A novel method for hydrology and water quality simulation in karst regions using machine learning model

[Display omitted] •A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for strea...

Full description

Saved in:
Bibliographic Details
Published inEcological indicators Vol. 178; p. 113862
Main Authors Wang, Wanbin, Zhao, Yangyi, Guan, Tangzhen, Qin, Chengxin, Chen, Dongni, Jia, Haifeng, Zhang, Xingzi, Yu, Yanhong
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for streamflow and water quality. Simulating hydrology and water quality in karst regions remains a significant challenge due to the complex and unique geological conditions. This study developed a novel conceptual model integrating baseflow segmentation and rainfall-stormflow analysis for hydrological and water quality simulation and implemented it using an interpretable machine learning approach. Two representative watersheds in the karst region of southwestern China—the Chishui river and Nanpan river—were selected as case studies. The results demonstrated that (1) The proposed method successfully achieved comprehensive simulations of streamflow, CODMn, TN, and TP. The maximum prediction time span was 3 days for streamflow (R2 > 0.60) and 2 days for CODMn, TN, and TP (R2 > 0.59). (2) Rainfall plays a significant positive driving role in hydrological and water quality simulations, effectively weakening the strong autocorrelation of these parameters in karst regions. The increase of baseflow and stormflow worsens water quality, which is most significant for CODMn and TP in Chishui river basin. (3) Water quality in ridge-furrow valleys, fractured basins, and fractured mountainous areas is more significantly influenced by rainfall due to the unique geological features. The proposed method can be effectively applied in karst areas with non-point source pollution and directly supports water environment prediction and identification of key pollution source areas.
AbstractList [Display omitted] •A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for streamflow and water quality. Simulating hydrology and water quality in karst regions remains a significant challenge due to the complex and unique geological conditions. This study developed a novel conceptual model integrating baseflow segmentation and rainfall-stormflow analysis for hydrological and water quality simulation and implemented it using an interpretable machine learning approach. Two representative watersheds in the karst region of southwestern China—the Chishui river and Nanpan river—were selected as case studies. The results demonstrated that (1) The proposed method successfully achieved comprehensive simulations of streamflow, CODMn, TN, and TP. The maximum prediction time span was 3 days for streamflow (R2 > 0.60) and 2 days for CODMn, TN, and TP (R2 > 0.59). (2) Rainfall plays a significant positive driving role in hydrological and water quality simulations, effectively weakening the strong autocorrelation of these parameters in karst regions. The increase of baseflow and stormflow worsens water quality, which is most significant for CODMn and TP in Chishui river basin. (3) Water quality in ridge-furrow valleys, fractured basins, and fractured mountainous areas is more significantly influenced by rainfall due to the unique geological features. The proposed method can be effectively applied in karst areas with non-point source pollution and directly supports water environment prediction and identification of key pollution source areas.
ArticleNumber 113862
Author Zhao, Yangyi
Zhang, Xingzi
Wang, Wanbin
Guan, Tangzhen
Jia, Haifeng
Qin, Chengxin
Chen, Dongni
Yu, Yanhong
Author_xml – sequence: 1
  givenname: Wanbin
  surname: Wang
  fullname: Wang, Wanbin
  organization: College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
– sequence: 2
  givenname: Yangyi
  surname: Zhao
  fullname: Zhao, Yangyi
  email: yyz301@foxmail.com
  organization: College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
– sequence: 3
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
  organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China
– sequence: 4
  givenname: Chengxin
  surname: Qin
  fullname: Qin, Chengxin
  organization: State Key Laboratory of Regional Environment and Sustainability, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Dongni
  surname: Chen
  fullname: Chen, Dongni
  organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China
– sequence: 6
  givenname: Haifeng
  surname: Jia
  fullname: Jia, Haifeng
  organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China
– sequence: 7
  givenname: Xingzi
  surname: Zhang
  fullname: Zhang, Xingzi
  organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China
– sequence: 8
  givenname: Yanhong
  surname: Yu
  fullname: Yu, Yanhong
  organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China
BookMark eNqFkM1OwzAQhH0oEm3hEZD8Agn-SdLmhKqKP6kSF5C4Wa69SV0cG2y3KG-PS7lzWu1qZzTzzdDEeQcI3VBSUkKb230JylvjdMkIq0tK-bJhEzSl1YIUtCHvl2gW457k37ZtpqhfYeePYPEAaec17nzAu1EHb30_Yuk0_pYJAv46SGvSiKMZDlYm4x02Dn_IEBMO0Oc94kM0rseDVDvjAFuQwf0evAZ7hS46aSNc_805enu4f10_FZuXx-f1alMoxqtUMKbZghGpGgk13baKSOBbxZWWDGCpmao6npPXpAIFuVyraQV1rkqXqgXO56g--6rgYwzQic9gBhlGQYk4ERJ78UdInAiJM6GsuzvrIIc7GggiKgNOgTYBVBLam38cfgAKx3gt
Cites_doi 10.1016/j.artint.2021.103502
10.1061/(ASCE)GM.1943-5622.0002245
10.3390/w15050954
10.3390/w13243552
10.1073/pnas.2024492118
10.1016/j.ejrh.2025.102185
10.1016/j.annals.2020.102925
10.1021/acs.est.4c03160
10.1002/ece3.3502
10.1038/s41561-024-01483-5
10.1021/acs.est.2c02232
10.1016/j.envsoft.2012.11.009
10.1016/j.gsf.2020.03.007
10.1029/2024WR037821
10.1007/s11356-019-05838-z
10.1002/hyp.11185
10.1016/j.ecolind.2024.112989
10.1016/j.iswcr.2019.12.001
10.1021/acs.est.0c03978
10.1007/s00477-024-02726-y
10.1016/j.jhydrol.2014.01.062
10.1029/2020WR027721
10.1016/j.jhydrol.2022.128081
10.1016/j.undsp.2020.05.008
10.1175/JHM-D-17-0032.1
10.1080/02626667.2023.2174027
10.13031/2013.26840
10.1021/acs.est.1c06157
10.1021/acs.est.0c06783
10.1029/2024EF004751
10.1016/j.ecolind.2021.107628
10.1038/s41598-024-59145-w
10.1016/j.jhydrol.2020.124995
10.1029/2024WR038192
10.3389/fdata.2021.752406
10.1016/j.jhydrol.2020.124628
10.1016/j.scitotenv.2021.147295
10.1371/journal.pone.0261859
10.1007/s10888-011-9214-z
10.1016/j.catena.2021.105788
10.1029/2022WR032602
10.1016/j.catena.2024.108466
10.1038/s41586-024-07145-1
10.1016/j.jhydrol.2023.130141
10.1002/2013RG000443
10.1016/S0013-7952(01)00116-8
10.1038/s44221-024-00366-8
10.1002/hyp.14948
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ecolind.2025.113862
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
ExternalDocumentID 10_1016_j_ecolind_2025_113862
S1470160X25007927
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPKN
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPCBC
SSA
SSJ
SSZ
T5K
~02
~G-
AAYXX
CITATION
ID FETCH-LOGICAL-c234t-22d2720ac6ae51b9c0ae3bc3cda2ee8d2c4f3699504ece1389d14e502518c9e33
IEDL.DBID .~1
ISSN 1470-160X
IngestDate Wed Aug 20 23:58:57 EDT 2025
Sat Aug 16 17:01:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords River water quality
Simulations
Hydrology
Baseflow segmentation
Rainfall-stormflow analysis
Machine learning models
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c234t-22d2720ac6ae51b9c0ae3bc3cda2ee8d2c4f3699504ece1389d14e502518c9e33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1470160X25007927
ParticipantIDs crossref_primary_10_1016_j_ecolind_2025_113862
elsevier_sciencedirect_doi_10_1016_j_ecolind_2025_113862
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Ecological indicators
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 14 (1).http://dx.doi.org/10.1038/s41598-024-59145-w.
Zhou, Wang, Wang, Zhang, Chen, Liu (b0345) 2020; 8
Xu, Y.; Lin, K.; Hu, C.; Chen, X.; Zhang, J.; Xiao, M.; Xu, C.-Y., 2024. Uncovering the Dynamic Drivers of Floods Through Interpretable Deep Learning.
Zhang, Duan, Liu, Shi, Shi, Chang, Qu, Wang (b0305) 2024
Pardo-Iguzquiza, Duran-Valsero, Dowd, Guardiola-Albert, Linan-Baena, Robledo-Ardila (b0180) 2012; 470
22 (1).http://dx.doi.org/10.1061/(asce)gm.1943-5622.0002245.
Jiang, Xiang, Zhou, Zhou, Bi, Khanal, Wang, Chen, Guo (b0105) 2024; 58
White (b0240) 2002; 65
Xie, Liu, Wang, Yang, Liang, Liu (b0260) 2020
Zhang, Chen, Nie, Fu, Lian, Wang, Luo, Wang (b0300) 2024; 35
Zhang, Wu, Zhong, Li, Wang (b0310) 2021; 12
Koskelo, Fisher, Utz, Jordan (b0110) 2012; 450
Poelz, A.; Blaschke, A. P.; Komma, J.; Farnleitner, A. H.; Derx, J., 2024. Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting.
Tao, Y.; Sun, H.; Cai, Y., 2022. Predictions of Deep Excavation Responses Considering Model Uncertainty: Integrating BiLSTM Neural Networks with Bayesian Updating.
Song, Gao, Green, Dungait, Peng, Quine, Xiong, Wen, He (b0210) 2017; 7
Xiong, Zheng, Chen, Tian, Liu, Han, Jiang, Lu, Zheng (b0265) 2022; 56
Zeiger, Owen, Pavlowsky (b0290) 2021
Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (b0340) 2021; 6
Chen, Fan, Zhang, Tan, Fang, Wu, Li, Liu (b0040) 2024
Xiao, Zhang, Guo, Wang, Yang, Liao (b0250) 2023; 51
Wang, Fu, Chen, Nie, Xu (b0230) 2020
Zhi, Feng, Tsai, Sterle, Harpold, Shen, Li (b0335) 2021; 55
Deng, Luo, Imbrogno, Swenson, Jiang, Wang, Zhang (b0050) 2022
Zhang, Chen, Cheng, Li, Yue, Peng, Waldron, Oliver, Soulsby (b0320) 2020
Ng, Huang, Koo, Chong, El-Shafie, Ahmed (b0170) 2023
Chen, Chen, Zhou, Huang, Qi, Shen, Liu, Zuo, Zou, Wang, Zhang, Chen, Chen, Deng, Ren (b0045) 2020
Aguilera, Guardiola-Albert, Moreno Merino, Baquedano, Diaz-Losada, Robledo Ardila, Duran Valsero (b0010) 2022
Sanikhani, Nikpour, Jamshidi (b0195) 2025
Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W. R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S., 2024. Majority of global river flow sustained by groundwater.
Zheng, Chen, Zhang (b0325) 2014; 42
118 (20).http://dx.doi.org/10.1073/pnas.2024492118.
Bakalowicz (b0030) 2005; 13
Ricci, Centanni, DeGirolamo, Gentile (b0190) 2023; 68
56 (11).http://dx.doi.org/10.1029/2020wr027721.
Palash, W.; Akanda, A. S.; Islam, S., 2024. A data-driven global flood forecasting system for medium to large rivers.
61 (1).http://dx.doi.org/10.1029/2024wr038192.
Mo, Ruan, Xiao, Lan, Jin (b0160) 2021
Mo, Jiang, Long, Cen (b0155) 2025
Yoshioka, Yoshioka (b0285) 2024; 38
Hu, Wu, Liu, Ran, Guo, Zhu, Zeng (b0095) 2025
Liu, Ciais, Liu, Yang, Hoekstra, Tang, Wang, Li, Cheng (b0140) 2020; 54
60 (4).http://dx.doi.org/10.1029/2022wr032602.
Wang, Luo, Xiong, Gu, Zhu (b0235) 2022; 14 (10).http://dx.doi.org/10.3390/su14105789
Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barbera, J. A.; Brielmann, H.; Bouchaou, L.; Charlier, J.-B.; Darling, W. G.; Filippini, M.; Garvelmann, J.; Goldscheider, N.; Kralik, M.; Kunstmann, H.; Ladouche, B.; Lange, J.; Lucianetti, G.; Martin, J. F.; Mudarra, M.; Sanchez, D.; Stumpp, C.; Zagana, E.; Wagener, T., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers.
Huang, Chang, Huang, Chen (b0100) 2014; 511
Shorrocks (b0200) 2013; 11
627 (8004).http://dx.doi.org/10.1038/s41586-024-07145-1.
Zhang, Shu, Li, Wang, Huang, Zhang (b0315) 2022; 53
17 (8).http://dx.doi.org/10.1038/s41561-024-01483-5.
Bi, Yuan (b0035) 2023
13 (24).http://dx.doi.org/10.3390/w13243552.
Li, Maier, Lambert, Simmons, Partington (b0125) 2013; 41
Mirzaee, Kamrava (b0150) 2023
Zhou, R.; Zhang, Y., 2023. Predicting and explaining karst spring dissolved oxygen using interpretable deep learning approach.
Wan, Xu, Zhang, Cai, Li, Shen (b0225) 2022
Hartmann, Goldscheider, Wagener, Lange, Weiler (b0080) 2014; 52
Geng, X.; Zhang, C.; Zhang, F. e.; Chen, Z.; Nie, Z.; Liu, M., 2021. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China.
Al Khoury, Boithias, Labat (b0015) 2023; 15 (5).http://dx.doi.org/10.3390/w15050954
Zhang, Jin, Shi, Chew (b0295) 2023
Li, Zhou, Cheng, Yao (b0130) 2023
Xiao, Zhong, Zha (b0245) 2022
Li, Xu, Xu, Liu, Wang, Yu (b0135) 2017; 18
17 (3).http://dx.doi.org/10.1371/journal.pone.0261859.
Yang, Condon, Maxwell (b0280) 2025; 3
Gao, Dai, Gan, Peng, Yan (b0070) 2019; 26
He, Jia, Wang, Lu (b0090) 2011; 64
Zhou, Zhao, Cao, Wang (b0355) 2022
Kulshrestha, Krishnaswamy, Sharma (b0115) 2020
Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; Nevo, S.; Pappenberger, F.; Prudhomme, C.; Shalev, G.; Shenzis, S.; Tekalign, T. Y.; Weitzner, D.; Matias, Y., 2024. Global prediction of extreme floods in ungauged watersheds.
37 (8).http://dx.doi.org/10.1002/hyp.14948.
Fu, B.; Horsburgh, J. S.; Jakeman, A. J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T. R.; Quinn, N. W. T.; Volk, M.; Hunt, R. J.; Vezzaro, L.; Croke, B. F. W.; Jakeman, J. D.; Snow, V.; Rashleigh, B., 2020. Modeling Water Quality in Watersheds: From Here to the Next Generation.
12 (10).http://dx.doi.org/10.1029/2024ef004751.
An, Lyu, Wu, Luo, Jiang, Peng, Yu (b0020) 2015; 38
Gao, H.; Ju, Q.; Zhang, D.; Wang, Z.; Hao, Z.; Kirchner, J. W., 2025. Quantifying Dynamic Linkages Between Precipitation, Groundwater Recharge, and Streamflow Using Ensemble Rainfall-Runoff Analysis.
Ding, Zhang, Chu, Wu (b0055) 2020
Legrand (b0120) 1973; 179
Liu, Lu, Zhang, Liu, Jiang (b0145) 2022; 56
Tang, Carey (b0215) 2017; 31
Yan, B.; Xu, Y., 2022. Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes.
Solanki, H.; Vegad, U.; Kushwaha, A.; Mishra, V., 2025. Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods.
Baffaut, Benson (b0025) 2009; 52
61 (1).http://dx.doi.org/10.1029/2024wr037821.
Zhi, Appling, Golden, Podgorski, Li (b0330) 2024
Aas, Jullum, Loland (b0005) 2021
10.1016/j.ecolind.2025.113862_b0085
Li (10.1016/j.ecolind.2025.113862_b0130) 2023
10.1016/j.ecolind.2025.113862_b0165
Zhou (10.1016/j.ecolind.2025.113862_b0345) 2020; 8
Jiang (10.1016/j.ecolind.2025.113862_b0105) 2024; 58
Deng (10.1016/j.ecolind.2025.113862_b0050) 2022
Al Khoury (10.1016/j.ecolind.2025.113862_b0015) 2023
Chen (10.1016/j.ecolind.2025.113862_b0040) 2024
Mo (10.1016/j.ecolind.2025.113862_b0160) 2021
10.1016/j.ecolind.2025.113862_b0205
An (10.1016/j.ecolind.2025.113862_b0020) 2015; 38
Liu (10.1016/j.ecolind.2025.113862_b0145) 2022; 56
Tang (10.1016/j.ecolind.2025.113862_b0215) 2017; 31
Aas (10.1016/j.ecolind.2025.113862_b0005) 2021
Wan (10.1016/j.ecolind.2025.113862_b0225) 2022
Pardo-Iguzquiza (10.1016/j.ecolind.2025.113862_b0180) 2012; 470
Zhang (10.1016/j.ecolind.2025.113862_b0305) 2024
Xiong (10.1016/j.ecolind.2025.113862_b0265) 2022; 56
Zeiger (10.1016/j.ecolind.2025.113862_b0290) 2021
10.1016/j.ecolind.2025.113862_b0075
10.1016/j.ecolind.2025.113862_b0350
10.1016/j.ecolind.2025.113862_b0275
Mirzaee (10.1016/j.ecolind.2025.113862_b0150) 2023
Sanikhani (10.1016/j.ecolind.2025.113862_b0195) 2025
Xiao (10.1016/j.ecolind.2025.113862_b0250) 2023; 51
Kulshrestha (10.1016/j.ecolind.2025.113862_b0115) 2020
10.1016/j.ecolind.2025.113862_b0270
Zhi (10.1016/j.ecolind.2025.113862_b0330) 2024
Zhang (10.1016/j.ecolind.2025.113862_b0310) 2021; 12
Zhi (10.1016/j.ecolind.2025.113862_b0335) 2021; 55
Hu (10.1016/j.ecolind.2025.113862_b0095) 2025
Huang (10.1016/j.ecolind.2025.113862_b0100) 2014; 511
Koskelo (10.1016/j.ecolind.2025.113862_b0110) 2012; 450
Gao (10.1016/j.ecolind.2025.113862_b0070) 2019; 26
Wang (10.1016/j.ecolind.2025.113862_b0235) 2022
Aguilera (10.1016/j.ecolind.2025.113862_b0010) 2022
10.1016/j.ecolind.2025.113862_b0185
10.1016/j.ecolind.2025.113862_b0065
10.1016/j.ecolind.2025.113862_b0220
10.1016/j.ecolind.2025.113862_b0060
Chen (10.1016/j.ecolind.2025.113862_b0045) 2020
Zhang (10.1016/j.ecolind.2025.113862_b0295) 2023
Liu (10.1016/j.ecolind.2025.113862_b0140) 2020; 54
Zhang (10.1016/j.ecolind.2025.113862_b0320) 2020
Shorrocks (10.1016/j.ecolind.2025.113862_b0200) 2013; 11
Zhou (10.1016/j.ecolind.2025.113862_b0355) 2022
Mo (10.1016/j.ecolind.2025.113862_b0155) 2025
Ng (10.1016/j.ecolind.2025.113862_b0170) 2023
Bi (10.1016/j.ecolind.2025.113862_b0035) 2023
Zheng (10.1016/j.ecolind.2025.113862_b0325) 2014; 42
Baffaut (10.1016/j.ecolind.2025.113862_b0025) 2009; 52
Yoshioka (10.1016/j.ecolind.2025.113862_b0285) 2024; 38
Xie (10.1016/j.ecolind.2025.113862_b0260) 2020
10.1016/j.ecolind.2025.113862_b0175
Xiao (10.1016/j.ecolind.2025.113862_b0245) 2022
Wang (10.1016/j.ecolind.2025.113862_b0230) 2020
Zhang (10.1016/j.ecolind.2025.113862_b0300) 2024; 35
10.1016/j.ecolind.2025.113862_b0255
Legrand (10.1016/j.ecolind.2025.113862_b0120) 1973; 179
Ricci (10.1016/j.ecolind.2025.113862_b0190) 2023; 68
White (10.1016/j.ecolind.2025.113862_b0240) 2002; 65
Bakalowicz (10.1016/j.ecolind.2025.113862_b0030) 2005; 13
He (10.1016/j.ecolind.2025.113862_b0090) 2011; 64
Zhou (10.1016/j.ecolind.2025.113862_b0340) 2021; 6
Hartmann (10.1016/j.ecolind.2025.113862_b0080) 2014; 52
Song (10.1016/j.ecolind.2025.113862_b0210) 2017; 7
Li (10.1016/j.ecolind.2025.113862_b0125) 2013; 41
Li (10.1016/j.ecolind.2025.113862_b0135) 2017; 18
Ding (10.1016/j.ecolind.2025.113862_b0055) 2020
Zhang (10.1016/j.ecolind.2025.113862_b0315) 2022; 53
Yang (10.1016/j.ecolind.2025.113862_b0280) 2025; 3
References_xml – volume: 58
  year: 2024
  ident: b0105
  article-title: Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach
– reference: Tao, Y.; Sun, H.; Cai, Y., 2022. Predictions of Deep Excavation Responses Considering Model Uncertainty: Integrating BiLSTM Neural Networks with Bayesian Updating.
– volume: 52
  start-page: 469
  year: 2009
  end-page: 479
  ident: b0025
  article-title: MODELING FLOW AND POLLUTANT TRANSPORT IN A KARST WATERSHED WITH SWAT
– start-page: 5206
  year: 2023
  end-page: 5211
  ident: b0035
  article-title: Yuan, H
– year: 2023
  ident: b0295
  article-title: Real-time load forecasting model for the smart grid using bayesian optimized CNN-BiLSTM
– reference: Solanki, H.; Vegad, U.; Kushwaha, A.; Mishra, V., 2025. Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods.
– year: 2020
  ident: b0055
  article-title: Simulation of groundwater dynamic response to hydrological factors in karst aquifer system
– volume: 11
  year: 2013
  ident: b0200
  article-title: Decomposition procedures for distributional analysis: a unified framework based on the Shapley value
– year: 2025
  ident: b0095
  article-title: Nitrogen and phosphorus non-point source pollution in the upper Wujiang River Karst Basin: Critical source areas identification and influencing factors
– year: 2022
  ident: b0050
  article-title: Machine Learning Guided Polyamide Membrane with Exceptional Solute-Solute Selectivity and Permeance
– year: 2022
  ident: b0010
  article-title: Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics
– reference: 118 (20).http://dx.doi.org/10.1073/pnas.2024492118.
– year: 2024
  ident: b0330
  article-title: Deep learning for water quality
– year: 2025
  ident: b0195
  article-title: Advanced Framework for Predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced Forecasting Accuracy
– volume: 38
  start-page: 117
  year: 2015
  end-page: 122
  ident: b0020
  article-title: Hydro-chemical Characteristics of Upper Chishui River Basin in Dry Season
– volume: 6
  year: 2021
  ident: b0340
  article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization
– volume: 3
  year: 2025
  ident: b0280
  article-title: Unravelling groundwater-stream connections over the continental United States
– year: 2025
  ident: b0155
  article-title: Comprehensive evaluation and attribution analysis of baseflow variation in a typical karst basin, Southwest China
– volume: 55
  year: 2021
  ident: b0335
  article-title: From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale?
– year: 2022
  ident: b0355
  article-title: Using an Improved SWAT Model to Simulate Karst Sinkholes: A Case Study in Southwest China
– volume: 450
  year: 2012
  ident: b0110
  article-title: A new precipitation-based method of baseflow separation and event identification for small watersheds (&lt;50 km<SUP>2</SUP>)
– year: 2021
  ident: b0160
  article-title: Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China
– reference: Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barbera, J. A.; Brielmann, H.; Bouchaou, L.; Charlier, J.-B.; Darling, W. G.; Filippini, M.; Garvelmann, J.; Goldscheider, N.; Kralik, M.; Kunstmann, H.; Ladouche, B.; Lange, J.; Lucianetti, G.; Martin, J. F.; Mudarra, M.; Sanchez, D.; Stumpp, C.; Zagana, E.; Wagener, T., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers.
– year: 2020
  ident: b0115
  article-title: Bayesian BILSTM approach for tourism demand forecasting
– volume: 8
  year: 2020
  ident: b0345
  article-title: The challenge of soil loss control and vegetation restoration in the karst area of southwestern China
– reference: 13 (24).http://dx.doi.org/10.3390/w13243552.
– reference: 627 (8004).http://dx.doi.org/10.1038/s41586-024-07145-1.
– volume: 179
  year: 1973
  ident: b0120
  article-title: Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems
  publication-title: 1
– year: 2020
  ident: b0230
  article-title: Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope
– volume: 38
  year: 2024
  ident: b0285
  article-title: Risk assessment of river water quality using long-memory processes subject to divergence or Wasserstein uncertainty
– year: 2021
  ident: b0290
  article-title: Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application
– volume: 511
  year: 2014
  ident: b0100
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
– reference: 37 (8).http://dx.doi.org/10.1002/hyp.14948.
– reference: 60 (4).http://dx.doi.org/10.1029/2022wr032602.
– reference: 14 (1).http://dx.doi.org/10.1038/s41598-024-59145-w.
– year: 2020
  ident: b0320
  article-title: Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone
– volume: 54
  year: 2020
  ident: b0140
  article-title: Global Phosphorus Losses from Croplands under Future Precipitation Scenarios
– reference: 22 (1).http://dx.doi.org/10.1061/(asce)gm.1943-5622.0002245.
– reference: Fu, B.; Horsburgh, J. S.; Jakeman, A. J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T. R.; Quinn, N. W. T.; Volk, M.; Hunt, R. J.; Vezzaro, L.; Croke, B. F. W.; Jakeman, J. D.; Snow, V.; Rashleigh, B., 2020. Modeling Water Quality in Watersheds: From Here to the Next Generation.
– reference: Zhou, R.; Zhang, Y., 2023. Predicting and explaining karst spring dissolved oxygen using interpretable deep learning approach.
– year: 2021
  ident: b0005
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values
– year: 2024
  ident: b0305
  article-title: A hybrid framework based on LSTM for predicting karst spring discharge using historical data
– volume: 53
  start-page: 56
  year: 2022
  end-page: 65
  ident: b0315
  article-title: Responses of Ecohydrological Processes to Land Use/Cover Change in the Chishui River Basin
– volume: 51
  start-page: 564
  year: 2023
  end-page: 573
  ident: b0250
  article-title: Environmental Pollution Characteristics of Surface Water and Groundwater in Southwest China and Its Research Prospects
– volume: 56
  year: 2022
  ident: b0145
  article-title: Data-Driven Machine Learning in Environmental Pollution: Gains and Problems
– reference: Poelz, A.; Blaschke, A. P.; Komma, J.; Farnleitner, A. H.; Derx, J., 2024. Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting.
– year: 2020
  ident: b0045
  article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data
– volume: 12
  year: 2021
  ident: b0310
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
– volume: 26
  year: 2019
  ident: b0070
  article-title: The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region
– year: 2022
  ident: b0225
  article-title: papers A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods
– reference: 61 (1).http://dx.doi.org/10.1029/2024wr038192.
– volume: 13
  year: 2005
  ident: b0030
  article-title: Karst groundwater: a challenge for new resources
– reference: Geng, X.; Zhang, C.; Zhang, F. e.; Chen, Z.; Nie, Z.; Liu, M., 2021. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China.
– volume: 65
  start-page: 85
  year: 2002
  end-page: 105
  ident: b0240
  article-title: Karst hydrology: recent developments and open questions
– reference: Xu, Y.; Lin, K.; Hu, C.; Chen, X.; Zhang, J.; Xiao, M.; Xu, C.-Y., 2024. Uncovering the Dynamic Drivers of Floods Through Interpretable Deep Learning.
– reference: 17 (3).http://dx.doi.org/10.1371/journal.pone.0261859.
– volume: 35
  year: 2024
  ident: b0300
  publication-title: Research progress on structure and hydrological processes in the karst critical zone of southwest China.
– volume: 42
  start-page: 221
  year: 2014
  end-page: 227
  ident: b0325
  article-title: Rainfall - runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China
– volume: 31
  year: 2017
  ident: b0215
  article-title: HydRun: A MATLAB toolbox for rainfall-runoff analysis
– reference: 12 (10).http://dx.doi.org/10.1029/2024ef004751.
– year: 2022
  ident: b0245
  article-title: Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River
– volume: 41
  year: 2013
  ident: b0125
  article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter
– reference: Palash, W.; Akanda, A. S.; Islam, S., 2024. A data-driven global flood forecasting system for medium to large rivers.
– volume: 56
  year: 2022
  ident: b0265
  article-title: Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions
– reference: Gao, H.; Ju, Q.; Zhang, D.; Wang, Z.; Hao, Z.; Kirchner, J. W., 2025. Quantifying Dynamic Linkages Between Precipitation, Groundwater Recharge, and Streamflow Using Ensemble Rainfall-Runoff Analysis.
– volume: 15 (5).http://dx.doi.org/10.3390/w15050954
  year: 2023
  ident: b0015
  article-title: A Review of the Application of the Soil and Water Assessment Tool (SWAT) in Karst Watersheds
– volume: 64
  year: 2011
  ident: b0090
  article-title: Overview of karst geo-environments and karst water resources in north and south China
– year: 2023
  ident: b0150
  article-title: Estimation of internal states in a Li-ion battery using BiLSTM with Bayesian hyperparameter optimization
– volume: 470
  year: 2012
  ident: b0180
  article-title: Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain)
– year: 2020
  ident: b0260
  article-title: Evaluation of typical methods for baseflow separation in the contiguous United States
– reference: 56 (11).http://dx.doi.org/10.1029/2020wr027721.
– volume: 7
  year: 2017
  ident: b0210
  article-title: Nitrogen loss from karst area in China in recent 50years: Anin-situ simulated rainfall experiment's assessment
– reference: Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; Nevo, S.; Pappenberger, F.; Prudhomme, C.; Shalev, G.; Shenzis, S.; Tekalign, T. Y.; Weitzner, D.; Matias, Y., 2024. Global prediction of extreme floods in ungauged watersheds.
– volume: 18
  year: 2017
  ident: b0135
  article-title: Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China
– reference: Yan, B.; Xu, Y., 2022. Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes.
– reference: Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W. R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S., 2024. Majority of global river flow sustained by groundwater.
– year: 2023
  ident: b0170
  article-title: A review of hybrid deep learning applications for streamflow forecasting
– volume: 14 (10).http://dx.doi.org/10.3390/su14105789
  year: 2022
  ident: b0235
  article-title: Studies on Hydrological Processes on Karst Slopes for Control of Soil and Water Loss
– year: 2023
  ident: b0130
  article-title: Delay-aware karst spring discharge prediction
– reference: 61 (1).http://dx.doi.org/10.1029/2024wr037821.
– volume: 52
  year: 2014
  ident: b0080
  article-title: Karst water resources in a changing world: Review of hydrological modeling approaches
– volume: 68
  year: 2023
  ident: b0190
  article-title: Modelling daily streamflow in a temporary karst river system: comparing three approaches using the SWAT model
– year: 2024
  ident: b0040
  article-title: Distribution mechanisms of soil surface erosion and underground leakage in karst areas of China: A systematic, quantitative review
– reference: 17 (8).http://dx.doi.org/10.1038/s41561-024-01483-5.
– year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0005
  article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2021.103502
– ident: 10.1016/j.ecolind.2025.113862_b0220
  doi: 10.1061/(ASCE)GM.1943-5622.0002245
– year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0015
  article-title: A Review of the Application of the Soil and Water Assessment Tool (SWAT) in Karst Watersheds
  publication-title: Water.
  doi: 10.3390/w15050954
– ident: 10.1016/j.ecolind.2025.113862_b0075
  doi: 10.3390/w13243552
– ident: 10.1016/j.ecolind.2025.113862_b0085
  doi: 10.1073/pnas.2024492118
– volume: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.ecolind.2025.113862_b0030
  article-title: Karst groundwater: a challenge for new resources
  publication-title: Hydrgeol. J.
– start-page: 5206
  year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0035
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0320
  article-title: Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone
  publication-title: Sci. Total Environ.
– year: 2025
  ident: 10.1016/j.ecolind.2025.113862_b0155
  article-title: Comprehensive evaluation and attribution analysis of baseflow variation in a typical karst basin, Southwest China
  publication-title: Journal of Hydrology-Regional Studies.
  doi: 10.1016/j.ejrh.2025.102185
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0115
  article-title: Bayesian BILSTM approach for tourism demand forecasting
  publication-title: Ann. Tour. Res.
  doi: 10.1016/j.annals.2020.102925
– volume: 58
  issue: 29
  year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0105
  article-title: Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.4c03160
– volume: 7
  issue: 23
  year: 2017
  ident: 10.1016/j.ecolind.2025.113862_b0210
  article-title: Nitrogen loss from karst area in China in recent 50years: Anin-situ simulated rainfall experiment's assessment
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.3502
– ident: 10.1016/j.ecolind.2025.113862_b0255
  doi: 10.1038/s41561-024-01483-5
– volume: 56
  issue: 14
  year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0265
  article-title: Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.2c02232
– volume: 41
  year: 2013
  ident: 10.1016/j.ecolind.2025.113862_b0125
  article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2012.11.009
– volume: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0310
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– ident: 10.1016/j.ecolind.2025.113862_b0065
  doi: 10.1029/2024WR037821
– year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0305
  article-title: A hybrid framework based on LSTM for predicting karst spring discharge using historical data
  publication-title: J. Hydrol.
– volume: 26
  issue: 26
  year: 2019
  ident: 10.1016/j.ecolind.2025.113862_b0070
  article-title: The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-05838-z
– volume: 31
  issue: 15
  year: 2017
  ident: 10.1016/j.ecolind.2025.113862_b0215
  article-title: HydRun: A MATLAB toolbox for rainfall-runoff analysis
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.11185
– year: 2025
  ident: 10.1016/j.ecolind.2025.113862_b0095
  article-title: Nitrogen and phosphorus non-point source pollution in the upper Wujiang River Karst Basin: Critical source areas identification and influencing factors
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2024.112989
– volume: 470
  year: 2012
  ident: 10.1016/j.ecolind.2025.113862_b0180
  article-title: Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain)
  publication-title: J. Hydrol.
– year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0330
  article-title: Deep learning for water quality
  publication-title: Nature
– volume: 8
  issue: 1
  year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0345
  article-title: The challenge of soil loss control and vegetation restoration in the karst area of southwestern China
  publication-title: International Soil and Water Conservation Research.
  doi: 10.1016/j.iswcr.2019.12.001
– volume: 54
  issue: 22
  year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0140
  article-title: Global Phosphorus Losses from Croplands under Future Precipitation Scenarios
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.0c03978
– volume: 38
  issue: 8
  year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0285
  article-title: Risk assessment of river water quality using long-memory processes subject to divergence or Wasserstein uncertainty
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-024-02726-y
– volume: 511
  year: 2014
  ident: 10.1016/j.ecolind.2025.113862_b0100
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.01.062
– year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0295
  article-title: Real-time load forecasting model for the smart grid using bayesian optimized CNN-BiLSTM
  publication-title: Front. Energy Res.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0235
  article-title: Studies on Hydrological Processes on Karst Slopes for Control of Soil and Water Loss
  publication-title: Sustainability.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0355
  article-title: Using an Improved SWAT Model to Simulate Karst Sinkholes: A Case Study in Southwest China
  publication-title: Front. Environ. Sci.
– ident: 10.1016/j.ecolind.2025.113862_b0060
  doi: 10.1029/2020WR027721
– volume: 450
  year: 2012
  ident: 10.1016/j.ecolind.2025.113862_b0110
  article-title: A new precipitation-based method of baseflow separation and event identification for small watersheds (<50 km2)
  publication-title: J. Hydrol.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0225
  article-title: papers A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128081
– volume: 6
  issue: 5
  year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0340
  article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.05.008
– volume: 18
  issue: 10
  year: 2017
  ident: 10.1016/j.ecolind.2025.113862_b0135
  article-title: Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-17-0032.1
– volume: 68
  issue: 3
  year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0190
  article-title: Modelling daily streamflow in a temporary karst river system: comparing three approaches using the SWAT model
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2023.2174027
– year: 2025
  ident: 10.1016/j.ecolind.2025.113862_b0195
  article-title: Advanced Framework for Predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced Forecasting Accuracy
  publication-title: Water Resour.
– volume: 52
  start-page: 469
  issue: 2
  year: 2009
  ident: 10.1016/j.ecolind.2025.113862_b0025
  article-title: MODELING FLOW AND POLLUTANT TRANSPORT IN A KARST WATERSHED WITH SWAT
  publication-title: Trans. ASABE
  doi: 10.13031/2013.26840
– volume: 56
  issue: 4
  year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0145
  article-title: Data-Driven Machine Learning in Environmental Pollution: Gains and Problems
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.1c06157
– volume: 55
  issue: 4
  year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0335
  article-title: From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale?
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.0c06783
– ident: 10.1016/j.ecolind.2025.113862_b0270
  doi: 10.1029/2024EF004751
– year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0160
  article-title: Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2021.107628
– volume: 179
  issue: 4076
  year: 1973
  ident: 10.1016/j.ecolind.2025.113862_b0120
  article-title: Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems
  publication-title: Science (New York, N.Y.) 1
– ident: 10.1016/j.ecolind.2025.113862_b0175
  doi: 10.1038/s41598-024-59145-w
– year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0150
  article-title: Estimation of internal states in a Li-ion battery using BiLSTM with Bayesian hyperparameter optimization
  publication-title: J. Storage Mater.
– volume: 42
  start-page: 221
  issue: 2
  year: 2014
  ident: 10.1016/j.ecolind.2025.113862_b0325
  article-title: Rainfall - runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China
  publication-title: Earth and Environment.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0050
  article-title: Machine Learning Guided Polyamide Membrane with Exceptional Solute-Solute Selectivity and Permeance
  publication-title: Environmental Science &
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0055
  article-title: Simulation of groundwater dynamic response to hydrological factors in karst aquifer system
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124995
– ident: 10.1016/j.ecolind.2025.113862_b0205
  doi: 10.1029/2024WR038192
– volume: 53
  start-page: 56
  issue: 1
  year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0315
  article-title: Responses of Ecohydrological Processes to Land Use/Cover Change in the Chishui River Basin
  publication-title: Chin. J. Soil Sci.
– volume: 64
  issue: 7
  year: 2011
  ident: 10.1016/j.ecolind.2025.113862_b0090
  article-title: Overview of karst geo-environments and karst water resources in north and south China
  publication-title: Environ. Earth Sci.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0245
  article-title: Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River
  publication-title: Front. Big Data
  doi: 10.3389/fdata.2021.752406
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0260
  article-title: Evaluation of typical methods for baseflow separation in the contiguous United States
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124628
– year: 2021
  ident: 10.1016/j.ecolind.2025.113862_b0290
  article-title: Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147295
– ident: 10.1016/j.ecolind.2025.113862_b0275
  doi: 10.1371/journal.pone.0261859
– volume: 11
  issue: 1
  year: 2013
  ident: 10.1016/j.ecolind.2025.113862_b0200
  article-title: Decomposition procedures for distributional analysis: a unified framework based on the Shapley value
  publication-title: J. Econ. Inequal.
  doi: 10.1007/s10888-011-9214-z
– year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0130
  article-title: Delay-aware karst spring discharge prediction
  publication-title: J. Hydrol.
– volume: 38
  start-page: 117
  issue: 8
  year: 2015
  ident: 10.1016/j.ecolind.2025.113862_b0020
  article-title: Hydro-chemical Characteristics of Upper Chishui River Basin in Dry Season
  publication-title: Environ. Sci. Tech.
– volume: 35
  issue: 4
  year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0300
  publication-title: Research progress on structure and hydrological processes in the karst critical zone of southwest China. Ying yong sheng tai xue bao = The journal of applied ecology.
– year: 2022
  ident: 10.1016/j.ecolind.2025.113862_b0010
  article-title: Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105788
– ident: 10.1016/j.ecolind.2025.113862_b0185
  doi: 10.1029/2022WR032602
– year: 2024
  ident: 10.1016/j.ecolind.2025.113862_b0040
  article-title: Distribution mechanisms of soil surface erosion and underground leakage in karst areas of China: A systematic, quantitative review
  publication-title: Catena
  doi: 10.1016/j.catena.2024.108466
– ident: 10.1016/j.ecolind.2025.113862_b0165
  doi: 10.1038/s41586-024-07145-1
– year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0170
  article-title: A review of hybrid deep learning applications for streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130141
– volume: 51
  start-page: 564
  issue: 5
  year: 2023
  ident: 10.1016/j.ecolind.2025.113862_b0250
  article-title: Environmental Pollution Characteristics of Surface Water and Groundwater in Southwest China and Its Research Prospects
  publication-title: Earth and Environment.
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0045
  article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data
  publication-title: Water Res.
– volume: 52
  issue: 3
  year: 2014
  ident: 10.1016/j.ecolind.2025.113862_b0080
  article-title: Karst water resources in a changing world: Review of hydrological modeling approaches
  publication-title: Rev. Geophys.
  doi: 10.1002/2013RG000443
– volume: 65
  start-page: 85
  issue: 2–3
  year: 2002
  ident: 10.1016/j.ecolind.2025.113862_b0240
  article-title: Karst hydrology: recent developments and open questions
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00116-8
– year: 2020
  ident: 10.1016/j.ecolind.2025.113862_b0230
  article-title: Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope
  publication-title: J. Hydrol.
– volume: 3
  issue: 1
  year: 2025
  ident: 10.1016/j.ecolind.2025.113862_b0280
  article-title: Unravelling groundwater-stream connections over the continental United States
  publication-title: Nat. Water
  doi: 10.1038/s44221-024-00366-8
– ident: 10.1016/j.ecolind.2025.113862_b0350
  doi: 10.1002/hyp.14948
SSID ssj0016996
Score 2.4350557
Snippet [Display omitted] •A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113862
SubjectTerms Baseflow segmentation
Hydrology
Machine learning models
Rainfall-stormflow analysis
River water quality
Simulations
Title A novel method for hydrology and water quality simulation in karst regions using machine learning model
URI https://dx.doi.org/10.1016/j.ecolind.2025.113862
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrAgXhXlUXlgTZM4dh5jVbUqIHWBSt0ix7mUFhqqNoC68Ns5Jw4FCTEwxslJ0Wfn7rv4Ox8h16EEJ2LgW1xkwtIRwpJZJCyMJFHgJg4alQLZsT-a8NupmDZIv66F0bJK4_srn156azNiGzTt1Xxu37s80MejTTGIO0HEdEU554Fe5d2PL5mH60dRVWEUOJZ-elfFYy-6mOEhmdMHhjKhu5uEPvs9Pn2LOcNDcmDIIu1V73NEGpAfk9ZgV5uGN83HuTkhsx7NX97gmVZdoSnSUfq4Tdflj3Mq85S-I7Fc06qOcks386Xp3UXnOX3CDLeguk8DrkOq5fAzuiyVlkBNawkc0H1zTslkOHjojyzTR8FSzOOFxViqd1ul8iUIN4mUI8FLlKdSyQDClCmeeYiTcDgo0DuXqctB6OwjVBF4Xos085cczghF8oVz7oCSic-z1E0k0pEAeOJmaCxYm3Rr9OJVdVxGXOvIFrGBO9ZwxxXcbRLWGMc_5j1Gl_636fn_TS_Ivr6qtGKXpFmsX-EKyUWRdMrV0yF7vZu70bhTpuif2_DSmQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQHOCCWMXOHOCYNnHtLAcOiEUt24VW6i04zgTKklZtAfXCT_GDjBOXgoQ4IHF1NFL0Mpp5jt_4MbYXKnQjjr4jZCYd0yEclUXSoU4SBV7iUlAhkL3y6y1x1pbtKfY-noUxskpb-8uaXlRru1K1aFZ7nU712hOBuR6tTU3cDSIeWGXlOY5ead82OGgc00fe5_z0pHlUd6y1gKN5TQwdzlNzAKm0r1B6SaRdhbVE13SqOGKYci2ymh9F0hWo0RzmpZ5AaQh5qCM0f0Gp7s8IKhfGNqHy9qkr8SiqHGkKXMe83mRsqHpfoS0lsUdzQymXxk4l9PnPDfFLkztdYPOWncJhCcAim8J8ia2eTIbh6KGtBoNldnsIefcFH6G0oQbiv3A3SvvFn3pQeQqvxGT7UA5ujmDQebJmYdDJ4YG21EMwxhCU-GD097fwVEg7EayXBS0Yo54V1voXdFfZdN7NcY0BsT1KMhe1SnyRpV6iiP8EKBIvo2DJ11lljF7cK-_niMfCtfvYwh0buOMS7nUWjjGOvyVaTD3k99CNv4fustl68_IivmhcnW-yOfOkFKptselh_xm3idkMk50ik4Dd_HfqfgDvtA2x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+hydrology+and+water+quality+simulation+in+karst+regions+using+machine+learning+model&rft.jtitle=Ecological+indicators&rft.au=Wang%2C+Wanbin&rft.au=Zhao%2C+Yangyi&rft.au=Guan%2C+Tangzhen&rft.au=Qin%2C+Chengxin&rft.date=2025-09-01&rft.issn=1470-160X&rft.volume=178&rft.spage=113862&rft_id=info:doi/10.1016%2Fj.ecolind.2025.113862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolind_2025_113862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon