Analysis of Entropy Generation and Energy Transport of Cu-Water Nanoliquid in a Tilted Vertical Porous Annulus

The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this ge...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied and computational mathematics Vol. 8; no. 1
Main Authors Swamy, H. A. Kumara, Sankar, M., Reddy, N. Keerthi
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2349-5103
2199-5796
DOI10.1007/s40819-021-01207-y

Cover

Loading…
Abstract The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤  R a D  ≤ 10 3 ), annulus inclination angle (0° ≤  γ  ≤ 60°), aspect ratio (0.5 ≤  Ar  ≤ 2) and nanoparticle volume fraction (0 ≤  ϕ  ≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of R a D , γ and ϕ . Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency .
AbstractList The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤ RaD ≤ 103), annulus inclination angle (0° ≤ γ ≤ 60°), aspect ratio (0.5 ≤ Ar ≤ 2) and nanoparticle volume fraction (0 ≤ ϕ ≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of RaD, γ and ϕ. Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency.
The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar collectors, could aptly represent the cylindrical annular porous geometry. The prior knowledge of buoyant flow and thermal transport rates in this geometry provides the vital information to the design engineers. In this article, we analyze the convective nanoliquid flow and associated thermal dissipation as well as entropy generation rates in an inclined annular enclosure filled with nanoliquid saturated porous medium. The vertical surfaces of inner and outer cylinders are maintained at uniform, but different temperatures and horizontal boundaries are kept insulated. The momentum equations are modeled utilizing the Darcy law, the coupled partial differential equations are numerically solved adopting the time splitting and line over relaxation techniques. For the numerical simulations, a vast range of parameters such as the Darcy Rayleigh number (10 ≤  R a D  ≤ 10 3 ), annulus inclination angle (0° ≤  γ  ≤ 60°), aspect ratio (0.5 ≤  Ar  ≤ 2) and nanoparticle volume fraction (0 ≤  ϕ  ≤ 0.05) are considered. The contributions of heat transfer and fluid friction entropies to global entropy production in the geometry are determined through the Bejan number. The numerical results reveal that the convective flow, heat transfer and entropy generation rates could be controlled with the aid of cavity inclination angle. It is found that the shallow annular enclosure gives better thermal performance with minimum entropy generation regardless of R a D , γ and ϕ . Further, the results are in excellent agreement with standard benchmark simulations. The predicted results could provide some vital information to enhance the system efficiency .
ArticleNumber 10
Author Reddy, N. Keerthi
Swamy, H. A. Kumara
Sankar, M.
Author_xml – sequence: 1
  givenname: H. A. Kumara
  surname: Swamy
  fullname: Swamy, H. A. Kumara
  organization: Department of Mathematics, School of Engineering, Presidency University
– sequence: 2
  givenname: M.
  surname: Sankar
  fullname: Sankar, M.
  email: manisankariyer@gmail.com
  organization: Department of General Requirements, University of Technology and Applied Sciences
– sequence: 3
  givenname: N. Keerthi
  surname: Reddy
  fullname: Reddy, N. Keerthi
  organization: Department of Mathematics, School of Engineering, Presidency University
BookMark eNp9kEFLwzAYhoNMcM79AU8Bz9UkzZLmOMacgqiHqceQtunIqEmXpIf-e7NVEDzslI_wPB_f-16DiXVWA3CL0T1GiD8EigosMkRwhjBBPBsuwJRgIbIFF2yS5pymGaP8CsxD2COUUMoRKabALq1qh2ACdA1c2-hdN8CNttqraJyFytbpW_vdALde2dA5H4_oqs--VNQevirrWnPoTQ1NwuHWtFHX8FP7aCrVwnfnXR_g0tq-7cMNuGxUG_T8952Bj8f1dvWUvbxtnlfLl6xKtw6Z0lSokpUUc6xyjCkteUO4EnWpFowhoVCJG16VhOmmYnVeacYqgRqSUhJd5zNwN-7tvDv0OkS5d71PUYMkDCORF3RBE1WMVOVdCF43sjLxlDt6ZVqJkTwWLMeCZWpNngqWQ1LJP7Xz5lv54byUj1JIsN1p_3fVGesHbjWRSQ
CitedBy_id crossref_primary_10_1007_s13370_024_01213_5
crossref_primary_10_1108_HFF_03_2022_0179
crossref_primary_10_1080_10407782_2023_2175749
crossref_primary_10_1063_5_0136326
crossref_primary_10_1016_j_ijft_2023_100299
crossref_primary_10_1063_5_0177860
crossref_primary_10_1088_1402_4896_ac6383
crossref_primary_10_1007_s10973_024_13394_z
crossref_primary_10_1007_s40571_024_00744_9
crossref_primary_10_1016_j_aej_2025_01_013
crossref_primary_10_1140_epjs_s11734_022_00591_w
crossref_primary_10_3389_fphy_2022_957025
crossref_primary_10_1016_j_heliyon_2022_e11854
crossref_primary_10_1016_j_jmmm_2023_170949
crossref_primary_10_1108_HFF_03_2023_0128
crossref_primary_10_1016_j_csite_2023_103615
crossref_primary_10_1615_JPorMedia_2023046488
crossref_primary_10_1080_17455030_2022_2074571
crossref_primary_10_1007_s12043_024_02851_x
crossref_primary_10_1080_01430750_2023_2181865
Cites_doi 10.1002/htj.22342
10.1080/10407782.2013.756718
10.1016/j.ijthermalsci.2010.08.011
10.1186/s42787-020-00109-0
10.1016/0017-9310(86)90180-8
10.1080/10407782.2018.1423773
10.1038/s41598-021-96456-8
10.1016/j.apt.2019.11.020
10.1007/s40819-020-00831-4
10.1007/s40819-021-00999-3
10.3390/e13051020
10.1108/HFF-05-2020-0321
10.1016/j.aej.2016.08.035
10.1016/j.powtec.2014.06.054
10.1016/j.cjph.2017.11.026
10.1016/j.molliq.2019.01.117
10.1016/j.rser.2011.09.012
10.1016/j.rser.2017.04.070
10.1016/j.csite.2019.100432
10.1016/j.ijthermalsci.2011.06.005
10.1016/j.ijheatmasstransfer.2018.12.110
10.1038/s41598-017-02241-x
10.18280/ijht.370314
10.1016/j.proeng.2015.11.493
10.1007/s40819-017-0400-y
10.1007/s13204-020-01497-6
10.1615/JPorMedia.2021036038
10.1016/j.icheatmasstransfer.2020.104674
10.1007/s40819-021-01103-5
10.1016/j.physa.2019.123004
10.1140/epjs/s11734-021-00034-y
10.1016/j.ijheatmasstransfer.2010.11.014
10.1371/journal.pone.0126486
10.1007/s40819-016-0180-9
10.1007/s13204-020-01501-z
10.1007/s13204-020-01294-1
10.1016/j.ijheatmasstransfer.2016.01.078
10.1108/HFF-07-2018-0412
10.1007/s13369-020-04826-7
10.1088/1742-6596/1597/1/012055
10.1016/j.jppr.2020.04.006
10.1016/S0017-9310(99)00291-4
10.1007/s00231-009-0540-7
10.1016/j.icheatmasstransfer.2013.11.009
10.1016/j.molliq.2020.112533
10.1016/j.ijheatmasstransfer.2010.11.043
10.1016/j.ijheatmasstransfer.2013.06.010
10.1007/s13204-020-01455-2
10.1016/j.icheatmasstransfer.2020.104650
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature India Private Limited 2021
The Author(s), under exclusive licence to Springer Nature India Private Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2021
– notice: The Author(s), under exclusive licence to Springer Nature India Private Limited 2021.
DBID AAYXX
CITATION
DOI 10.1007/s40819-021-01207-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 2199-5796
ExternalDocumentID 10_1007_s40819_021_01207_y
GroupedDBID -EM
0R~
203
4.4
406
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
AZFZN
BAPOH
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GGRSB
GJIRD
GQ6
HQYDN
HRMNR
HVGLF
IKXTQ
IWAJR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c234y-ae49ab6b4171a31144b7f27a9dba56609a0b1f7cb26efc6d3ce66c90f25102ed3
ISSN 2349-5103
IngestDate Sun Jul 13 04:16:32 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 04:22:28 EDT 2025
Fri Feb 21 02:47:10 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Annular geometry
Nanoliquid
Inclination angle
Aspect ratio
Entropy generation
Porous medium
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c234y-ae49ab6b4171a31144b7f27a9dba56609a0b1f7cb26efc6d3ce66c90f25102ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2610938454
PQPubID 2044256
ParticipantIDs proquest_journals_2610938454
crossref_citationtrail_10_1007_s40819_021_01207_y
crossref_primary_10_1007_s40819_021_01207_y
springer_journals_10_1007_s40819_021_01207_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220200
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Heidelberg
PublicationTitle International journal of applied and computational mathematics
PublicationTitleAbbrev Int. J. Appl. Comput. Math
PublicationYear 2022
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Cho, Chiu, Lai (CR30) 2016; 97
Ali, Hamza, Aldila, Sultan, Mustafa, Shahzad (CR46) 2020; 10
Haq, Shahzad, Khan, Irfan, Mustafa, Ali, Sultan (CR45) 2019; 14
Gourari, Mebarek-Oudina, Hussein, Kolsi, Hassen, Younis (CR5) 2019; 37
Biswal, Basak (CR37) 2017; 80
Singh, Pandey, Kumar (CR34) 2020; 6
Choi, Eastman (CR6) 1995; 231
Rashad, Armaghani, Chamkha, Mansour (CR18) 2018; 56
Mansour, Ahmed (CR27) 2015; 18
Sankar, Swamy, Do, Altmeyer (CR24) 2021
Joshi, Upreti, Pandey, Kumar (CR42) 2021; 7
Jino, Kumar (CR25) 2021; 7
Sankar, Park, Lopez, Do (CR3) 2011; 54
Bouabid, Magherbi, Hidouri, Brahim (CR14) 2011; 13
Armaghani, Rashad, Vahidifar, Mishra, Chamkha (CR33) 2019; 29
Upreti, Pandey, Kumar (CR39) 2021; 24
Baytas (CR13) 2000; 43
Basak, Singh, Sruthi, Roy (CR15) 2014; 51
Sun, Pop (CR26) 2011; 50
Oztop, Al-Salem (CR35) 2012; 16
Abouali, Falahatpisheh (CR7) 2009; 46
Bhargava, Sharma, Bhargava, Anwar Beg, Kadir (CR16) 2017; 3
Jagadeesha, Prasanna, Sankar (CR28) 2015; 127
Shahzad, Shah, Sultan, Ali (CR49) 2020; 10
Mebarek-Oudina, Bessaih, Mahanthesh, Chamkha, Raza (CR8) 2020; 31
Huminic, Huminic (CR38) 2020; 302
Mejri, Mahmoudi, Abbassi, Omri (CR51) 2014; 266
Alnaqi, Aghakhani, Pordanjani, Bakhtiari, Asadi (CR20) 2019; 133
Singh, Pandey, Kumar (CR43) 2021; 29
Sultan, Mustafa, Khan, Shahzad, Ali, Adnan, Rehman (CR50) 2020; 10
Li, Firouzi, Karimipour, Afrand (CR23) 2020; 31
Mahian, Kianifar, Kleinstreuer, Al-Nimr, Pop, Sahin, Wongwises (CR36) 2013; 65
Li, Hussein, Younis, Afrand, Feng (CR22) 2020; 116
Pandey, Kumar (CR41) 2017; 56
Sultan, Ali, Mustafa, Shahzad, Iqbal (CR48) 2020; 10
Sankar, Park, Kim, Do (CR4) 2013; 63
Chen, Liu, Bao, Zheng (CR12) 2010; 49
Prasad (CR1) 1986; 29
Dutta, Biswas, Pati (CR32) 2018; 73
di Schio, Celli, Pop (CR2) 2011; 54
Reddy, Sankar (CR9) 2020; 1597
Upreti, Pandey, Kumar, Makinde (CR40) 2020; 45
Sankar, Reddy, Do (CR11) 2021; 11
Baghsaz, Rezanejad, Moghimi (CR19) 2019; 279
Selimefendigil, Oztop (CR21) 2020; 540
Ali, Abdul Alim, Akhter, Ahmed (CR31) 2017; 3
Ali, Shahzad, Sultan, Khan, Rashid (CR47) 2020; 116
Alsabery, Chamkha, Saleh, Hashim (CR17) 2017; 7
Singh, Pandey, Kumar (CR44) 2020; 9
Ghalambaz, Sheremet, Pop (CR29) 2015; 10
Reddy, Swamy, Sankar (CR10) 2021; 230
R Bhargava (1207_CR16) 2017; 3
S Baghsaz (1207_CR19) 2019; 279
M Sankar (1207_CR11) 2021; 11
O Mahian (1207_CR36) 2013; 65
V Prasad (1207_CR1) 1986; 29
M Sankar (1207_CR24) 2021
M Sankar (1207_CR4) 2013; 63
AK Pandey (1207_CR41) 2017; 56
AM Rashad (1207_CR18) 2018; 56
MM Ali (1207_CR31) 2017; 3
F Sultan (1207_CR48) 2020; 10
M Ali (1207_CR46) 2020; 10
S Chen (1207_CR12) 2010; 49
AA Alnaqi (1207_CR20) 2019; 133
I Haq (1207_CR45) 2019; 14
M Sankar (1207_CR3) 2011; 54
Z Li (1207_CR22) 2020; 116
Y Li (1207_CR23) 2020; 31
T Basak (1207_CR15) 2014; 51
L Jino (1207_CR25) 2021; 7
K Singh (1207_CR34) 2020; 6
F Selimefendigil (1207_CR21) 2020; 540
T Armaghani (1207_CR33) 2019; 29
H Upreti (1207_CR40) 2020; 45
F Mebarek-Oudina (1207_CR8) 2020; 31
HF Oztop (1207_CR35) 2012; 16
G Huminic (1207_CR38) 2020; 302
NK Reddy (1207_CR9) 2020; 1597
F Sultan (1207_CR50) 2020; 10
K Singh (1207_CR43) 2021; 29
C Cho (1207_CR30) 2016; 97
P Biswal (1207_CR37) 2017; 80
H Upreti (1207_CR39) 2021; 24
M Bouabid (1207_CR14) 2011; 13
M Ali (1207_CR47) 2020; 116
N Joshi (1207_CR42) 2021; 7
K Singh (1207_CR44) 2020; 9
O Abouali (1207_CR7) 2009; 46
NK Reddy (1207_CR10) 2021; 230
AI Alsabery (1207_CR17) 2017; 7
Q Sun (1207_CR26) 2011; 50
M Shahzad (1207_CR49) 2020; 10
SUS Choi (1207_CR6) 1995; 231
RD Jagadeesha (1207_CR28) 2015; 127
I Mejri (1207_CR51) 2014; 266
M Ghalambaz (1207_CR29) 2015; 10
ER di Schio (1207_CR2) 2011; 54
S Dutta (1207_CR32) 2018; 73
AC Baytas (1207_CR13) 2000; 43
S Gourari (1207_CR5) 2019; 37
MA Mansour (1207_CR27) 2015; 18
References_xml – volume: 3
  start-page: 1347
  year: 2017
  end-page: 1379
  ident: CR16
  article-title: Finite element simulation of nonlinear convective heat and mass transfer in a micropolar fluid-filled enclosure with Rayleigh number effects
  publication-title: Int. J. Appl. Comput. Math.
– volume: 7
  start-page: 164
  year: 2021
  ident: CR25
  article-title: Cu-Water nanofluid MHD quadratic natural convection on square porous cavity
  publication-title: Int. J. Appl. Comput. Math.
– volume: 6
  start-page: 85
  year: 2020
  ident: CR34
  article-title: Entropy generation impact on flow of micropolar fluid via an inclined channel with non-uniform heat source and variable fluid properties
  publication-title: Int. J. Appl. Comput. Math.
– volume: 7
  start-page: 2357
  year: 2017
  ident: CR17
  article-title: Natural convection flow of nanofluid in an inclined square enclosure partially filled with a porous medium
  publication-title: Sci. Rep.
– volume: 10
  start-page: 5375
  year: 2020
  end-page: 5381
  ident: CR48
  article-title: The impact of the rate coefficient over the reaction mechanism
  publication-title: Appl. Nanosci.
– volume: 231
  start-page: 99
  year: 1995
  end-page: 105
  ident: CR6
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: ASME FED
– volume: 266
  start-page: 340
  year: 2014
  end-page: 353
  ident: CR51
  article-title: Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls
  publication-title: Powder Technol.
– volume: 46
  start-page: 15
  year: 2009
  end-page: 23
  ident: CR7
  article-title: Numerical investigation of natural convection of Al O nanofluid in vertical annuli
  publication-title: Heat Mass Transf.
– volume: 80
  start-page: 1412
  year: 2017
  end-page: 1457
  ident: CR37
  article-title: Entropy generation vs energy efficiency for natural convection based energy flow in enclosures and various applications: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 54
  start-page: 1665
  issue: 7–8
  year: 2011
  end-page: 1670
  ident: CR2
  article-title: Buoyant flow in a vertical fluid saturated porous annulus: The Brinkman model
  publication-title: Int. J. Heat Mass Transf.
– volume: 65
  start-page: 514
  year: 2013
  end-page: 532
  ident: CR36
  article-title: A review of entropy generation in nanofluid flow
  publication-title: Int. J. Heat Mass Transf.
– year: 2021
  ident: CR24
  article-title: Thermal effects of nonuniform heating in a nanofluid-filled annulus: Buoyant transport versus entropy generation
  publication-title: Heat Transf
  doi: 10.1002/htj.22342
– volume: 31
  start-page: 1172
  issue: 4
  year: 2020
  end-page: 1189
  ident: CR8
  article-title: Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 43
  start-page: 2089
  issue: 12
  year: 2000
  end-page: 2099
  ident: CR13
  article-title: Entropy generation for natural convection in an inclined porous cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 29
  start-page: 1
  year: 2021
  ident: CR43
  article-title: Melting heat transfer assessment on magnetic nanofluid flow past a porous stretching cylinder
  publication-title: J. Egypt. Math. Soc.
– volume: 24
  start-page: 35
  year: 2021
  end-page: 50
  ident: CR39
  article-title: Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids
  publication-title: J. Porous Media
– volume: 50
  start-page: 2141
  year: 2011
  end-page: 2153
  ident: CR26
  article-title: Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall
  publication-title: Int. J. Therm. Sci.
– volume: 37
  start-page: 779
  issue: 3
  year: 2019
  end-page: 786
  ident: CR5
  article-title: Numerical study of natural convection between two coaxial cylinders
  publication-title: Int. J. Heat Technol.
– volume: 51
  start-page: 1
  year: 2014
  end-page: 8
  ident: CR15
  article-title: Finite element simulations on heat flow visualization and entropy generation during natural convection in inclined square cavities
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 56
  start-page: 193
  issue: 1
  year: 2018
  end-page: 211
  ident: CR18
  article-title: Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location
  publication-title: Chin. J. Phys.
– volume: 116
  start-page: 104674
  year: 2020
  ident: CR47
  article-title: Exploring the features of stratification phenomena for 3D flow of cross nanofluid considering activation energy
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 29
  start-page: 1363
  issue: 4
  year: 2019
  end-page: 1377
  ident: CR33
  article-title: Effect of discrete heat source location on heat transfer and entropy generation of nanofluid in an open inclined L-shaped cavity
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
– volume: 10
  start-page: 5383
  year: 2020
  end-page: 5390
  ident: CR49
  article-title: The C-matrix augmentation in a multi-route reaction mechanism
  publication-title: Appl. Nanosci.
– volume: 302
  start-page: 112533
  year: 2020
  ident: CR38
  article-title: Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: a review
  publication-title: J. Mol. Liq.
– volume: 10
  start-page: e0126486
  issue: 5
  year: 2015
  ident: CR29
  article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das nanofluid model
  publication-title: PLoS ONE
– volume: 230
  start-page: 1213
  issue: 5
  year: 2021
  end-page: 1225
  ident: CR10
  article-title: Buoyant convective flow of different hybrid nanoliquids in a non-uniformly heated annulus
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 9
  start-page: 289
  year: 2020
  end-page: 303
  ident: CR44
  article-title: Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ion-slip currents: an analytic approach
  publication-title: Propuls Power Res.
– volume: 10
  start-page: 3295
  year: 2020
  end-page: 3303
  ident: CR50
  article-title: A numerical treatment on rheology of mixed convective Carreau nanofluid with variable viscosity and thermal conductivity
  publication-title: Appl. Nanosci.
– volume: 54
  start-page: 1493
  issue: 7–8
  year: 2011
  end-page: 1505
  ident: CR3
  article-title: Numerical study of natural convection in a vertical porous annulus with discrete heating
  publication-title: Int. J. Heat Mass Transf.
– volume: 279
  start-page: 327
  year: 2019
  end-page: 341
  ident: CR19
  article-title: Numerical investigation of transient natural convection and entropy generation analysis in a porous cavity filled with nanofluid considering nanoparticle sedimentation
  publication-title: J. Mol. Liq.
– volume: 45
  start-page: 7705
  year: 2020
  end-page: 7717
  ident: CR40
  article-title: Ohmic heating and non-uniform heat source/sink roles on 3D Darcy-Forchheimer flow of CNTs nanofluids over a stretching surface
  publication-title: Arab. J. Sci. Eng.
– volume: 49
  start-page: 2439
  issue: 12
  year: 2010
  end-page: 2452
  ident: CR12
  article-title: Natural convection and entropy generation in a vertically concentric annular space
  publication-title: Int. J. Therm. Sci.
– volume: 11
  start-page: 17122
  year: 2021
  ident: CR11
  article-title: Conjugate buoyant convective transport of nanofluids in an enclosed annular geometry
  publication-title: Sci. Rep.
– volume: 133
  start-page: 256
  year: 2019
  end-page: 267
  ident: CR20
  article-title: and Minh-Duc, Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect
  publication-title: Int. J. Heat Mass Transf.
– volume: 16
  start-page: 911
  year: 2012
  end-page: 920
  ident: CR35
  article-title: A review on entropy generation in natural and mixed convection heat transfer for energy systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 127
  start-page: 1346
  year: 2015
  end-page: 1353
  ident: CR28
  article-title: Double diffusive convection in an inclined parallelogrammic porous enclosure
  publication-title: Procedia Eng.
– volume: 14
  start-page: 100432
  year: 2019
  ident: CR45
  article-title: Characteristics of chemical processes and heat source/sink with wedge geometry
  publication-title: Case Stud. Therm. Eng.
– volume: 13
  start-page: 1020
  issue: 5
  year: 2011
  end-page: 1033
  ident: CR14
  article-title: Entropy generation at natural convection in an inclined rectangular cavity
  publication-title: Entropy
– volume: 18
  start-page: 485
  issue: 3
  year: 2015
  end-page: 495
  ident: CR27
  article-title: A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 10
  start-page: 3405
  year: 2020
  end-page: 3410
  ident: CR46
  article-title: Evaluation of steady-state to identify the fast-slow completion-route in the multi-route reaction mechanism
  publication-title: Appl. Nanosci.
– volume: 116
  start-page: 104650
  year: 2020
  ident: CR22
  article-title: Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 540
  start-page: 123004
  year: 2020
  ident: CR21
  article-title: Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid
  publication-title: Physica A
– volume: 1597
  start-page: 012055
  year: 2020
  ident: CR9
  article-title: Buoyant convective transport of nanofluids in a non-uniformly heated annulus
  publication-title: J. Phys. Conf. Ser.
– volume: 29
  start-page: 841
  year: 1986
  end-page: 853
  ident: CR1
  article-title: Numerical study of natural convection in a vertical porous annulus with constant heat flux on inner wall
  publication-title: Int. J. Heat Mass Transf.
– volume: 56
  start-page: 55
  year: 2017
  end-page: 62
  ident: CR41
  article-title: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation
  publication-title: Alex. Eng. J.
– volume: 31
  start-page: 645
  issue: 2
  year: 2020
  end-page: 657
  ident: CR23
  article-title: Effect of an inclined partition with constant thermal conductivity on natural convection and entropy generation of a nanofluid under magnetic field inside an inclined enclosure: applicable for electronic cooling
  publication-title: Adv. Powder Technol.
– volume: 7
  start-page: 64
  year: 2021
  ident: CR42
  article-title: Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation
  publication-title: Int. J. Appl. Comput. Math.
– volume: 63
  start-page: 687
  issue: 9
  year: 2013
  end-page: 712
  ident: CR4
  article-title: Numerical study of natural convection in a vertical porous annulus with an internal heat source: effect of discrete heating
  publication-title: Numer. Heat Transf. Part A
– volume: 97
  start-page: 511
  year: 2016
  end-page: 520
  ident: CR30
  article-title: Natural convection and entropy generation of Al O -water nanofluid in an inclined wavy-wall cavity
  publication-title: Int. J. Heat Mass Transf.
– volume: 3
  start-page: 1047
  year: 2017
  end-page: 1069
  ident: CR31
  article-title: MHD natural convection flow of CuO/water nanofluid in a differentially heated hexagonal enclosure with a tilted square block
  publication-title: Int. J. Appl. Comput. Math.
– volume: 73
  start-page: 222
  issue: 4
  year: 2018
  end-page: 240
  ident: CR32
  article-title: Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall
  publication-title: Numer. Heat Transf. Part A
– year: 2021
  ident: 1207_CR24
  publication-title: Heat Transf
  doi: 10.1002/htj.22342
– volume: 63
  start-page: 687
  issue: 9
  year: 2013
  ident: 1207_CR4
  publication-title: Numer. Heat Transf. Part A
  doi: 10.1080/10407782.2013.756718
– volume: 49
  start-page: 2439
  issue: 12
  year: 2010
  ident: 1207_CR12
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.08.011
– volume: 29
  start-page: 1
  year: 2021
  ident: 1207_CR43
  publication-title: J. Egypt. Math. Soc.
  doi: 10.1186/s42787-020-00109-0
– volume: 29
  start-page: 841
  year: 1986
  ident: 1207_CR1
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(86)90180-8
– volume: 231
  start-page: 99
  year: 1995
  ident: 1207_CR6
  publication-title: ASME FED
– volume: 73
  start-page: 222
  issue: 4
  year: 2018
  ident: 1207_CR32
  publication-title: Numer. Heat Transf. Part A
  doi: 10.1080/10407782.2018.1423773
– volume: 11
  start-page: 17122
  year: 2021
  ident: 1207_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96456-8
– volume: 31
  start-page: 645
  issue: 2
  year: 2020
  ident: 1207_CR23
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.11.020
– volume: 6
  start-page: 85
  year: 2020
  ident: 1207_CR34
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-020-00831-4
– volume: 7
  start-page: 64
  year: 2021
  ident: 1207_CR42
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-021-00999-3
– volume: 13
  start-page: 1020
  issue: 5
  year: 2011
  ident: 1207_CR14
  publication-title: Entropy
  doi: 10.3390/e13051020
– volume: 31
  start-page: 1172
  issue: 4
  year: 2020
  ident: 1207_CR8
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-05-2020-0321
– volume: 56
  start-page: 55
  year: 2017
  ident: 1207_CR41
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.08.035
– volume: 266
  start-page: 340
  year: 2014
  ident: 1207_CR51
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.06.054
– volume: 56
  start-page: 193
  issue: 1
  year: 2018
  ident: 1207_CR18
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2017.11.026
– volume: 279
  start-page: 327
  year: 2019
  ident: 1207_CR19
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.01.117
– volume: 16
  start-page: 911
  year: 2012
  ident: 1207_CR35
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.09.012
– volume: 80
  start-page: 1412
  year: 2017
  ident: 1207_CR37
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.070
– volume: 14
  start-page: 100432
  year: 2019
  ident: 1207_CR45
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2019.100432
– volume: 50
  start-page: 2141
  year: 2011
  ident: 1207_CR26
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2011.06.005
– volume: 133
  start-page: 256
  year: 2019
  ident: 1207_CR20
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.110
– volume: 7
  start-page: 2357
  year: 2017
  ident: 1207_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02241-x
– volume: 37
  start-page: 779
  issue: 3
  year: 2019
  ident: 1207_CR5
  publication-title: Int. J. Heat Technol.
  doi: 10.18280/ijht.370314
– volume: 127
  start-page: 1346
  year: 2015
  ident: 1207_CR28
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.11.493
– volume: 3
  start-page: 1047
  year: 2017
  ident: 1207_CR31
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-017-0400-y
– volume: 10
  start-page: 5383
  year: 2020
  ident: 1207_CR49
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01497-6
– volume: 24
  start-page: 35
  year: 2021
  ident: 1207_CR39
  publication-title: J. Porous Media
  doi: 10.1615/JPorMedia.2021036038
– volume: 116
  start-page: 104674
  year: 2020
  ident: 1207_CR47
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104674
– volume: 7
  start-page: 164
  year: 2021
  ident: 1207_CR25
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-021-01103-5
– volume: 540
  start-page: 123004
  year: 2020
  ident: 1207_CR21
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.123004
– volume: 230
  start-page: 1213
  issue: 5
  year: 2021
  ident: 1207_CR10
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00034-y
– volume: 54
  start-page: 1665
  issue: 7–8
  year: 2011
  ident: 1207_CR2
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.014
– volume: 10
  start-page: e0126486
  issue: 5
  year: 2015
  ident: 1207_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0126486
– volume: 3
  start-page: 1347
  year: 2017
  ident: 1207_CR16
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-016-0180-9
– volume: 10
  start-page: 5375
  year: 2020
  ident: 1207_CR48
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01501-z
– volume: 10
  start-page: 3295
  year: 2020
  ident: 1207_CR50
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01294-1
– volume: 97
  start-page: 511
  year: 2016
  ident: 1207_CR30
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.01.078
– volume: 29
  start-page: 1363
  issue: 4
  year: 2019
  ident: 1207_CR33
  publication-title: Int. J. Numer. Meth. Heat Fluid Flow
  doi: 10.1108/HFF-07-2018-0412
– volume: 45
  start-page: 7705
  year: 2020
  ident: 1207_CR40
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-020-04826-7
– volume: 1597
  start-page: 012055
  year: 2020
  ident: 1207_CR9
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1597/1/012055
– volume: 9
  start-page: 289
  year: 2020
  ident: 1207_CR44
  publication-title: Propuls Power Res.
  doi: 10.1016/j.jppr.2020.04.006
– volume: 43
  start-page: 2089
  issue: 12
  year: 2000
  ident: 1207_CR13
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(99)00291-4
– volume: 46
  start-page: 15
  year: 2009
  ident: 1207_CR7
  publication-title: Heat Mass Transf.
  doi: 10.1007/s00231-009-0540-7
– volume: 51
  start-page: 1
  year: 2014
  ident: 1207_CR15
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2013.11.009
– volume: 302
  start-page: 112533
  year: 2020
  ident: 1207_CR38
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.112533
– volume: 54
  start-page: 1493
  issue: 7–8
  year: 2011
  ident: 1207_CR3
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.043
– volume: 65
  start-page: 514
  year: 2013
  ident: 1207_CR36
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.06.010
– volume: 10
  start-page: 3405
  year: 2020
  ident: 1207_CR46
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-020-01455-2
– volume: 116
  start-page: 104650
  year: 2020
  ident: 1207_CR22
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104650
– volume: 18
  start-page: 485
  issue: 3
  year: 2015
  ident: 1207_CR27
  publication-title: Eng. Sci. Technol. Int. J.
SSID ssj0002147028
Score 2.336918
Snippet The physical structure in several industrial applications which includes cooling of electronic equipment, heat exchangers, nuclear reactors, and solar...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Annuli
Applications of Mathematics
Applied mathematics
Aspect ratio
Computational mathematics
Computational Science and Engineering
Convective flow
Darcys law
Electronic equipment
Enclosures
Energy dissipation
Entropy
Fluid friction
Geometry
Heat exchangers
Heat transfer
Inclination angle
Industrial applications
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Nanoparticles
Nuclear Energy
Nuclear reactors
Operations Research/Decision Theory
Original Paper
Partial differential equations
Porous media
Solar collectors
Theoretical
Title Analysis of Entropy Generation and Energy Transport of Cu-Water Nanoliquid in a Tilted Vertical Porous Annulus
URI https://link.springer.com/article/10.1007/s40819-021-01207-y
https://www.proquest.com/docview/2610938454
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPXAaIwkB-4K24ysWJm8cOdZqQOiFtg71FduKIQJeWNREqv4Sfy3F86zaGGC9R5J6kUb7P9rHznXMQeivAiWelZCQpSkYohzMRi4wA_lFAxYTzvlrD_Dg9OqMfzpPzweDXlmqpa8W4-PnHuJL_QRXaAFcVJXsHZN1NoQHOAV84AsJw_CeMtzOKzJTkfLUxeaRbqzKe6dg-l8O8l1905DNXyRFhaF0u6u9drRIwjTgAt1AO6Kdeaw3YfVxeKoWsysG_MBsEX73y3W8kbqWf4MarNeFyq661RhcuQaxz409-8AsdITEeTcejXu7tpokT3nzT6u_52H0WkqWZFMBawmN-qbe3LWDFG1yRgNhtSxgGy5r7QS-KaUZUlj89P-m2MIM2pivf2lF7cp2cN-YCLf9YU-X0EKVEUXHCjGz8zOf0iC53c2-cg3HeG-ebe2g3ggUIDPm708ODg2O3f6fqOwV96V73yCYmq4_MvPGvV_0ev5i59v29d2tOH6OHZj2Cp5pcT9BANnvokVmbYDPyr_fQg7mH7ylqLPPwssKGedgzDwP6WDMPO-YpU8s87JmHazDHmnnYMg9r5mHDvGfo7HB2-v6ImModpIC3sSFc0oyLVNCQhTyGJTcVrIoYz0oBfT8NMh6IsGKFiFJZFWkZFzJNiyyowNsOIlnGz9FOs2zkC4SrGK5LaVDGoqQsCbkI0jJLVME1yWByGaLQvte8MGntVXWVRX47qEM0ctesdFKXv1rvW7hy05_WeaTKFMQTmtAhemch9D_ffreXdzN_he773rOPdtrLTr4GN7gVbwwjfwPcwLCW
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Entropy+Generation+and+Energy+Transport+of+Cu-Water+Nanoliquid+in+a+Tilted+Vertical+Porous+Annulus&rft.jtitle=International+journal+of+applied+and+computational+mathematics&rft.au=Swamy%2C+H.+A.+Kumara&rft.au=Sankar%2C+M.&rft.au=Reddy%2C+N.+Keerthi&rft.date=2022-02-01&rft.pub=Springer+India&rft.issn=2349-5103&rft.eissn=2199-5796&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1007%2Fs40819-021-01207-y&rft.externalDocID=10_1007_s40819_021_01207_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-5103&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-5103&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-5103&client=summon