Determination of poly(dimethyl)siloxane–water partition coefficients for selected hydrophobic organic chemicals using 14C-labeled analogs

Aqueous solutions of 14C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)–water partition coefficients ( K f values) wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of Chromatography A Vol. 1148; no. 1; pp. 23 - 30
Main Authors Yang, Ze-Yu, Greenstein, Darrin, Zeng, Eddy Y., Maruya, Keith A.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 27.04.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9673
DOI10.1016/j.chroma.2007.02.098

Cover

Loading…
Abstract Aqueous solutions of 14C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)–water partition coefficients ( K f values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p′-DDT and p,p′-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K f values based on 14C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.
AbstractList Aqueous solutions of 14C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)–water partition coefficients ( K f values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p′-DDT and p,p′-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K f values based on 14C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.
Aqueous solutions of (14)C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)-water partition coefficients (K(f) values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p'-DDT and p,p'-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K(f) values based on (14)C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.Aqueous solutions of (14)C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)-water partition coefficients (K(f) values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p'-DDT and p,p'-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K(f) values based on (14)C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.
Aqueous solutions of (14)C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static conditions to assess their multi-compartment distribution and to compare poly(dimethyl)siloxane (PDMS)-water partition coefficients (K(f) values) with previously reported values. To accomplish this, a protocol for quantitative desorption of radiolabelled HOCs from SPME fibers using hexane was developed. Time series extractions indicated that loading of SPME fibers had reached steady-state by day 8 for PCBs 52, 77 and 153, phenanthrene, benzo[a]pyrene, p,p'-DDT and p,p'-DDE. The recovery of spiked radioactivity among the (residual) aqueous phase, the PDMS coating, and all remaining wetted experimental surfaces ranged between 80 and 120%. K(f) values based on (14)C-labeled analogs were in good agreement with previously published values that were determined at (or closely approaching) equilibrium conditions and without significant chemical depletion and/or uncorrected system losses. Because it allows for the direct determination of HOCs associated with the residual aqueous and experimental surface compartments, the use of radiolabelled HOC analogs is a powerful tool in discriminating among competing sorptive compartments encountered in most SPME fiber calibration methodologies employed to date.
Author Zeng, Eddy Y.
Maruya, Keith A.
Greenstein, Darrin
Yang, Ze-Yu
Author_xml – sequence: 1
  givenname: Ze-Yu
  surname: Yang
  fullname: Yang, Ze-Yu
  organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 2
  givenname: Darrin
  surname: Greenstein
  fullname: Greenstein, Darrin
  organization: Southern California Coastal Water Research Project, 3535 Harbor Boulevard Suite 110, Costa Mesa, California 92626, USA
– sequence: 3
  givenname: Eddy Y.
  surname: Zeng
  fullname: Zeng, Eddy Y.
  organization: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
– sequence: 4
  givenname: Keith A.
  surname: Maruya
  fullname: Maruya, Keith A.
  email: keithm@sccwrp.org
  organization: Southern California Coastal Water Research Project, 3535 Harbor Boulevard Suite 110, Costa Mesa, California 92626, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18660903$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17383665$$D View this record in MEDLINE/PubMed
BookMark eNqFkbuO1DAUhl0sYi_wBgi5AUExwZckTiiQ0HCVVqKB2nLs44lHjh3sDDAdPSVvyJPg2Rm0EgVUR0f6_l8657tEZyEGQOgBJRUltH22rfSY4qQqRoioCKtI352hC0IYXfWt4OfoMuctIVQQwe6icyp4x9u2uUA_XsECaXJBLS4GHC2eo98_MW6CZdz7p9n5-E0F-PX951dVSDyrtLgbVkew1mkHYcnYxoQzeNALGDzuTYrzGAencUwbFcrUI0xOK5_xLruwwbRer7waSsRgFZSPm3wP3bEFgPuneYU-vXn9cf1udf3h7fv1y-uVZrxpVgLqeujAEtEwO2ijlGFK8Lrs3DYN5bUaOiNqC6ojXdNb1vUUFO1N17Kha_kVenzsnVP8vIO8yMllDd6XO-MuS0F4LShrCvjwBO6GCYyck5tU2ss_7yvAoxOgcrnNJhW0y7dc17akJ7xw9ZHTKeacwN4iRB4Myq08GpQHg5IwWQyW2PO_YtotN6KWpJz_X_jFMQzllV8cJJkPrjQYl4omaaL7d8Fvqry_Aw
CODEN JOCRAM
CitedBy_id crossref_primary_10_1016_j_ecoenv_2018_02_061
crossref_primary_10_1016_j_chemosphere_2010_12_076
crossref_primary_10_1016_j_aca_2008_08_015
crossref_primary_10_1016_j_jes_2019_07_021
crossref_primary_10_1021_ac900315w
crossref_primary_10_1002_etc_564
crossref_primary_10_1002_etc_5333
crossref_primary_10_1016_j_chroma_2009_06_012
crossref_primary_10_1016_j_chemosphere_2017_07_159
crossref_primary_10_1016_j_chemosphere_2008_05_028
crossref_primary_10_1007_s10947_010_0128_6
crossref_primary_10_1016_j_chroma_2016_02_038
crossref_primary_10_1007_s13762_017_1590_x
crossref_primary_10_1016_j_chroma_2007_10_058
crossref_primary_10_1897_08_322R_1
crossref_primary_10_1021_cr100203t
crossref_primary_10_1016_j_chroma_2009_03_075
crossref_primary_10_1021_ac400589a
crossref_primary_10_1016_j_chemosphere_2016_02_122
crossref_primary_10_3390_w12030817
Cites_doi 10.1039/a806788k
10.1021/es025653p
10.1021/ac990102b
10.1021/es00169a004
10.1021/ac990948f
10.1021/ac990313g
10.1021/je60075a012
10.1016/S0045-6535(00)00082-5
10.1021/es00147a010
10.1016/S0021-9673(03)00538-7
10.1021/es001269l
10.1021/es00032a020
10.1016/j.chroma.2005.01.023
10.1021/ac970823f
10.1021/ac00218a019
10.1021/ac991395b
10.1021/es000038b
10.1016/S0378-4347(01)00048-2
10.1021/ac950862w
10.1016/S0021-9673(03)00600-9
10.1016/S0021-9673(97)01115-1
10.1039/a701303e
10.1002/etc.5620080607
10.1016/j.chroma.2006.03.029
10.1002/etc.5620151218
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.chroma.2007.02.098
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EndPage 30
ExternalDocumentID 17383665
18660903
10_1016_j_chroma_2007_02_098
S0021967307004335
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
AAYJJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FLBIZ
FNPLU
FYGXN
G-Q
G8K
GBLVA
HMU
HVGLF
HZ~
H~9
IH2
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
UQL
VH1
WH7
WUQ
XFK
XPP
YK3
ZGI
ZKB
ZMT
ZXP
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c2355-7e44b8ef0752fbcdaad2a7340753f55134ab8d74fea80859f2891ea19d862b863
IEDL.DBID AIKHN
ISSN 0021-9673
IngestDate Fri Jul 11 13:10:58 EDT 2025
Wed Feb 19 01:42:00 EST 2025
Mon Jul 21 09:12:25 EDT 2025
Tue Jul 01 03:49:19 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Fri Feb 23 02:25:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mass balance
Radiolabelled analogs
Poly(dimethyl)siloxane (PDMS)–water partition coefficient ( K f)
Solid-phase microextraction (SPME)
Hydrophobic organic chemicals (HOCs)
Water
Carbon Isotopes
Partition coefficient
Chemical enrichment
Sample preparation
Organochlorine compounds
Chlorocarbon
Radiopharmaceuticals
Carbon 14
Dimethylsiloxane polymer
Phenanthrene
Hydrocarbon
Coupled method
Hydrophobic compound
Polycyclic aromatic compound
Polychlorobiphenyl
Solid phase microextraction
Gas chromatography
Pollutant
Mass spectrometry
Poly(dimethyl)siloxane (PDMS)-water partition coefficient (Kf)
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2355-7e44b8ef0752fbcdaad2a7340753f55134ab8d74fea80859f2891ea19d862b863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17383665
PQID 70347125
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_70347125
pubmed_primary_17383665
pascalfrancis_primary_18660903
crossref_primary_10_1016_j_chroma_2007_02_098
crossref_citationtrail_10_1016_j_chroma_2007_02_098
elsevier_sciencedirect_doi_10_1016_j_chroma_2007_02_098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-Apr-27
PublicationDateYYYYMMDD 2007-04-27
PublicationDate_xml – month: 04
  year: 2007
  text: 2007-Apr-27
  day: 27
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of Chromatography A
PublicationTitleAlternate J Chromatogr A
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chiou, Malcolm, Brinton, Kile (bib10) 1986; 20
Zeng, Noblet (bib13) 2002; 36
Górecki, Khaled, Pawliszyn (bib21) 1998; 123
Yang, Zeng, Xia, Wang, Mai, Maruya (bib9) 2006; 1116
Paschke, Popp (bib8) 2003; 999
Langenfeld, Hawthorne, Miller (bib26) 1996; 68
Neff, Burns (bib29) 1996; 15
Benijts, Vercammen, Dams, Tuan, Lambert, Sandra (bib18) 2001; 755
Mackay, Shiu (bib24) 1977; 22
Zeng, Tsukad, Noblet, Peng (bib22) 2005; 1066
De Bruijn, Busser, Seinen, Hermens (bib28) 1989; 8
Yang, Hawthorne, Miller, Liu, Lee (bib16) 1998; 70
Shurmer, Pawliszyn (bib5) 2000; 72
Mayer, Vaes, Hermens (bib7) 2000; 72
Pawliszyn (bib2) 1997
Arthur, Pawliszyn (bib1) 1990; 62
Schwarzenbach (bib19) 1993
Lung, Yanagisawa, Ford, Spengler (bib3) 2000; 41
León, Álvarez, Cobollo, Muñoz, Valor (bib17) 2003; 999
Vaes, Mayer, Oomen, Hermens, Tolls (bib4) 2000; 72
Prager (bib25) 1998
Öberg (bib23) 2001; 14
Poerschmann, Górecki, Kopinke (bib6) 2000; 34
Chin, Gschwend (bib11) 1992; 26
Hawker, Connell (bib27) 1988; 22
Górecki, Pawliszyn (bib20) 1997; 122
Baltussen, Sandra, David, Janssen, Cramers (bib15) 1999; 71
Burkhard (bib12) 2000; 34
Yang, Miller, Hawthorne (bib14) 1998; 800
Chin (10.1016/j.chroma.2007.02.098_bib11) 1992; 26
Zeng (10.1016/j.chroma.2007.02.098_bib13) 2002; 36
Zeng (10.1016/j.chroma.2007.02.098_bib22) 2005; 1066
Mackay (10.1016/j.chroma.2007.02.098_bib24) 1977; 22
León (10.1016/j.chroma.2007.02.098_bib17) 2003; 999
De Bruijn (10.1016/j.chroma.2007.02.098_bib28) 1989; 8
Lung (10.1016/j.chroma.2007.02.098_bib3) 2000; 41
Górecki (10.1016/j.chroma.2007.02.098_bib20) 1997; 122
Chiou (10.1016/j.chroma.2007.02.098_bib10) 1986; 20
Burkhard (10.1016/j.chroma.2007.02.098_bib12) 2000; 34
Shurmer (10.1016/j.chroma.2007.02.098_bib5) 2000; 72
Yang (10.1016/j.chroma.2007.02.098_bib9) 2006; 1116
Hawker (10.1016/j.chroma.2007.02.098_bib27) 1988; 22
Baltussen (10.1016/j.chroma.2007.02.098_bib15) 1999; 71
Prager (10.1016/j.chroma.2007.02.098_bib25) 1998
Mayer (10.1016/j.chroma.2007.02.098_bib7) 2000; 72
Yang (10.1016/j.chroma.2007.02.098_bib16) 1998; 70
Vaes (10.1016/j.chroma.2007.02.098_bib4) 2000; 72
Górecki (10.1016/j.chroma.2007.02.098_bib21) 1998; 123
Paschke (10.1016/j.chroma.2007.02.098_bib8) 2003; 999
Yang (10.1016/j.chroma.2007.02.098_bib14) 1998; 800
Benijts (10.1016/j.chroma.2007.02.098_bib18) 2001; 755
Schwarzenbach (10.1016/j.chroma.2007.02.098_bib19) 1993
Neff (10.1016/j.chroma.2007.02.098_bib29) 1996; 15
Pawliszyn (10.1016/j.chroma.2007.02.098_bib2) 1997
Öberg (10.1016/j.chroma.2007.02.098_bib23) 2001; 14
Arthur (10.1016/j.chroma.2007.02.098_bib1) 1990; 62
Poerschmann (10.1016/j.chroma.2007.02.098_bib6) 2000; 34
Langenfeld (10.1016/j.chroma.2007.02.098_bib26) 1996; 68
References_xml – volume: 26
  start-page: 1621
  year: 1992
  ident: bib11
  publication-title: Environ. Sci. Technol.
– volume: 1116
  start-page: 240
  year: 2006
  ident: bib9
  publication-title: J. Chromatogr. A
– volume: 41
  start-page: 1857
  year: 2000
  ident: bib3
  publication-title: Chemosphere
– volume: 123
  start-page: 2819
  year: 1998
  ident: bib21
  publication-title: Analyst
– volume: 999
  start-page: 35
  year: 2003
  ident: bib8
  publication-title: J. Chromatogr. A
– volume: 72
  start-page: 639
  year: 2000
  ident: bib4
  publication-title: Anal. Chem.
– volume: 14
  year: 2001
  ident: bib23
  publication-title: Int. J. Chem.
– year: 1997
  ident: bib2
  article-title: Solid Phase Microextraction: Theory and Practice
– volume: 72
  start-page: 3660
  year: 2000
  ident: bib5
  publication-title: Anal. Chem.
– volume: 34
  start-page: 4663
  year: 2000
  ident: bib12
  publication-title: Environ. Sci. Technol.
– volume: 70
  start-page: 1866
  year: 1998
  ident: bib16
  publication-title: Anal. Chem.
– volume: 755
  start-page: 137
  year: 2001
  ident: bib18
  publication-title: J. Chromatogr. B
– volume: 72
  start-page: 459
  year: 2000
  ident: bib7
  publication-title: Anal. Chem.
– volume: 36
  start-page: 3385
  year: 2002
  ident: bib13
  publication-title: Environ. Sci. Technol.
– volume: 15
  start-page: 2240
  year: 1996
  ident: bib29
  publication-title: Environ. Toxicol. Chem.
– volume: 34
  start-page: 3824
  year: 2000
  ident: bib6
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 144
  year: 1996
  ident: bib26
  publication-title: Anal. Chem.
– volume: 62
  start-page: 2145
  year: 1990
  ident: bib1
  publication-title: Anal. Chem.
– volume: 20
  start-page: 502
  year: 1986
  ident: bib10
  publication-title: Environ. Sci. Technol.
– year: 1993
  ident: bib19
  article-title: Environmental Organic Chemistry
– volume: 22
  start-page: 399
  year: 1977
  ident: bib24
  publication-title: J. Chem. Eng. Data
– volume: 22
  start-page: 382
  year: 1988
  ident: bib27
  publication-title: Environ. Sci. Technol.
– volume: 800
  start-page: 257
  year: 1998
  ident: bib14
  publication-title: J. Chromatogr. A
– volume: 8
  start-page: 499
  year: 1989
  ident: bib28
  publication-title: Environ. Toxicol. Chem.
– volume: 1066
  start-page: 165
  year: 2005
  ident: bib22
  publication-title: J. Chromatogr. A
– volume: 122
  start-page: 1079
  year: 1997
  ident: bib20
  publication-title: Analyst
– volume: 999
  start-page: 91
  year: 2003
  ident: bib17
  publication-title: J. Chromatogr. A
– volume: 71
  start-page: 5213
  year: 1999
  ident: bib15
  publication-title: Anal. Chem.
– year: 1998
  ident: bib25
  article-title: Environmental Contaminant Reference Databook
– volume: 123
  start-page: 2819
  year: 1998
  ident: 10.1016/j.chroma.2007.02.098_bib21
  publication-title: Analyst
  doi: 10.1039/a806788k
– volume: 36
  start-page: 3385
  year: 2002
  ident: 10.1016/j.chroma.2007.02.098_bib13
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025653p
– volume: 72
  start-page: 639
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib4
  publication-title: Anal. Chem.
  doi: 10.1021/ac990102b
– volume: 22
  start-page: 382
  year: 1988
  ident: 10.1016/j.chroma.2007.02.098_bib27
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00169a004
– volume: 72
  start-page: 459
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib7
  publication-title: Anal. Chem.
  doi: 10.1021/ac990948f
– year: 1997
  ident: 10.1016/j.chroma.2007.02.098_bib2
– volume: 71
  start-page: 5213
  year: 1999
  ident: 10.1016/j.chroma.2007.02.098_bib15
  publication-title: Anal. Chem.
  doi: 10.1021/ac990313g
– volume: 22
  start-page: 399
  year: 1977
  ident: 10.1016/j.chroma.2007.02.098_bib24
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je60075a012
– year: 1998
  ident: 10.1016/j.chroma.2007.02.098_bib25
– volume: 41
  start-page: 1857
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib3
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(00)00082-5
– volume: 20
  start-page: 502
  year: 1986
  ident: 10.1016/j.chroma.2007.02.098_bib10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00147a010
– volume: 999
  start-page: 35
  year: 2003
  ident: 10.1016/j.chroma.2007.02.098_bib8
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(03)00538-7
– volume: 34
  start-page: 4663
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001269l
– volume: 26
  start-page: 1621
  year: 1992
  ident: 10.1016/j.chroma.2007.02.098_bib11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00032a020
– volume: 1066
  start-page: 165
  year: 2005
  ident: 10.1016/j.chroma.2007.02.098_bib22
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2005.01.023
– volume: 70
  start-page: 1866
  year: 1998
  ident: 10.1016/j.chroma.2007.02.098_bib16
  publication-title: Anal. Chem.
  doi: 10.1021/ac970823f
– year: 1993
  ident: 10.1016/j.chroma.2007.02.098_bib19
– volume: 62
  start-page: 2145
  year: 1990
  ident: 10.1016/j.chroma.2007.02.098_bib1
  publication-title: Anal. Chem.
  doi: 10.1021/ac00218a019
– volume: 14
  year: 2001
  ident: 10.1016/j.chroma.2007.02.098_bib23
  publication-title: Int. J. Chem.
– volume: 72
  start-page: 3660
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib5
  publication-title: Anal. Chem.
  doi: 10.1021/ac991395b
– volume: 34
  start-page: 3824
  year: 2000
  ident: 10.1016/j.chroma.2007.02.098_bib6
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es000038b
– volume: 755
  start-page: 137
  year: 2001
  ident: 10.1016/j.chroma.2007.02.098_bib18
  publication-title: J. Chromatogr. B
  doi: 10.1016/S0378-4347(01)00048-2
– volume: 68
  start-page: 144
  year: 1996
  ident: 10.1016/j.chroma.2007.02.098_bib26
  publication-title: Anal. Chem.
  doi: 10.1021/ac950862w
– volume: 999
  start-page: 91
  year: 2003
  ident: 10.1016/j.chroma.2007.02.098_bib17
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(03)00600-9
– volume: 800
  start-page: 257
  year: 1998
  ident: 10.1016/j.chroma.2007.02.098_bib14
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(97)01115-1
– volume: 122
  start-page: 1079
  year: 1997
  ident: 10.1016/j.chroma.2007.02.098_bib20
  publication-title: Analyst
  doi: 10.1039/a701303e
– volume: 8
  start-page: 499
  year: 1989
  ident: 10.1016/j.chroma.2007.02.098_bib28
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620080607
– volume: 1116
  start-page: 240
  year: 2006
  ident: 10.1016/j.chroma.2007.02.098_bib9
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2006.03.029
– volume: 15
  start-page: 2240
  year: 1996
  ident: 10.1016/j.chroma.2007.02.098_bib29
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.5620151218
SSID ssj0017072
ssj0029838
Score 1.8339213
Snippet Aqueous solutions of 14C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static...
Aqueous solutions of (14)C-labeled analogs of seven hydrophobic organic chemicals (HOCs) were subject to solid-phase microextraction (SPME) under static...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms Analytical chemistry
Carbon Radioisotopes
Chemistry
Chromatographic methods and physical methods associated with chromatography
Dimethylpolysiloxanes - chemistry
Exact sciences and technology
Gas chromatographic methods
Gas Chromatography-Mass Spectrometry
Hydrophobic and Hydrophilic Interactions
Hydrophobic organic chemicals (HOCs)
Kinetics
Mass balance
Organic Chemicals - analysis
Organic Chemicals - chemistry
Poly(dimethyl)siloxane (PDMS)–water partition coefficient ( Kf)
Radiolabelled analogs
Reproducibility of Results
Solid Phase Microextraction
Solid-phase microextraction (SPME)
Water - chemistry
Title Determination of poly(dimethyl)siloxane–water partition coefficients for selected hydrophobic organic chemicals using 14C-labeled analogs
URI https://dx.doi.org/10.1016/j.chroma.2007.02.098
https://www.ncbi.nlm.nih.gov/pubmed/17383665
https://www.proquest.com/docview/70347125
Volume 1148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QGkCvFmeSw-cIBDaBLbsXOsFqqFFT0gKnqLHD_YRask2rQqe0HcOfIP-SXMxMlWPVSVOEWKMkriGY8_2-PvI-SV8iKNhcXDMZJFPOeQB1miI2e8ECY2ACFwHfLTcTY74R9PxekOmQ5nYbCsss_9Iad32bq_c9C35kGzXOIZX-htmcSgRRYusUv2UpZnakT2Dj_MZ8fbzQQZyy2lVJorFrIzliaA9XCcrqv5Mot1HdiIZMfkmavrhqv9RrfQiD6oX1wPT7th6uguudPjS3oYfuEe2XHVfXJrOsi6PSC_3w0FMOgSWnva1KvNa7tELenN6k27XNU_dOX-_vpzATh0TRtsju5ZU7uOcAJrLyiAXdp2IjrO0sXGrutmUZdLQ4NOlKGmpyJoKdbWf6MJn0YQcmBiqa5wzah9SE6O3n-ZzqJekSEyKQCTSDrOS-U84IzUl8ZqbVMtGUwKBfMoFcN1qazk3mmFzGkepnOJ00luYeJUqow9IqOqrtwTQksX24xjOajTHHyYc_BMkvucc8FNko8JGxq-MD1dOapmrIqhLu17EdyFSpqyiNMC3DUm0daqCXQdNzwvB58WV8KugBHlBsvJlRC4fJ3KMlz8GpOXQ0wU4GLchwHn1edtAUkWIEEqxuRxCJVLW8kUyzLx9L8_6xm5HVafeZTK52R0tj53LwA2nZUTsvv2ZzLpOwde55-_zv8BhZIZfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swED2kzpACRdHvuh8Jhw7tIMSSKFEaA7eB0ySeEiAbQfGjVmFIgpUg8da9Y_9hf0nvRMlBhiBAV0EHW3yn4yN1fA_gU-aSaJIYOhwj4oDnHOtgHKrAapckeqKRQtA-5Ok8nZ3z7xfJxRZMh7Mw1FbZ135f07tq3V_Z70dzvylLOuOLb1sqKGlJhSt5BNukTsVHsH1wdDybbz4miInYSEpFeRb76kytCRg9HKfrer70YlV7NSLRKXnm2X3T1ZNGtTiIzrtf3E9Pu2nq8Bk87fklO_CP8By2bPUCdqaDrdtL-P11aIAhSFjtWFMv159NSV7S6-WXtlzWN6qyf3_9uUYeumINDUd3r65tJzhBvRcMyS5rOxMda9hibVZ1s6iLUjPvE6WZ7qUIWka99T9YyKcBphyGGKYq2jNqX8H54bez6SzoHRkCHSExCYTlvMisQ54RuUIbpUykRIyLwiR2ZBXDVZEZwZ1VGSmnOVzOhVaFucGFU5Gl8WsYVXVl3wIr7MSknNpBreKIYc4RmTB3OUcQdZiPIR4GXuperpxcM5Zy6Ev7KT1c5KQp5CSSCNcYgk1U4-U6HrhfDJjKO2kncUZ5IHL3Tgrc_lyWprT5NYa9ISckQkzfYRC8-qqVWGSREkTJGN74VLmNFXEWp2ny7r__1h7szM5OT-TJ0fz4PTz2O9E8iMQHGF2uruxHpFCXxW7_ivwDXFIZwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+poly%28dimethyl%29siloxane-water+partition+coefficients+for+selected+hydrophobic+organic+chemicals+using+14C-labeled+analogs&rft.jtitle=Journal+of+chromatography.+A&rft.au=Yang%2C+Ze-Yu&rft.au=Greenstein%2C+Darrin&rft.au=Zeng%2C+Eddy+Y&rft.au=Maruya%2C+Keith+A&rft.date=2007-04-27&rft.issn=0021-9673&rft.volume=1148&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1016%2Fj.chroma.2007.02.098&rft_id=info%3Apmid%2F17383665&rft.externalDocID=17383665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9673&client=summon