Tourism recommendation based on word embedding from card transaction data
In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject...
Saved in:
Published in | Computer Science and Information Systems Vol. 20; no. 3; pp. 911 - 931 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.06.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject of smart tourism. However, challenges exist such as handling the absence of rating data and considering spatial factor that significantly affects recommendation performance. This paper applies well-known Doc2Vec techniques to the tourism recommendation. We use them on non-textual features, card transaction dataset, to recommend tourism business services to target user groups who visit a specific location while addressing the challenges above. For the experiments, a card transaction dataset among eight years from Shinhan, which is one of the major card companies in the Republic of Korea, is used. The results demonstrate that the use of vector space representations trained by the Doc2Vec techniques considering spatial information is promising for tourism recommendations. |
---|---|
AbstractList | In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject of smart tourism. However, challenges exist such as handling the absence of rating data and considering spatial factor that significantly affects recommendation performance. This paper applies well-known Doc2Vec techniques to the tourism recommendation. We use them on non-textual features, card transaction dataset, to recommend tourism business services to target user groups who visit a specific location while addressing the challenges above. For the experiments, a card transaction dataset among eight years from Shinhan, which is one of the major card companies in the Republic of Korea, is used. The results demonstrate that the use of vector space representations trained by the Doc2Vec techniques considering spatial information is promising for tourism recommendations. |
Author | Koo, Chulmo Hong, Minsung Chung, Namho |
Author_xml | – sequence: 1 givenname: Minsung surname: Hong fullname: Hong, Minsung organization: Smart Tourism Research Center, Kyung-Hee University, Seoul, South Korea – sequence: 2 givenname: Namho surname: Chung fullname: Chung, Namho organization: Smart Tourism Education Platform, Kyung-Hee University, Seoul, South Korea – sequence: 3 givenname: Chulmo surname: Koo fullname: Koo, Chulmo organization: Smart Tourism Education Platform, Kyung-Hee University, Seoul, South Korea |
BookMark | eNpVUE1LxDAUDLKCdd2r5_yBri8vsU2PsqhbWPCw67m85kMKJpGkIv5768fF0wzDzMDMJVvFFB1j1wK2iJ2-2R37IyI0CAC4P2MVKmhqAUKvWCU0Qg0o1AXblDKNoFQrpVJNxfpTes9TCTw7k0Jw0dI8pchHKs7yhXykbLkLo7N2ii_c5xS4oUWbM8VC5se9hOiKnXt6LW7zh2v2_HB_2u3rw9Njv7s71Aalmms5WilIY2uaRhh1a6jT2gvCrnUaR_CtFm5ZYhV5WrxWg7YdSVLa6E5JuWbb316TUynZ-eEtT4Hy5yBg-P5i-P-F_AKC8FPa |
Cites_doi | 10.1016/j.dss.2015.03.008 10.3390/info10050180 10.1109/DSAA49011.2020.00059 10.1145/3308558.3313494 10.1080/23742917.2020.1796474 10.1145/3285029 10.1016/j.eswa.2020.113301 10.1007/s10844-020-00601-0 10.1007/s11042-016-3265-x 10.3233/AIS-200584 10.1016/j.ins.2021.02.005 10.1016/j.tourman.2017.03.005 10.1016/j.eswa.2017.10.049 10.1016/j.eswa.2022.118156 10.1109/IJCNN48605.2020.9206871 10.5194/isprsarchives-XL-1-W5-83-2015 10.29036/jots.v10i18.39 10.1007/s11042-019-08607-9 10.1007/s00779-020-01476-2 10.1007/s11831-019-09363-7 10.1016/j.future.2017.04.028 10.1016/j.eswa.2020.114537 10.1109/ICCKE48569.2019.8964698 10.1007/s10844-018-0517-4 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.2298/CSIS220620002H |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2406-1018 |
EndPage | 931 |
ExternalDocumentID | 10_2298_CSIS220620002H |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
ID | FETCH-LOGICAL-c234t-3bd31a827c661c45ca988f1a297e82b0f781e220d4afabd3d808d9a3a48c89433 |
ISSN | 1820-0214 |
IngestDate | Tue Jul 01 02:43:47 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c234t-3bd31a827c661c45ca988f1a297e82b0f781e220d4afabd3d808d9a3a48c89433 |
OpenAccessLink | http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300002H |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_2298_CSIS220620002H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Computer Science and Information Systems |
PublicationYear | 2023 |
References | ref13 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref22 doi: 10.1016/j.dss.2015.03.008 – ident: ref7 doi: 10.3390/info10050180 – ident: ref10 doi: 10.1109/DSAA49011.2020.00059 – ident: ref1 – ident: ref11 doi: 10.1145/3308558.3313494 – ident: ref20 – ident: ref28 doi: 10.1080/23742917.2020.1796474 – ident: ref30 doi: 10.1145/3285029 – ident: ref12 doi: 10.1016/j.eswa.2020.113301 – ident: ref9 doi: 10.1007/s10844-020-00601-0 – ident: ref24 – ident: ref25 – ident: ref27 doi: 10.1007/s11042-016-3265-x – ident: ref16 doi: 10.3233/AIS-200584 – ident: ref15 doi: 10.1016/j.ins.2021.02.005 – ident: ref19 doi: 10.1016/j.tourman.2017.03.005 – ident: ref6 doi: 10.1016/j.eswa.2017.10.049 – ident: ref18 doi: 10.1016/j.eswa.2022.118156 – ident: ref13 doi: 10.1109/IJCNN48605.2020.9206871 – ident: ref5 doi: 10.5194/isprsarchives-XL-1-W5-83-2015 – ident: ref2 doi: 10.29036/jots.v10i18.39 – ident: ref4 doi: 10.1007/s11042-019-08607-9 – ident: ref21 – ident: ref23 – ident: ref26 doi: 10.1007/s00779-020-01476-2 – ident: ref8 doi: 10.1007/s11831-019-09363-7 – ident: ref3 doi: 10.1016/j.future.2017.04.028 – ident: ref17 doi: 10.1016/j.eswa.2020.114537 – ident: ref29 doi: 10.1109/ICCKE48569.2019.8964698 – ident: ref14 doi: 10.1007/s10844-018-0517-4 |
SSID | ssib044733446 |
Score | 2.2619925 |
Snippet | In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 911 |
Title | Tourism recommendation based on word embedding from card transaction data |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA1-XLyIouI3OQgeJNomaZseRZRV2L2o4G1J0hQPdlekInjwtzvTZNuueFi9lBLaQDuvM5N03htCTuIyS53JJXOcO4YRg-XGGaZ1EmtTulQ1avvDUTp4lHdPyVO3od-wS2pzbj9_5ZX8x6owBnZFluwfLNtOCgNwDvaFI1gYjovZ2EsAnuGqtqpc6I90hpGpwL8AH8gFdJVxRUNdaagkFvcN6l6X8MBO6_QKQp-H9rP3FcMty3FO5LwpvPXuYohl7SEO-jZTfnykq-dp69enfmv2-f2lmvZ3HLjoKqOCk4SsgaHWmo8hzRgmBgzVv_qelUc9BImem8yDg_URN_dx4Kcz5zxHgsLV_e0951GKnCI-6MLW7Ff9j2jW1hjC6gZnGM_fv0xWOSwo0CMOv65nnkfKTAjpqWizh_MKnzjFxfwUvQyml4o8bJD1sIaglx4Qm2TJTbbIbQADnQcDbcBA4QTBQFswUAQDRTDQHhgogmGbPN5cP1wNWOiTwSwXsmbCFCLWimcWki0rE6tzpcpY8zxzipuozFQMn2JUSF1quLZQkSpyLbRUFuX3xQ5ZmUwnbpfQgkPGnrhCJ8pIo1KTSSVcZuPScpdm8R45nT37-NXLoYx_f9H7C195QNY6lB2Slfrt3R1Bpleb48ZI35oRU1s |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourism+recommendation+based+on+word+embedding+from+card+transaction+data&rft.jtitle=Computer+Science+and+Information+Systems&rft.au=Hong%2C+Minsung&rft.au=Chung%2C+Namho&rft.au=Koo%2C+Chulmo&rft.date=2023-06-01&rft.issn=1820-0214&rft.eissn=2406-1018&rft.volume=20&rft.issue=3&rft.spage=911&rft.epage=931&rft_id=info:doi/10.2298%2FCSIS220620002H&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_CSIS220620002H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1820-0214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1820-0214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1820-0214&client=summon |