: 185_CR5
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-010-0108-2
– ident: 185_CR15
  doi: 10.1145/2332432.2332483
– ident: 185_CR13
  doi: 10.1016/B978-0-12-404578-1.00003-6
– ident: 185_CR2
  doi: 10.1109/FOCS.2019.00037
– volume: 849
  start-page: 121
  year: 2021
  ident: 185_CR7
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2020.10.012
– volume: 46
  start-page: 858
  issue: 6
  year: 1999
  ident: 185_CR17
  publication-title: J. ACM
  doi: 10.1145/331524.331529
– volume: 24
  start-page: 1259
  issue: 6
  year: 1995
  ident: 185_CR21
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793254571
– volume: 45
  start-page: 24:1
  issue: 2
  year: 2013
  ident: 185_CR24
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431223
– volume: 31
  start-page: 289
  issue: 4
  year: 2018
  ident: 185_CR11
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-018-0328-4
– ident: 185_CR12
– ident: 185_CR4
  doi: 10.1145/3293611.3331611
– volume: 32
  start-page: 374
  issue: 2
  year: 1985
  ident: 185_CR9
  publication-title: J. ACM
  doi: 10.1145/3149.214121
– volume: 59
  start-page: 3:1
  issue: 1
  year: 2012
  ident: 185_CR6
  publication-title: J. ACM
  doi: 10.1145/2108242.2108245
– ident: 185_CR16
  doi: 10.1145/258533.258652
SSID ssib031263661
ssj0002734731
Score 2.2672234
Snippet For more than three decades, distributed systems have been described and analyzed using topological tools, primarily using two techniques: protocol complexes...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 1069
SubjectTerms Algebraic Topology
Computational Science and Engineering
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Title The topology of local computing in networks
URI https://link.springer.com/article/10.1007/s41468-024-00185-6
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagXWBAPEV5KQMbBCV24iZji6gqpFYMrdQtsmMbFYkUtenCr-fiOI9SiihLFFmXKM53Od9d7jsjdKvalIaCC5t4GSUn9InNZODYQmKHKCZFm2eB4mBI-2PveeJPqvYEml2S8of480deyX9QhTHANWPJboFseVMYgHPAF46AMBz_jHGa73Kgf5TrhUlXiS9Tw1VJ8jLvxQYnlBkn1LDb4LoiOVjctwR4zqavyZQtc8cTVtOqbPaF6TR0531aTyJgr6ySWk0ifktDVpmwyiplHd9s8HpM_-r6mMlKGrMa1LTHq5lIiEHD2nLrOvku1GumPK_eWHiaG6Yf2XEzokS1cJXlhGXrZS0cgXCkhSO6i5oY4gfcQM1Or9sdFqaGuJgSaii9b6bLT1vvXllO0FCsNNFy7SlW3ZjVf-jaNRkdogMDp9XJFeQI7cjkGO0Pyoa8ixOUVdZYBaTWTFlaVaxSVaxpYhWqcorGvafRY982-2TYMSY-tRUXgsRYKK48SUIBTqVPfMZ8FdA4JPCZYk9RBdaZC45dGTOIEVgYYBZgwhgmZ6iRzBJ5jixK4pAKX7gB5R6HWJyDPx2AaVbMYUw6LXRXTDv6yNuhRJvffgvdF28mMp_N4hfxi-3EL9FepcpXqJHOl_IaPMSU3xi0vwCrG2Bt
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+topology+of+local+computing+in+networks&rft.jtitle=Journal+of+applied+and+computational+topology&rft.au=Fraigniaud%2C+Pierre&rft.au=Paz%2C+Ami&rft.date=2024-09-01&rft.pub=Springer+International+Publishing&rft.issn=2367-1726&rft.eissn=2367-1734&rft.volume=8&rft.issue=4&rft.spage=1069&rft.epage=1098&rft_id=info:doi/10.1007%2Fs41468-024-00185-6&rft.externalDocID=10_1007_s41468_024_00185_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2367-1726&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2367-1726&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2367-1726&client=summon