A study of innovations in legal governance with respect to the safety of artificial intelligence
This paper aims to promote the safe development of artificial intelligence and improve legal policies. Combined with the cluster analysis algorithm, it analyzes the safety risks as well as legal defects of artificial intelligence. The Laplace matrix is derived using the similarity matrix, and the fe...
Saved in:
Published in | Applied mathematics and nonlinear sciences Vol. 9; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Beirut
Sciendo
01.01.2024
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims to promote the safe development of artificial intelligence and improve legal policies. Combined with the cluster analysis algorithm, it analyzes the safety risks as well as legal defects of artificial intelligence. The Laplace matrix is derived using the similarity matrix, and the feature vector space is constructed by analyzing the associated features of artificial intelligence safety. Combining the spectral clustering algorithm, legal assessment indexes for artificial intelligence safety were constructed. The modular metric value method is utilized to assess the clustering effect of laws on the safety of artificial intelligence. Analyzing the security risks of artificial intelligence, improved legal policies are proposed from the perspective of technology and privacy. The results show that the effect of improving privacy protection policy on privacy protection is 0.85, and the effect of clarifying subject rights is 0.9. The introduction of laws should consider social ethics, and the effect degree of ethical principles is 0.75. Clarifying subject rights can help avoid technological risks to a certain extent, and improving privacy protection policies can help protect users’ privacy. |
---|---|
AbstractList | This paper aims to promote the safe development of artificial intelligence and improve legal policies. Combined with the cluster analysis algorithm, it analyzes the safety risks as well as legal defects of artificial intelligence. The Laplace matrix is derived using the similarity matrix, and the feature vector space is constructed by analyzing the associated features of artificial intelligence safety. Combining the spectral clustering algorithm, legal assessment indexes for artificial intelligence safety were constructed. The modular metric value method is utilized to assess the clustering effect of laws on the safety of artificial intelligence. Analyzing the security risks of artificial intelligence, improved legal policies are proposed from the perspective of technology and privacy. The results show that the effect of improving privacy protection policy on privacy protection is 0.85, and the effect of clarifying subject rights is 0.9. The introduction of laws should consider social ethics, and the effect degree of ethical principles is 0.75. Clarifying subject rights can help avoid technological risks to a certain extent, and improving privacy protection policies can help protect users’ privacy. |
Author | Li, Yanggui |
Author_xml | – sequence: 1 givenname: Yanggui surname: Li fullname: Li, Yanggui email: lyg2004523@126.com organization: Law School, Dongguan City College, Dongguan, Guangdong, 523419, China |
BookMark | eNp1kE1LAzEQhoMoWLU_wFvAc2tmku4HnkT8goIXPcfsdrJGtklNUkv_vVsr6MXTvIf3mRmeE3bogyfGzkFMUZXVpVn6NEWBcopTAVKIAzZCpdSkKmbF4Z98zMYpvQsxVEEWBY7Y6zVPeb3Y8mC58z58muyCT0PmPXWm5134pOiNb4lvXH7jkdKK2sxz4PmNeDKW8jdtYnbWtW5gnM_U966jgTpjR9b0icY_85S93N0-3zxM5k_3jzfX80mLcgYTIrNQZQE1KqIFEhQkwKoWbVnaRpjCgkWJdSNqhcpAC4g1VE2NRdU2DclTdrHfu4rhY00p6_ewHh7vk5ZQA8halTi0YN9qY0gpktWr6JYmbjUIvXOpdy71zqVG_e1yYK72zMb0meKCurjeDuH3wL9sDfILEPR9-g |
Cites_doi | 10.1111/jpim.12689 10.1111/jan.14855 10.3390/su12155991 10.1093/bioinformatics/btv428 10.1016/j.future.2022.03.021 10.1613/jair.1.12895 10.1016/j.clsr.2021.105597 10.1016/j.procs.2022.08.093 10.1002/er.7100 10.1021/acs.jpca.0c06019 10.1016/j.giq.2020.101493 10.5430/rwe.v11n2p152 10.1371/journal.pone.0071715 10.3390/e21121156 10.1155/2021/8601425 10.1016/B978-0-12-821259-2.00023-5 10.1177/15533506211059269 10.1136/medethics-2022-108263 |
ContentType | Journal Article |
Copyright | 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/amns.2023.2.01300 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2444-8656 |
ExternalDocumentID | 10_2478_amns_2023_2_01300 10_2478_amns_2023_2_0130091 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AFKRA AHGSO ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR CCPQU EBS M~E OK1 PHGZM PHGZT PIMPY QD8 SLJYH AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2351-eead4761924eed2e16e01f4c2f77fb0a6f1f2329b09424a1c122918b9268cbbe3 |
IEDL.DBID | BENPR |
ISSN | 2444-8656 |
IngestDate | Mon Jun 30 11:51:50 EDT 2025 Tue Jul 01 03:14:39 EDT 2025 Thu Jul 10 10:32:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2351-eead4761924eed2e16e01f4c2f77fb0a6f1f2329b09424a1c122918b9268cbbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3191139472?pq-origsite=%requestingapplication% |
PQID | 3191139472 |
PQPubID | 6761185 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3191139472 crossref_primary_10_2478_amns_2023_2_01300 walterdegruyter_journals_10_2478_amns_2023_2_0130091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beirut |
PublicationPlace_xml | – name: Beirut |
PublicationTitle | Applied mathematics and nonlinear sciences |
PublicationYear | 2024 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2024101012411728500_j_amns.2023.2.01300_ref_005 2024101012411728500_j_amns.2023.2.01300_ref_016 2024101012411728500_j_amns.2023.2.01300_ref_004 2024101012411728500_j_amns.2023.2.01300_ref_015 2024101012411728500_j_amns.2023.2.01300_ref_003 2024101012411728500_j_amns.2023.2.01300_ref_014 2024101012411728500_j_amns.2023.2.01300_ref_002 2024101012411728500_j_amns.2023.2.01300_ref_013 2024101012411728500_j_amns.2023.2.01300_ref_001 2024101012411728500_j_amns.2023.2.01300_ref_012 2024101012411728500_j_amns.2023.2.01300_ref_011 2024101012411728500_j_amns.2023.2.01300_ref_022 2024101012411728500_j_amns.2023.2.01300_ref_010 2024101012411728500_j_amns.2023.2.01300_ref_021 2024101012411728500_j_amns.2023.2.01300_ref_020 2024101012411728500_j_amns.2023.2.01300_ref_009 2024101012411728500_j_amns.2023.2.01300_ref_008 2024101012411728500_j_amns.2023.2.01300_ref_019 2024101012411728500_j_amns.2023.2.01300_ref_007 2024101012411728500_j_amns.2023.2.01300_ref_018 2024101012411728500_j_amns.2023.2.01300_ref_006 2024101012411728500_j_amns.2023.2.01300_ref_017 |
References_xml | – ident: 2024101012411728500_j_amns.2023.2.01300_ref_009 doi: 10.1111/jpim.12689 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_008 doi: 10.1111/jan.14855 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_010 doi: 10.3390/su12155991 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_019 doi: 10.1093/bioinformatics/btv428 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_022 doi: 10.1016/j.future.2022.03.021 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_012 doi: 10.1613/jair.1.12895 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_011 doi: 10.1016/j.clsr.2021.105597 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_021 doi: 10.1016/j.procs.2022.08.093 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_006 doi: 10.1002/er.7100 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_018 doi: 10.1021/acs.jpca.0c06019 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_001 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_013 doi: 10.1016/j.giq.2020.101493 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_014 doi: 10.5430/rwe.v11n2p152 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_003 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_020 doi: 10.1371/journal.pone.0071715 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_017 doi: 10.3390/e21121156 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_007 doi: 10.1155/2021/8601425 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_002 doi: 10.1016/B978-0-12-821259-2.00023-5 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_005 doi: 10.1177/15533506211059269 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_015 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_016 – ident: 2024101012411728500_j_amns.2023.2.01300_ref_004 doi: 10.1136/medethics-2022-108263 |
SSID | ssj0002313662 |
Score | 2.2429807 |
Snippet | This paper aims to promote the safe development of artificial intelligence and improve legal policies. Combined with the cluster analysis algorithm, it... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | 97R40 Artificial Intelligence Cluster Analysis Legal Governance Modular Metrics Privacy Spectral Clustering Algorithm |
Title | A study of innovations in legal governance with respect to the safety of artificial intelligence |
URI | https://www.degruyter.com/doi/10.2478/amns.2023.2.01300 https://www.proquest.com/docview/3191139472 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT8IwEG4UXnzB3xFF0gefTAZr6dbtyaCBEBOIMRJ5q93WERLdkI0Y_3uvWwdqoi_LHro-3F3vvu9uvUPoikmibCeSFtVN7pjHQgvCELckDV3lxkTxSF9wHk_c0ZTdz5yZSbhl5rfKyicWjjpKQ50j74KpEEArjNOb5bulp0bp6qoZobGL6uCCPSBf9dvB5OFxk2UB9NJzXVqWMynjXle-JbpLN-11aEdX7eyfAWmLMhsfRb06UvPV-jOv6qNF2BkeoIbBi7hfKvgQ7ajkCO0b7IjNycyO0UsfF51icRrjxWbSaQbv-FVBFMDzYqiu1jHWuVcMNFtfssR5igED4kzGKi--1rZUtpXAi2_9Ok_QdDh4uhtZZnqCFdKeQywFNsJ4QbAgDlJFXGWTmIU05jwObAmKiAFO-QEQPAoqCwmlPvECn7peGASqd4pqSZqoM4QVA5oYuzyypWTAd-ChHBlCXOMcHHfQRNeVCMWybJIhgFxoeQstb6HlLago5N1ErUrIwpyXTGy120Tsl-C3q_7c0yfn_-96gfZgPStzJy1Uy1drdQloIg_a4BSfx21jOF_-8cyu |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5BGWDhjSgU8AALUiC-uHE7IFReKrRUCIHEZpzEqZCgBRKE-FP8Rs55UECCjSXKEFvJl4vv--7iO4BNoblx65F20Ba5Ew0ROuSGpKMx9I0fcyMju8H5vOe3r8XZTf1mDN7LvTD2t8pyTcwW6mgY2hj5LpkKJ7YiJO4_Pjm2a5TNrpYtNHKz6Ji3V5Jsyd7pEb3fLcST46vDtlN0FXBC9OrcMYSdkJnwIP-AhvvG5bEIMZYyDlxNNxgTzWgGJHyQHiXkiE3eCJroN8IgMB7NOw4TwiMpU4GJg-PexeVnVIfYkuf7mKdPUcjGrn4Y2Krg6O3gjs0Sut8d4IjVTr9m-fHI9J9f3tIyH5u5uZNZmC74KWvlBjUHY2YwDzMFV2XFSpAswG2LZZVp2TBmd5-dVRM6Z_eGvA7rZ018rU0xG-tlJOvtpk6WDhlxTpbo2KTZaGu7eRkLdvelPugiXP8LrktQGQwHZhmYESRLY19GrtaC9BUdTF2H5EelJEcRVGG7hFA95kU5FIkZi7eyeCuLt0KV4V2FWgmyKr7PRI2sqQriB_Cjq36ds8lX_p51AybbV-dd1T3tdVZhisaKPG5Tg0r6_GLWiMmkwXphPgxu_9tiPwBM8Qgg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VrYS4lF2U1QdOSGlr14mbYwWUshUkqNSbcRIbIUGKaCrE3zN2krIILlyiSIlzeOOZec8TjwEOuKK67SfKY7bJHe_y2MM0JDzF4kAHhmqR2A3OV8NgMOLnY39cAVruhXFxP3HVytZLYtyvylx0W-o5tc21WafJmrbYhiq9JvyQ-VWo9Qant9fzhRUkLJ0gYHkF8_ex33PQJ7Gsv7kSdaIfXmfvWVkSdZmmvwz1giKSXm7TFajodBWWCrpICmecrsF9j7jmsGRiyOP8cNMp3pMnjYGfPLhzdK1ZiV1uJais7b5Kkk0I0j4yVUZnbrSdPnknCfL4pUXnOoz6J3dHA684MMGLWcennsZpwYXTVJj6mKaBblPDY2aEMFFbIfYGGVQYoaZjaKWYMhbSbhSyoBtHke5sQDWdpHoTiOaoDE0gkrZSHCUOXrSvYkxlQmCsjhpwWEIoX_K-GBL1hMVbWrylxVsy6fBuwE4JsixcZCrR9ynSTy5YA_gP4D_f-vObId3637B9WLg57svLs-HFNiziM56vqOxANXud6V3kGFm0V8yqD-g0znc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+of+innovations+in+legal+governance+with+respect+to+the+safety+of+artificial+intelligence&rft.jtitle=Applied+mathematics+and+nonlinear+sciences&rft.au=Li%2C+Yanggui&rft.date=2024-01-01&rft.pub=De+Gruyter+Poland&rft.eissn=2444-8656&rft.volume=9&rft.issue=1&rft_id=info:doi/10.2478%2Famns.2023.2.01300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2444-8656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2444-8656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2444-8656&client=summon |