Analysis of Entropy Generation and Energy Transport of Cu-Water Nanoliquid in a Tilted Vertical Porous Annulus
The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this ge...
Saved in:
Published in | International journal of applied and computational mathematics Vol. 8; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2349-5103 2199-5796 |
DOI | 10.1007/s40819-021-01207-y |
Cover
Loading…
Abstract | The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤
R
a
D
≤ 10
3
), annulus inclination angle (0° ≤
γ
≤ 60°), aspect ratio (0.5 ≤
Ar
≤ 2) and nanoparticle volume fraction (0 ≤
ϕ
≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of
R
a
D
,
γ
and
ϕ
. Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency
. |
---|---|
AbstractList | The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤ RaD ≤ 103), annulus inclination angle (0° ≤ γ ≤ 60°), aspect ratio (0.5 ≤ Ar ≤ 2) and nanoparticle volume fraction (0 ≤ ϕ ≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of RaD, γ and ϕ. Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency. The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤ R a D ≤ 10 3 ), annulus inclination angle (0° ≤ γ ≤ 60°), aspect ratio (0.5 ≤ Ar ≤ 2) and nanoparticle volume fraction (0 ≤ ϕ ≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of R a D , γ and ϕ . Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency . |
ArticleNumber | 10 |
Author | Reddy, N. Keerthi Swamy, H. A. Kumara Sankar, M. |
Author_xml | – sequence: 1 givenname: H. A. Kumara surname: Swamy fullname: Swamy, H. A. Kumara organization: Department of Mathematics, School of Engineering, Presidency University – sequence: 2 givenname: M. surname: Sankar fullname: Sankar, M. email: manisankariyer@gmail.com organization: Department of General Requirements, University of Technology and Applied Sciences – sequence: 3 givenname: N. Keerthi surname: Reddy fullname: Reddy, N. Keerthi organization: Department of Mathematics, School of Engineering, Presidency University |
BookMark | eNp9kEFLwzAYhoNMcM79AU8Bz9UkzZLmOMacgqiHqceQtunIqEmXpIf-e7NVEDzslI_wPB_f-16DiXVWA3CL0T1GiD8EigosMkRwhjBBPBsuwJRgIbIFF2yS5pymGaP8CsxD2COUUMoRKabALq1qh2ACdA1c2-hdN8CNttqraJyFytbpW_vdALde2dA5H4_oqs--VNQevirrWnPoTQ1NwuHWtFHX8FP7aCrVwnfnXR_g0tq-7cMNuGxUG_T8952Bj8f1dvWUvbxtnlfLl6xKtw6Z0lSokpUUc6xyjCkteUO4EnWpFowhoVCJG16VhOmmYnVeacYqgRqSUhJd5zNwN-7tvDv0OkS5d71PUYMkDCORF3RBE1WMVOVdCF43sjLxlDt6ZVqJkTwWLMeCZWpNngqWQ1LJP7Xz5lv54byUj1JIsN1p_3fVGesHbjWRSQ |
CitedBy_id | crossref_primary_10_1007_s13370_024_01213_5 crossref_primary_10_1108_HFF_03_2022_0179 crossref_primary_10_1080_10407782_2023_2175749 crossref_primary_10_1063_5_0136326 crossref_primary_10_1016_j_ijft_2023_100299 crossref_primary_10_1063_5_0177860 crossref_primary_10_1088_1402_4896_ac6383 crossref_primary_10_1007_s10973_024_13394_z crossref_primary_10_1007_s40571_024_00744_9 crossref_primary_10_1016_j_aej_2025_01_013 crossref_primary_10_1140_epjs_s11734_022_00591_w crossref_primary_10_3389_fphy_2022_957025 crossref_primary_10_1016_j_heliyon_2022_e11854 crossref_primary_10_1016_j_jmmm_2023_170949 crossref_primary_10_1108_HFF_03_2023_0128 crossref_primary_10_1016_j_csite_2023_103615 crossref_primary_10_1615_JPorMedia_2023046488 crossref_primary_10_1080_17455030_2022_2074571 crossref_primary_10_1007_s12043_024_02851_x crossref_primary_10_1080_01430750_2023_2181865 |
Cites_doi | 10.1002/htj.22342 10.1080/10407782.2013.756718 10.1016/j.ijthermalsci.2010.08.011 10.1186/s42787-020-00109-0 10.1016/0017-9310(86)90180-8 10.1080/10407782.2018.1423773 10.1038/s41598-021-96456-8 10.1016/j.apt.2019.11.020 10.1007/s40819-020-00831-4 10.1007/s40819-021-00999-3 10.3390/e13051020 10.1108/HFF-05-2020-0321 10.1016/j.aej.2016.08.035 10.1016/j.powtec.2014.06.054 10.1016/j.cjph.2017.11.026 10.1016/j.molliq.2019.01.117 10.1016/j.rser.2011.09.012 10.1016/j.rser.2017.04.070 10.1016/j.csite.2019.100432 10.1016/j.ijthermalsci.2011.06.005 10.1016/j.ijheatmasstransfer.2018.12.110 10.1038/s41598-017-02241-x 10.18280/ijht.370314 10.1016/j.proeng.2015.11.493 10.1007/s40819-017-0400-y 10.1007/s13204-020-01497-6 10.1615/JPorMedia.2021036038 10.1016/j.icheatmasstransfer.2020.104674 10.1007/s40819-021-01103-5 10.1016/j.physa.2019.123004 10.1140/epjs/s11734-021-00034-y 10.1016/j.ijheatmasstransfer.2010.11.014 10.1371/journal.pone.0126486 10.1007/s40819-016-0180-9 10.1007/s13204-020-01501-z 10.1007/s13204-020-01294-1 10.1016/j.ijheatmasstransfer.2016.01.078 10.1108/HFF-07-2018-0412 10.1007/s13369-020-04826-7 10.1088/1742-6596/1597/1/012055 10.1016/j.jppr.2020.04.006 10.1016/S0017-9310(99)00291-4 10.1007/s00231-009-0540-7 10.1016/j.icheatmasstransfer.2013.11.009 10.1016/j.molliq.2020.112533 10.1016/j.ijheatmasstransfer.2010.11.043 10.1016/j.ijheatmasstransfer.2013.06.010 10.1007/s13204-020-01455-2 10.1016/j.icheatmasstransfer.2020.104650 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature India Private Limited 2021 The Author(s), under exclusive licence to Springer Nature India Private Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2021 – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40819-021-01207-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 2199-5796 |
ExternalDocumentID | 10_1007_s40819_021_01207_y |
GroupedDBID | -EM 0R~ 203 4.4 406 AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD AZFZN BAPOH BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD FEDTE FERAY FIGPU FINBP FNLPD FSGXE GGCAI GGRSB GJIRD GQ6 HQYDN HRMNR HVGLF IKXTQ IWAJR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c234y-ae49ab6b4171a31144b7f27a9dba56609a0b1f7cb26efc6d3ce66c90f25102ed3 |
ISSN | 2349-5103 |
IngestDate | Sun Jul 13 04:16:32 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Tue Jul 01 04:22:28 EDT 2025 Fri Feb 21 02:47:10 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Annular geometry Nanoliquid Inclination angle Aspect ratio Entropy generation Porous medium |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c234y-ae49ab6b4171a31144b7f27a9dba56609a0b1f7cb26efc6d3ce66c90f25102ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2610938454 |
PQPubID | 2044256 |
ParticipantIDs | proquest_journals_2610938454 crossref_citationtrail_10_1007_s40819_021_01207_y crossref_primary_10_1007_s40819_021_01207_y springer_journals_10_1007_s40819_021_01207_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Heidelberg |
PublicationTitle | International journal of applied and computational mathematics |
PublicationTitleAbbrev | Int. J. Appl. Comput. Math |
PublicationYear | 2022 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | Cho, Chiu, Lai (CR30) 2016; 97 Ali, Hamza, Aldila, Sultan, Mustafa, Shahzad (CR46) 2020; 10 Haq, Shahzad, Khan, Irfan, Mustafa, Ali, Sultan (CR45) 2019; 14 Gourari, Mebarek-Oudina, Hussein, Kolsi, Hassen, Younis (CR5) 2019; 37 Biswal, Basak (CR37) 2017; 80 Singh, Pandey, Kumar (CR34) 2020; 6 Choi, Eastman (CR6) 1995; 231 Rashad, Armaghani, Chamkha, Mansour (CR18) 2018; 56 Mansour, Ahmed (CR27) 2015; 18 Sankar, Swamy, Do, Altmeyer (CR24) 2021 Joshi, Upreti, Pandey, Kumar (CR42) 2021; 7 Jino, Kumar (CR25) 2021; 7 Sankar, Park, Lopez, Do (CR3) 2011; 54 Bouabid, Magherbi, Hidouri, Brahim (CR14) 2011; 13 Armaghani, Rashad, Vahidifar, Mishra, Chamkha (CR33) 2019; 29 Upreti, Pandey, Kumar (CR39) 2021; 24 Baytas (CR13) 2000; 43 Basak, Singh, Sruthi, Roy (CR15) 2014; 51 Sun, Pop (CR26) 2011; 50 Oztop, Al-Salem (CR35) 2012; 16 Abouali, Falahatpisheh (CR7) 2009; 46 Bhargava, Sharma, Bhargava, Anwar Beg, Kadir (CR16) 2017; 3 Jagadeesha, Prasanna, Sankar (CR28) 2015; 127 Shahzad, Shah, Sultan, Ali (CR49) 2020; 10 Mebarek-Oudina, Bessaih, Mahanthesh, Chamkha, Raza (CR8) 2020; 31 Huminic, Huminic (CR38) 2020; 302 Mejri, Mahmoudi, Abbassi, Omri (CR51) 2014; 266 Alnaqi, Aghakhani, Pordanjani, Bakhtiari, Asadi (CR20) 2019; 133 Singh, Pandey, Kumar (CR43) 2021; 29 Sultan, Mustafa, Khan, Shahzad, Ali, Adnan, Rehman (CR50) 2020; 10 Li, Firouzi, Karimipour, Afrand (CR23) 2020; 31 Mahian, Kianifar, Kleinstreuer, Al-Nimr, Pop, Sahin, Wongwises (CR36) 2013; 65 Li, Hussein, Younis, Afrand, Feng (CR22) 2020; 116 Pandey, Kumar (CR41) 2017; 56 Sultan, Ali, Mustafa, Shahzad, Iqbal (CR48) 2020; 10 Sankar, Park, Kim, Do (CR4) 2013; 63 Chen, Liu, Bao, Zheng (CR12) 2010; 49 Prasad (CR1) 1986; 29 Dutta, Biswas, Pati (CR32) 2018; 73 di Schio, Celli, Pop (CR2) 2011; 54 Reddy, Sankar (CR9) 2020; 1597 Upreti, Pandey, Kumar, Makinde (CR40) 2020; 45 Sankar, Reddy, Do (CR11) 2021; 11 Baghsaz, Rezanejad, Moghimi (CR19) 2019; 279 Selimefendigil, Oztop (CR21) 2020; 540 Ali, Abdul Alim, Akhter, Ahmed (CR31) 2017; 3 Ali, Shahzad, Sultan, Khan, Rashid (CR47) 2020; 116 Alsabery, Chamkha, Saleh, Hashim (CR17) 2017; 7 Singh, Pandey, Kumar (CR44) 2020; 9 Ghalambaz, Sheremet, Pop (CR29) 2015; 10 Reddy, Swamy, Sankar (CR10) 2021; 230 R Bhargava (1207_CR16) 2017; 3 S Baghsaz (1207_CR19) 2019; 279 M Sankar (1207_CR11) 2021; 11 O Mahian (1207_CR36) 2013; 65 V Prasad (1207_CR1) 1986; 29 M Sankar (1207_CR24) 2021 M Sankar (1207_CR4) 2013; 63 AK Pandey (1207_CR41) 2017; 56 AM Rashad (1207_CR18) 2018; 56 MM Ali (1207_CR31) 2017; 3 F Sultan (1207_CR48) 2020; 10 M Ali (1207_CR46) 2020; 10 S Chen (1207_CR12) 2010; 49 AA Alnaqi (1207_CR20) 2019; 133 I Haq (1207_CR45) 2019; 14 M Sankar (1207_CR3) 2011; 54 Z Li (1207_CR22) 2020; 116 Y Li (1207_CR23) 2020; 31 T Basak (1207_CR15) 2014; 51 L Jino (1207_CR25) 2021; 7 K Singh (1207_CR34) 2020; 6 F Selimefendigil (1207_CR21) 2020; 540 T Armaghani (1207_CR33) 2019; 29 H Upreti (1207_CR40) 2020; 45 F Mebarek-Oudina (1207_CR8) 2020; 31 HF Oztop (1207_CR35) 2012; 16 G Huminic (1207_CR38) 2020; 302 NK Reddy (1207_CR9) 2020; 1597 F Sultan (1207_CR50) 2020; 10 K Singh (1207_CR43) 2021; 29 C Cho (1207_CR30) 2016; 97 P Biswal (1207_CR37) 2017; 80 H Upreti (1207_CR39) 2021; 24 M Bouabid (1207_CR14) 2011; 13 M Ali (1207_CR47) 2020; 116 N Joshi (1207_CR42) 2021; 7 K Singh (1207_CR44) 2020; 9 O Abouali (1207_CR7) 2009; 46 NK Reddy (1207_CR10) 2021; 230 AI Alsabery (1207_CR17) 2017; 7 Q Sun (1207_CR26) 2011; 50 M Shahzad (1207_CR49) 2020; 10 SUS Choi (1207_CR6) 1995; 231 RD Jagadeesha (1207_CR28) 2015; 127 I Mejri (1207_CR51) 2014; 266 M Ghalambaz (1207_CR29) 2015; 10 ER di Schio (1207_CR2) 2011; 54 S Dutta (1207_CR32) 2018; 73 AC Baytas (1207_CR13) 2000; 43 S Gourari (1207_CR5) 2019; 37 MA Mansour (1207_CR27) 2015; 18 |
References_xml | – volume: 3 start-page: 1347 year: 2017 end-page: 1379 ident: CR16 article-title: Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with Rayleigh number effects publication-title: Int. J. Appl. Comput. Math. – volume: 7 start-page: 164 year: 2021 ident: CR25 article-title: Cu-Water nanofluid MHD quadratic natural convection on square porous cavity publication-title: Int. J. Appl. Comput. Math. – volume: 6 start-page: 85 year: 2020 ident: CR34 article-title: Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties publication-title: Int. J. Appl. Comput. Math. – volume: 7 start-page: 2357 year: 2017 ident: CR17 article-title: Natural convection flow of nanofluid in an inclined square enclosure partially filled with a porous medium publication-title: Sci. Rep. – volume: 10 start-page: 5375 year: 2020 end-page: 5381 ident: CR48 article-title: The impact of the rate coefficient over the reaction mechanism publication-title: Appl. Nanosci. – volume: 231 start-page: 99 year: 1995 end-page: 105 ident: CR6 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: ASME FED – volume: 266 start-page: 340 year: 2014 end-page: 353 ident: CR51 article-title: Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls publication-title: Powder Technol. – volume: 46 start-page: 15 year: 2009 end-page: 23 ident: CR7 article-title: Numerical investigation of natural convection of Al O nanofluid in vertical annuli publication-title: Heat Mass Transf. – volume: 80 start-page: 1412 year: 2017 end-page: 1457 ident: CR37 article-title: Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review publication-title: Renew. Sustain. Energy Rev. – volume: 54 start-page: 1665 issue: 7–8 year: 2011 end-page: 1670 ident: CR2 article-title: Buoyant flow in a vertical fluid saturated porous annulus: The Brinkman model publication-title: Int. J. Heat Mass Transf. – volume: 65 start-page: 514 year: 2013 end-page: 532 ident: CR36 article-title: A review of entropy generation in nanofluid flow publication-title: Int. J. Heat Mass Transf. – year: 2021 ident: CR24 article-title: Thermal effects of nonuniform heating in a nanofluid-filled annulus: Buoyant transport versus entropy generation publication-title: Heat Transf doi: 10.1002/htj.22342 – volume: 31 start-page: 1172 issue: 4 year: 2020 end-page: 1189 ident: CR8 article-title: Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 43 start-page: 2089 issue: 12 year: 2000 end-page: 2099 ident: CR13 article-title: Entropy generation for natural convection in an inclined porous cavity publication-title: Int. J. Heat Mass Transf. – volume: 29 start-page: 1 year: 2021 ident: CR43 article-title: Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder publication-title: J. Egypt. Math. Soc. – volume: 24 start-page: 35 year: 2021 end-page: 50 ident: CR39 article-title: Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids publication-title: J. Porous Media – volume: 50 start-page: 2141 year: 2011 end-page: 2153 ident: CR26 article-title: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall publication-title: Int. J. Therm. Sci. – volume: 37 start-page: 779 issue: 3 year: 2019 end-page: 786 ident: CR5 article-title: Numerical study of natural convection between two coaxial cylinders publication-title: Int. J. Heat Technol. – volume: 51 start-page: 1 year: 2014 end-page: 8 ident: CR15 article-title: Finite element simulations on heat flow visualization and entropy generation during natural convection in inclined square cavities publication-title: Int. Commun. Heat Mass Transf. – volume: 56 start-page: 193 issue: 1 year: 2018 end-page: 211 ident: CR18 article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location publication-title: Chin. J. Phys. – volume: 116 start-page: 104674 year: 2020 ident: CR47 article-title: Exploring the features of stratification phenomena for 3D flow of cross nanofluid considering activation energy publication-title: Int. Commun. Heat Mass Transf. – volume: 29 start-page: 1363 issue: 4 year: 2019 end-page: 1377 ident: CR33 article-title: Effect of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity publication-title: Int. J. Numer. Meth. Heat Fluid Flow – volume: 10 start-page: 5383 year: 2020 end-page: 5390 ident: CR49 article-title: The C-matrix augmentation in a multi-route reaction mechanism publication-title: Appl. Nanosci. – volume: 302 start-page: 112533 year: 2020 ident: CR38 article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review publication-title: J. Mol. Liq. – volume: 10 start-page: e0126486 issue: 5 year: 2015 ident: CR29 article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das nanofluid model publication-title: PLoS ONE – volume: 230 start-page: 1213 issue: 5 year: 2021 end-page: 1225 ident: CR10 article-title: Buoyant convective flow of different hybrid nanoliquids in a non-uniformly heated annulus publication-title: Eur. Phys. J. Spec. Top. – volume: 9 start-page: 289 year: 2020 end-page: 303 ident: CR44 article-title: Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: an analytic approach publication-title: Propuls Power Res. – volume: 10 start-page: 3295 year: 2020 end-page: 3303 ident: CR50 article-title: A numerical treatment on rheology of mixed convective Carreau nanofluid with variable viscosity and thermal conductivity publication-title: Appl. Nanosci. – volume: 54 start-page: 1493 issue: 7–8 year: 2011 end-page: 1505 ident: CR3 article-title: Numerical study of natural convection in a vertical porous annulus with discrete heating publication-title: Int. J. Heat Mass Transf. – volume: 279 start-page: 327 year: 2019 end-page: 341 ident: CR19 article-title: Numerical investigation of transient natural convection and entropy generation analysis in a porous cavity filled with nanofluid considering nanoparticle sedimentation publication-title: J. Mol. Liq. – volume: 45 start-page: 7705 year: 2020 end-page: 7717 ident: CR40 article-title: Ohmic heating and non-uniform heat source/sink roles on 3D Darcy-Forchheimer flow of CNTs nanofluids over a stretching surface publication-title: Arab. J. Sci. Eng. – volume: 49 start-page: 2439 issue: 12 year: 2010 end-page: 2452 ident: CR12 article-title: Natural convection and entropy generation in a vertically concentric annular space publication-title: Int. J. Therm. Sci. – volume: 11 start-page: 17122 year: 2021 ident: CR11 article-title: Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry publication-title: Sci. Rep. – volume: 133 start-page: 256 year: 2019 end-page: 267 ident: CR20 article-title: and Minh-Duc, Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect publication-title: Int. J. Heat Mass Transf. – volume: 16 start-page: 911 year: 2012 end-page: 920 ident: CR35 article-title: A review on entropy generation in natural and mixed convection heat transfer for energy systems publication-title: Renew. Sustain. Energy Rev. – volume: 127 start-page: 1346 year: 2015 end-page: 1353 ident: CR28 article-title: Double diffusive convection in an inclined parallelogrammic porous enclosure publication-title: Procedia Eng. – volume: 14 start-page: 100432 year: 2019 ident: CR45 article-title: Characteristics of chemical processes and heat source/sink with wedge geometry publication-title: Case Stud. Therm. Eng. – volume: 13 start-page: 1020 issue: 5 year: 2011 end-page: 1033 ident: CR14 article-title: Entropy generation at natural convection in an inclined rectangular cavity publication-title: Entropy – volume: 18 start-page: 485 issue: 3 year: 2015 end-page: 495 ident: CR27 article-title: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect publication-title: Eng. Sci. Technol. Int. J. – volume: 10 start-page: 3405 year: 2020 end-page: 3410 ident: CR46 article-title: Evaluation of steady-state to identify the fast-slow completion-route in the multi-route reaction mechanism publication-title: Appl. Nanosci. – volume: 116 start-page: 104650 year: 2020 ident: CR22 article-title: Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects publication-title: Int. Commun. Heat Mass Transf. – volume: 540 start-page: 123004 year: 2020 ident: CR21 article-title: Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid publication-title: Physica A – volume: 1597 start-page: 012055 year: 2020 ident: CR9 article-title: Buoyant convective transport of nanofluids in a non-uniformly heated annulus publication-title: J. Phys. Conf. Ser. – volume: 29 start-page: 841 year: 1986 end-page: 853 ident: CR1 article-title: Numerical study of natural convection in a vertical porous annulus with constant heat flux on inner wall publication-title: Int. J. Heat Mass Transf. – volume: 56 start-page: 55 year: 2017 end-page: 62 ident: CR41 article-title: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation publication-title: Alex. Eng. J. – volume: 31 start-page: 645 issue: 2 year: 2020 end-page: 657 ident: CR23 article-title: Effect of an inclined partition with constant thermal conductivity on natural convection and entropy generation of a nanofluid under magnetic field inside an inclined enclosure: applicable for electronic cooling publication-title: Adv. Powder Technol. – volume: 7 start-page: 64 year: 2021 ident: CR42 article-title: Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation publication-title: Int. J. Appl. Comput. Math. – volume: 63 start-page: 687 issue: 9 year: 2013 end-page: 712 ident: CR4 article-title: Numerical study of natural convection in a vertical porous annulus with an internal heat source: effect of discrete heating publication-title: Numer. Heat Transf. Part A – volume: 97 start-page: 511 year: 2016 end-page: 520 ident: CR30 article-title: Natural convection and entropy generation of Al O -water nanofluid in an inclined wavy-wall cavity publication-title: Int. J. Heat Mass Transf. – volume: 3 start-page: 1047 year: 2017 end-page: 1069 ident: CR31 article-title: MHD natural convection flow of CuO/water nanofluid in a differentially heated hexagonal enclosure with a tilted square block publication-title: Int. J. Appl. Comput. Math. – volume: 73 start-page: 222 issue: 4 year: 2018 end-page: 240 ident: CR32 article-title: Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall publication-title: Numer. Heat Transf. Part A – year: 2021 ident: 1207_CR24 publication-title: Heat Transf doi: 10.1002/htj.22342 – volume: 63 start-page: 687 issue: 9 year: 2013 ident: 1207_CR4 publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407782.2013.756718 – volume: 49 start-page: 2439 issue: 12 year: 2010 ident: 1207_CR12 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.08.011 – volume: 29 start-page: 1 year: 2021 ident: 1207_CR43 publication-title: J. Egypt. Math. Soc. doi: 10.1186/s42787-020-00109-0 – volume: 29 start-page: 841 year: 1986 ident: 1207_CR1 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(86)90180-8 – volume: 231 start-page: 99 year: 1995 ident: 1207_CR6 publication-title: ASME FED – volume: 73 start-page: 222 issue: 4 year: 2018 ident: 1207_CR32 publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407782.2018.1423773 – volume: 11 start-page: 17122 year: 2021 ident: 1207_CR11 publication-title: Sci. Rep. doi: 10.1038/s41598-021-96456-8 – volume: 31 start-page: 645 issue: 2 year: 2020 ident: 1207_CR23 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.11.020 – volume: 6 start-page: 85 year: 2020 ident: 1207_CR34 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-020-00831-4 – volume: 7 start-page: 64 year: 2021 ident: 1207_CR42 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-021-00999-3 – volume: 13 start-page: 1020 issue: 5 year: 2011 ident: 1207_CR14 publication-title: Entropy doi: 10.3390/e13051020 – volume: 31 start-page: 1172 issue: 4 year: 2020 ident: 1207_CR8 publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-05-2020-0321 – volume: 56 start-page: 55 year: 2017 ident: 1207_CR41 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.08.035 – volume: 266 start-page: 340 year: 2014 ident: 1207_CR51 publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.06.054 – volume: 56 start-page: 193 issue: 1 year: 2018 ident: 1207_CR18 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2017.11.026 – volume: 279 start-page: 327 year: 2019 ident: 1207_CR19 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.01.117 – volume: 16 start-page: 911 year: 2012 ident: 1207_CR35 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.09.012 – volume: 80 start-page: 1412 year: 2017 ident: 1207_CR37 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.070 – volume: 14 start-page: 100432 year: 2019 ident: 1207_CR45 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2019.100432 – volume: 50 start-page: 2141 year: 2011 ident: 1207_CR26 publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2011.06.005 – volume: 133 start-page: 256 year: 2019 ident: 1207_CR20 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.110 – volume: 7 start-page: 2357 year: 2017 ident: 1207_CR17 publication-title: Sci. Rep. doi: 10.1038/s41598-017-02241-x – volume: 37 start-page: 779 issue: 3 year: 2019 ident: 1207_CR5 publication-title: Int. J. Heat Technol. doi: 10.18280/ijht.370314 – volume: 127 start-page: 1346 year: 2015 ident: 1207_CR28 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.11.493 – volume: 3 start-page: 1047 year: 2017 ident: 1207_CR31 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-017-0400-y – volume: 10 start-page: 5383 year: 2020 ident: 1207_CR49 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01497-6 – volume: 24 start-page: 35 year: 2021 ident: 1207_CR39 publication-title: J. Porous Media doi: 10.1615/JPorMedia.2021036038 – volume: 116 start-page: 104674 year: 2020 ident: 1207_CR47 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104674 – volume: 7 start-page: 164 year: 2021 ident: 1207_CR25 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-021-01103-5 – volume: 540 start-page: 123004 year: 2020 ident: 1207_CR21 publication-title: Physica A doi: 10.1016/j.physa.2019.123004 – volume: 230 start-page: 1213 issue: 5 year: 2021 ident: 1207_CR10 publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00034-y – volume: 54 start-page: 1665 issue: 7–8 year: 2011 ident: 1207_CR2 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.11.014 – volume: 10 start-page: e0126486 issue: 5 year: 2015 ident: 1207_CR29 publication-title: PLoS ONE doi: 10.1371/journal.pone.0126486 – volume: 3 start-page: 1347 year: 2017 ident: 1207_CR16 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-016-0180-9 – volume: 10 start-page: 5375 year: 2020 ident: 1207_CR48 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01501-z – volume: 10 start-page: 3295 year: 2020 ident: 1207_CR50 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01294-1 – volume: 97 start-page: 511 year: 2016 ident: 1207_CR30 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.01.078 – volume: 29 start-page: 1363 issue: 4 year: 2019 ident: 1207_CR33 publication-title: Int. J. Numer. Meth. Heat Fluid Flow doi: 10.1108/HFF-07-2018-0412 – volume: 45 start-page: 7705 year: 2020 ident: 1207_CR40 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-020-04826-7 – volume: 1597 start-page: 012055 year: 2020 ident: 1207_CR9 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1597/1/012055 – volume: 9 start-page: 289 year: 2020 ident: 1207_CR44 publication-title: Propuls Power Res. doi: 10.1016/j.jppr.2020.04.006 – volume: 43 start-page: 2089 issue: 12 year: 2000 ident: 1207_CR13 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(99)00291-4 – volume: 46 start-page: 15 year: 2009 ident: 1207_CR7 publication-title: Heat Mass Transf. doi: 10.1007/s00231-009-0540-7 – volume: 51 start-page: 1 year: 2014 ident: 1207_CR15 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2013.11.009 – volume: 302 start-page: 112533 year: 2020 ident: 1207_CR38 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.112533 – volume: 54 start-page: 1493 issue: 7–8 year: 2011 ident: 1207_CR3 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.11.043 – volume: 65 start-page: 514 year: 2013 ident: 1207_CR36 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.06.010 – volume: 10 start-page: 3405 year: 2020 ident: 1207_CR46 publication-title: Appl. Nanosci. doi: 10.1007/s13204-020-01455-2 – volume: 116 start-page: 104650 year: 2020 ident: 1207_CR22 publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104650 – volume: 18 start-page: 485 issue: 3 year: 2015 ident: 1207_CR27 publication-title: Eng. Sci. Technol. Int. J. |
SSID | ssj0002147028 |
Score | 2.336918 |
Snippet | The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Annuli Applications of Mathematics Applied mathematics Aspect ratio Computational mathematics Computational Science and Engineering Convective flow Darcys law Electronic equipment Enclosures Energy dissipation Entropy Fluid friction Geometry Heat exchangers Heat transfer Inclination angle Industrial applications Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Nanoparticles Nuclear Energy Nuclear reactors Operations Research/Decision Theory Original Paper Partial differential equations Porous media Solar collectors Theoretical |
Title | Analysis of Entropy Generation and Energy Transport of Cu-Water Nanoliquid in a Tilted Vertical Porous Annulus |
URI | https://link.springer.com/article/10.1007/s40819-021-01207-y https://www.proquest.com/docview/2610938454 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPXAaIwkB-4K24ysWJm8cOdZqQOiFtg71FduKIQJeWNREqv4Sfy3F86zaGGC9R5J6kUb7P9rHznXMQeivAiWelZCQpSkYohzMRi4wA_lFAxYTzvlrD_Dg9OqMfzpPzweDXlmqpa8W4-PnHuJL_QRXaAFcVJXsHZN1NoQHOAV84AsJw_CeMtzOKzJTkfLUxeaRbqzKe6dg-l8O8l1905DNXyRFhaF0u6u9drRIwjTgAt1AO6Kdeaw3YfVxeKoWsysG_MBsEX73y3W8kbqWf4MarNeFyq661RhcuQaxz409-8AsdITEeTcejXu7tpokT3nzT6u_52H0WkqWZFMBawmN-qbe3LWDFG1yRgNhtSxgGy5r7QS-KaUZUlj89P-m2MIM2pivf2lF7cp2cN-YCLf9YU-X0EKVEUXHCjGz8zOf0iC53c2-cg3HeG-ebe2g3ggUIDPm708ODg2O3f6fqOwV96V73yCYmq4_MvPGvV_0ev5i59v29d2tOH6OHZj2Cp5pcT9BANnvokVmbYDPyr_fQg7mH7ylqLPPwssKGedgzDwP6WDMPO-YpU8s87JmHazDHmnnYMg9r5mHDvGfo7HB2-v6ImModpIC3sSFc0oyLVNCQhTyGJTcVrIoYz0oBfT8NMh6IsGKFiFJZFWkZFzJNiyyowNsOIlnGz9FOs2zkC4SrGK5LaVDGoqQsCbkI0jJLVME1yWByGaLQvte8MGntVXWVRX47qEM0ctesdFKXv1rvW7hy05_WeaTKFMQTmtAhemch9D_ffreXdzN_he773rOPdtrLTr4GN7gVbwwjfwPcwLCW |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Entropy+Generation+and+Energy+Transport+of+Cu-Water+Nanoliquid+in+a+Tilted+Vertical+Porous+Annulus&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Swamy%2C+H.+A.+Kumara&rft.au=Sankar%2C+M.&rft.au=Reddy%2C+N.+Keerthi&rft.date=2022-02-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs40819-021-01207-y&rft.externalDocID=10_1007_s40819_021_01207_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon |