Tourism recommendation based on word embedding from card transaction data

In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject...

Full description

Saved in:
Bibliographic Details
Published inComputer Science and Information Systems Vol. 20; no. 3; pp. 911 - 931
Main Authors Hong, Minsung, Chung, Namho, Koo, Chulmo
Format Journal Article
LanguageEnglish
Published 01.06.2023
Online AccessGet full text

Cover

Loading…
Abstract In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject of smart tourism. However, challenges exist such as handling the absence of rating data and considering spatial factor that significantly affects recommendation performance. This paper applies well-known Doc2Vec techniques to the tourism recommendation. We use them on non-textual features, card transaction dataset, to recommend tourism business services to target user groups who visit a specific location while addressing the challenges above. For the experiments, a card transaction dataset among eight years from Shinhan, which is one of the major card companies in the Republic of Korea, is used. The results demonstrate that the use of vector space representations trained by the Doc2Vec techniques considering spatial information is promising for tourism recommendations.
AbstractList In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption behaviors and patterns. Additionally, recommender systems that incorporate users? personal preferences and consumption is an important subject of smart tourism. However, challenges exist such as handling the absence of rating data and considering spatial factor that significantly affects recommendation performance. This paper applies well-known Doc2Vec techniques to the tourism recommendation. We use them on non-textual features, card transaction dataset, to recommend tourism business services to target user groups who visit a specific location while addressing the challenges above. For the experiments, a card transaction dataset among eight years from Shinhan, which is one of the major card companies in the Republic of Korea, is used. The results demonstrate that the use of vector space representations trained by the Doc2Vec techniques considering spatial information is promising for tourism recommendations.
Author Koo, Chulmo
Hong, Minsung
Chung, Namho
Author_xml – sequence: 1
  givenname: Minsung
  surname: Hong
  fullname: Hong, Minsung
  organization: Smart Tourism Research Center, Kyung-Hee University, Seoul, South Korea
– sequence: 2
  givenname: Namho
  surname: Chung
  fullname: Chung, Namho
  organization: Smart Tourism Education Platform, Kyung-Hee University, Seoul, South Korea
– sequence: 3
  givenname: Chulmo
  surname: Koo
  fullname: Koo, Chulmo
  organization: Smart Tourism Education Platform, Kyung-Hee University, Seoul, South Korea
BookMark eNpVUE1LxDAUDLKCdd2r5_yBri8vsU2PsqhbWPCw67m85kMKJpGkIv5768fF0wzDzMDMJVvFFB1j1wK2iJ2-2R37IyI0CAC4P2MVKmhqAUKvWCU0Qg0o1AXblDKNoFQrpVJNxfpTes9TCTw7k0Jw0dI8pchHKs7yhXykbLkLo7N2ii_c5xS4oUWbM8VC5se9hOiKnXt6LW7zh2v2_HB_2u3rw9Njv7s71Aalmms5WilIY2uaRhh1a6jT2gvCrnUaR_CtFm5ZYhV5WrxWg7YdSVLa6E5JuWbb316TUynZ-eEtT4Hy5yBg-P5i-P-F_AKC8FPa
Cites_doi 10.1016/j.dss.2015.03.008
10.3390/info10050180
10.1109/DSAA49011.2020.00059
10.1145/3308558.3313494
10.1080/23742917.2020.1796474
10.1145/3285029
10.1016/j.eswa.2020.113301
10.1007/s10844-020-00601-0
10.1007/s11042-016-3265-x
10.3233/AIS-200584
10.1016/j.ins.2021.02.005
10.1016/j.tourman.2017.03.005
10.1016/j.eswa.2017.10.049
10.1016/j.eswa.2022.118156
10.1109/IJCNN48605.2020.9206871
10.5194/isprsarchives-XL-1-W5-83-2015
10.29036/jots.v10i18.39
10.1007/s11042-019-08607-9
10.1007/s00779-020-01476-2
10.1007/s11831-019-09363-7
10.1016/j.future.2017.04.028
10.1016/j.eswa.2020.114537
10.1109/ICCKE48569.2019.8964698
10.1007/s10844-018-0517-4
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.2298/CSIS220620002H
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2406-1018
EndPage 931
ExternalDocumentID 10_2298_CSIS220620002H
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c234t-3bd31a827c661c45ca988f1a297e82b0f781e220d4afabd3d808d9a3a48c89433
ISSN 1820-0214
IngestDate Tue Jul 01 02:43:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c234t-3bd31a827c661c45ca988f1a297e82b0f781e220d4afabd3d808d9a3a48c89433
OpenAccessLink http://www.doiserbia.nb.rs/ft.aspx?id=1820-02142300002H
PageCount 21
ParticipantIDs crossref_primary_10_2298_CSIS220620002H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Computer Science and Information Systems
PublicationYear 2023
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1016/j.dss.2015.03.008
– ident: ref7
  doi: 10.3390/info10050180
– ident: ref10
  doi: 10.1109/DSAA49011.2020.00059
– ident: ref1
– ident: ref11
  doi: 10.1145/3308558.3313494
– ident: ref20
– ident: ref28
  doi: 10.1080/23742917.2020.1796474
– ident: ref30
  doi: 10.1145/3285029
– ident: ref12
  doi: 10.1016/j.eswa.2020.113301
– ident: ref9
  doi: 10.1007/s10844-020-00601-0
– ident: ref24
– ident: ref25
– ident: ref27
  doi: 10.1007/s11042-016-3265-x
– ident: ref16
  doi: 10.3233/AIS-200584
– ident: ref15
  doi: 10.1016/j.ins.2021.02.005
– ident: ref19
  doi: 10.1016/j.tourman.2017.03.005
– ident: ref6
  doi: 10.1016/j.eswa.2017.10.049
– ident: ref18
  doi: 10.1016/j.eswa.2022.118156
– ident: ref13
  doi: 10.1109/IJCNN48605.2020.9206871
– ident: ref5
  doi: 10.5194/isprsarchives-XL-1-W5-83-2015
– ident: ref2
  doi: 10.29036/jots.v10i18.39
– ident: ref4
  doi: 10.1007/s11042-019-08607-9
– ident: ref21
– ident: ref23
– ident: ref26
  doi: 10.1007/s00779-020-01476-2
– ident: ref8
  doi: 10.1007/s11831-019-09363-7
– ident: ref3
  doi: 10.1016/j.future.2017.04.028
– ident: ref17
  doi: 10.1016/j.eswa.2020.114537
– ident: ref29
  doi: 10.1109/ICCKE48569.2019.8964698
– ident: ref14
  doi: 10.1007/s10844-018-0517-4
SSID ssib044733446
Score 2.2619925
Snippet In the tourism industry, millions of card transactions generate a massive volume of big data. The card transactions eventually reflect customers? consumption...
SourceID crossref
SourceType Index Database
StartPage 911
Title Tourism recommendation based on word embedding from card transaction data
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA1-XLyIouI3OQgeJNomaZseRZRV2L2o4G1J0hQPdlekInjwtzvTZNuueFi9lBLaQDuvM5N03htCTuIyS53JJXOcO4YRg-XGGaZ1EmtTulQ1avvDUTp4lHdPyVO3od-wS2pzbj9_5ZX8x6owBnZFluwfLNtOCgNwDvaFI1gYjovZ2EsAnuGqtqpc6I90hpGpwL8AH8gFdJVxRUNdaagkFvcN6l6X8MBO6_QKQp-H9rP3FcMty3FO5LwpvPXuYohl7SEO-jZTfnykq-dp69enfmv2-f2lmvZ3HLjoKqOCk4SsgaHWmo8hzRgmBgzVv_qelUc9BImem8yDg_URN_dx4Kcz5zxHgsLV_e0951GKnCI-6MLW7Ff9j2jW1hjC6gZnGM_fv0xWOSwo0CMOv65nnkfKTAjpqWizh_MKnzjFxfwUvQyml4o8bJD1sIaglx4Qm2TJTbbIbQADnQcDbcBA4QTBQFswUAQDRTDQHhgogmGbPN5cP1wNWOiTwSwXsmbCFCLWimcWki0rE6tzpcpY8zxzipuozFQMn2JUSF1quLZQkSpyLbRUFuX3xQ5ZmUwnbpfQgkPGnrhCJ8pIo1KTSSVcZuPScpdm8R45nT37-NXLoYx_f9H7C195QNY6lB2Slfrt3R1Bpleb48ZI35oRU1s
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourism+recommendation+based+on+word+embedding+from+card+transaction+data&rft.jtitle=Computer+Science+and+Information+Systems&rft.au=Hong%2C+Minsung&rft.au=Chung%2C+Namho&rft.au=Koo%2C+Chulmo&rft.date=2023-06-01&rft.issn=1820-0214&rft.eissn=2406-1018&rft.volume=20&rft.issue=3&rft.spage=911&rft.epage=931&rft_id=info:doi/10.2298%2FCSIS220620002H&rft.externalDBID=n%2Fa&rft.externalDocID=10_2298_CSIS220620002H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1820-0214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1820-0214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1820-0214&client=summon