A novel method for hydrology and water quality simulation in karst regions using machine learning model
[Display omitted] •A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for strea...
Saved in:
Published in | Ecological indicators Vol. 178; p. 113862 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for streamflow and water quality.
Simulating hydrology and water quality in karst regions remains a significant challenge due to the complex and unique geological conditions. This study developed a novel conceptual model integrating baseflow segmentation and rainfall-stormflow analysis for hydrological and water quality simulation and implemented it using an interpretable machine learning approach. Two representative watersheds in the karst region of southwestern China—the Chishui river and Nanpan river—were selected as case studies. The results demonstrated that (1) The proposed method successfully achieved comprehensive simulations of streamflow, CODMn, TN, and TP. The maximum prediction time span was 3 days for streamflow (R2 > 0.60) and 2 days for CODMn, TN, and TP (R2 > 0.59). (2) Rainfall plays a significant positive driving role in hydrological and water quality simulations, effectively weakening the strong autocorrelation of these parameters in karst regions. The increase of baseflow and stormflow worsens water quality, which is most significant for CODMn and TP in Chishui river basin. (3) Water quality in ridge-furrow valleys, fractured basins, and fractured mountainous areas is more significantly influenced by rainfall due to the unique geological features. The proposed method can be effectively applied in karst areas with non-point source pollution and directly supports water environment prediction and identification of key pollution source areas. |
---|---|
AbstractList | [Display omitted]
•A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated river water quality.•Spatial variability indicated distinct driver-response mechanisms.•The maximum forecast period was determined for streamflow and water quality.
Simulating hydrology and water quality in karst regions remains a significant challenge due to the complex and unique geological conditions. This study developed a novel conceptual model integrating baseflow segmentation and rainfall-stormflow analysis for hydrological and water quality simulation and implemented it using an interpretable machine learning approach. Two representative watersheds in the karst region of southwestern China—the Chishui river and Nanpan river—were selected as case studies. The results demonstrated that (1) The proposed method successfully achieved comprehensive simulations of streamflow, CODMn, TN, and TP. The maximum prediction time span was 3 days for streamflow (R2 > 0.60) and 2 days for CODMn, TN, and TP (R2 > 0.59). (2) Rainfall plays a significant positive driving role in hydrological and water quality simulations, effectively weakening the strong autocorrelation of these parameters in karst regions. The increase of baseflow and stormflow worsens water quality, which is most significant for CODMn and TP in Chishui river basin. (3) Water quality in ridge-furrow valleys, fractured basins, and fractured mountainous areas is more significantly influenced by rainfall due to the unique geological features. The proposed method can be effectively applied in karst areas with non-point source pollution and directly supports water environment prediction and identification of key pollution source areas. |
ArticleNumber | 113862 |
Author | Zhao, Yangyi Zhang, Xingzi Wang, Wanbin Guan, Tangzhen Jia, Haifeng Qin, Chengxin Chen, Dongni Yu, Yanhong |
Author_xml | – sequence: 1 givenname: Wanbin surname: Wang fullname: Wang, Wanbin organization: College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China – sequence: 2 givenname: Yangyi surname: Zhao fullname: Zhao, Yangyi email: yyz301@foxmail.com organization: College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China – sequence: 3 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China – sequence: 4 givenname: Chengxin surname: Qin fullname: Qin, Chengxin organization: State Key Laboratory of Regional Environment and Sustainability, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Dongni surname: Chen fullname: Chen, Dongni organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China – sequence: 6 givenname: Haifeng surname: Jia fullname: Jia, Haifeng organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China – sequence: 7 givenname: Xingzi surname: Zhang fullname: Zhang, Xingzi organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China – sequence: 8 givenname: Yanhong surname: Yu fullname: Yu, Yanhong organization: Yunnan Academy of Ecological and Environmental Sciences, Kunming 650034, China |
BookMark | eNqFkM1OwzAQhH0oEm3hEZD8Agn-SdLmhKqKP6kSF5C4Wa69SV0cG2y3KG-PS7lzWu1qZzTzzdDEeQcI3VBSUkKb230JylvjdMkIq0tK-bJhEzSl1YIUtCHvl2gW457k37ZtpqhfYeePYPEAaec17nzAu1EHb30_Yuk0_pYJAv46SGvSiKMZDlYm4x02Dn_IEBMO0Oc94kM0rseDVDvjAFuQwf0evAZ7hS46aSNc_805enu4f10_FZuXx-f1alMoxqtUMKbZghGpGgk13baKSOBbxZWWDGCpmao6npPXpAIFuVyraQV1rkqXqgXO56g--6rgYwzQic9gBhlGQYk4ERJ78UdInAiJM6GsuzvrIIc7GggiKgNOgTYBVBLam38cfgAKx3gt |
Cites_doi | 10.1016/j.artint.2021.103502 10.1061/(ASCE)GM.1943-5622.0002245 10.3390/w15050954 10.3390/w13243552 10.1073/pnas.2024492118 10.1016/j.ejrh.2025.102185 10.1016/j.annals.2020.102925 10.1021/acs.est.4c03160 10.1002/ece3.3502 10.1038/s41561-024-01483-5 10.1021/acs.est.2c02232 10.1016/j.envsoft.2012.11.009 10.1016/j.gsf.2020.03.007 10.1029/2024WR037821 10.1007/s11356-019-05838-z 10.1002/hyp.11185 10.1016/j.ecolind.2024.112989 10.1016/j.iswcr.2019.12.001 10.1021/acs.est.0c03978 10.1007/s00477-024-02726-y 10.1016/j.jhydrol.2014.01.062 10.1029/2020WR027721 10.1016/j.jhydrol.2022.128081 10.1016/j.undsp.2020.05.008 10.1175/JHM-D-17-0032.1 10.1080/02626667.2023.2174027 10.13031/2013.26840 10.1021/acs.est.1c06157 10.1021/acs.est.0c06783 10.1029/2024EF004751 10.1016/j.ecolind.2021.107628 10.1038/s41598-024-59145-w 10.1016/j.jhydrol.2020.124995 10.1029/2024WR038192 10.3389/fdata.2021.752406 10.1016/j.jhydrol.2020.124628 10.1016/j.scitotenv.2021.147295 10.1371/journal.pone.0261859 10.1007/s10888-011-9214-z 10.1016/j.catena.2021.105788 10.1029/2022WR032602 10.1016/j.catena.2024.108466 10.1038/s41586-024-07145-1 10.1016/j.jhydrol.2023.130141 10.1002/2013RG000443 10.1016/S0013-7952(01)00116-8 10.1038/s44221-024-00366-8 10.1002/hyp.14948 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ecolind.2025.113862 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
ExternalDocumentID | 10_1016_j_ecolind_2025_113862 S1470160X25007927 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AAEDT AAEDW AAFTH AAFWJ AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPKN AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPCBC SSA SSJ SSZ T5K ~02 ~G- AAYXX CITATION |
ID | FETCH-LOGICAL-c234t-22d2720ac6ae51b9c0ae3bc3cda2ee8d2c4f3699504ece1389d14e502518c9e33 |
IEDL.DBID | .~1 |
ISSN | 1470-160X |
IngestDate | Wed Aug 20 23:58:57 EDT 2025 Sat Aug 16 17:01:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | River water quality Simulations Hydrology Baseflow segmentation Rainfall-stormflow analysis Machine learning models |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c234t-22d2720ac6ae51b9c0ae3bc3cda2ee8d2c4f3699504ece1389d14e502518c9e33 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1470160X25007927 |
ParticipantIDs | crossref_primary_10_1016_j_ecolind_2025_113862 elsevier_sciencedirect_doi_10_1016_j_ecolind_2025_113862 |
PublicationCentury | 2000 |
PublicationDate | September 2025 2025-09-00 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: September 2025 |
PublicationDecade | 2020 |
PublicationTitle | Ecological indicators |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | 14 (1).http://dx.doi.org/10.1038/s41598-024-59145-w. Zhou, Wang, Wang, Zhang, Chen, Liu (b0345) 2020; 8 Xu, Y.; Lin, K.; Hu, C.; Chen, X.; Zhang, J.; Xiao, M.; Xu, C.-Y., 2024. Uncovering the Dynamic Drivers of Floods Through Interpretable Deep Learning. Zhang, Duan, Liu, Shi, Shi, Chang, Qu, Wang (b0305) 2024 Pardo-Iguzquiza, Duran-Valsero, Dowd, Guardiola-Albert, Linan-Baena, Robledo-Ardila (b0180) 2012; 470 22 (1).http://dx.doi.org/10.1061/(asce)gm.1943-5622.0002245. Jiang, Xiang, Zhou, Zhou, Bi, Khanal, Wang, Chen, Guo (b0105) 2024; 58 White (b0240) 2002; 65 Xie, Liu, Wang, Yang, Liang, Liu (b0260) 2020 Zhang, Chen, Nie, Fu, Lian, Wang, Luo, Wang (b0300) 2024; 35 Zhang, Wu, Zhong, Li, Wang (b0310) 2021; 12 Koskelo, Fisher, Utz, Jordan (b0110) 2012; 450 Poelz, A.; Blaschke, A. P.; Komma, J.; Farnleitner, A. H.; Derx, J., 2024. Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting. Tao, Y.; Sun, H.; Cai, Y., 2022. Predictions of Deep Excavation Responses Considering Model Uncertainty: Integrating BiLSTM Neural Networks with Bayesian Updating. Song, Gao, Green, Dungait, Peng, Quine, Xiong, Wen, He (b0210) 2017; 7 Xiong, Zheng, Chen, Tian, Liu, Han, Jiang, Lu, Zheng (b0265) 2022; 56 Zeiger, Owen, Pavlowsky (b0290) 2021 Zhou, Qiu, Zhu, Armaghani, Khandelwal, Mohamad (b0340) 2021; 6 Chen, Fan, Zhang, Tan, Fang, Wu, Li, Liu (b0040) 2024 Xiao, Zhang, Guo, Wang, Yang, Liao (b0250) 2023; 51 Wang, Fu, Chen, Nie, Xu (b0230) 2020 Zhi, Feng, Tsai, Sterle, Harpold, Shen, Li (b0335) 2021; 55 Deng, Luo, Imbrogno, Swenson, Jiang, Wang, Zhang (b0050) 2022 Zhang, Chen, Cheng, Li, Yue, Peng, Waldron, Oliver, Soulsby (b0320) 2020 Ng, Huang, Koo, Chong, El-Shafie, Ahmed (b0170) 2023 Chen, Chen, Zhou, Huang, Qi, Shen, Liu, Zuo, Zou, Wang, Zhang, Chen, Chen, Deng, Ren (b0045) 2020 Aguilera, Guardiola-Albert, Moreno Merino, Baquedano, Diaz-Losada, Robledo Ardila, Duran Valsero (b0010) 2022 Sanikhani, Nikpour, Jamshidi (b0195) 2025 Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W. R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S., 2024. Majority of global river flow sustained by groundwater. Zheng, Chen, Zhang (b0325) 2014; 42 118 (20).http://dx.doi.org/10.1073/pnas.2024492118. Bakalowicz (b0030) 2005; 13 Ricci, Centanni, DeGirolamo, Gentile (b0190) 2023; 68 56 (11).http://dx.doi.org/10.1029/2020wr027721. Palash, W.; Akanda, A. S.; Islam, S., 2024. A data-driven global flood forecasting system for medium to large rivers. 61 (1).http://dx.doi.org/10.1029/2024wr038192. Mo, Ruan, Xiao, Lan, Jin (b0160) 2021 Mo, Jiang, Long, Cen (b0155) 2025 Yoshioka, Yoshioka (b0285) 2024; 38 Hu, Wu, Liu, Ran, Guo, Zhu, Zeng (b0095) 2025 Liu, Ciais, Liu, Yang, Hoekstra, Tang, Wang, Li, Cheng (b0140) 2020; 54 60 (4).http://dx.doi.org/10.1029/2022wr032602. Wang, Luo, Xiong, Gu, Zhu (b0235) 2022; 14 (10).http://dx.doi.org/10.3390/su14105789 Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barbera, J. A.; Brielmann, H.; Bouchaou, L.; Charlier, J.-B.; Darling, W. G.; Filippini, M.; Garvelmann, J.; Goldscheider, N.; Kralik, M.; Kunstmann, H.; Ladouche, B.; Lange, J.; Lucianetti, G.; Martin, J. F.; Mudarra, M.; Sanchez, D.; Stumpp, C.; Zagana, E.; Wagener, T., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. Huang, Chang, Huang, Chen (b0100) 2014; 511 Shorrocks (b0200) 2013; 11 627 (8004).http://dx.doi.org/10.1038/s41586-024-07145-1. Zhang, Shu, Li, Wang, Huang, Zhang (b0315) 2022; 53 17 (8).http://dx.doi.org/10.1038/s41561-024-01483-5. Bi, Yuan (b0035) 2023 13 (24).http://dx.doi.org/10.3390/w13243552. Li, Maier, Lambert, Simmons, Partington (b0125) 2013; 41 Mirzaee, Kamrava (b0150) 2023 Zhou, R.; Zhang, Y., 2023. Predicting and explaining karst spring dissolved oxygen using interpretable deep learning approach. Wan, Xu, Zhang, Cai, Li, Shen (b0225) 2022 Hartmann, Goldscheider, Wagener, Lange, Weiler (b0080) 2014; 52 Geng, X.; Zhang, C.; Zhang, F. e.; Chen, Z.; Nie, Z.; Liu, M., 2021. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. Al Khoury, Boithias, Labat (b0015) 2023; 15 (5).http://dx.doi.org/10.3390/w15050954 Zhang, Jin, Shi, Chew (b0295) 2023 Li, Zhou, Cheng, Yao (b0130) 2023 Xiao, Zhong, Zha (b0245) 2022 Li, Xu, Xu, Liu, Wang, Yu (b0135) 2017; 18 17 (3).http://dx.doi.org/10.1371/journal.pone.0261859. Yang, Condon, Maxwell (b0280) 2025; 3 Gao, Dai, Gan, Peng, Yan (b0070) 2019; 26 He, Jia, Wang, Lu (b0090) 2011; 64 Zhou, Zhao, Cao, Wang (b0355) 2022 Kulshrestha, Krishnaswamy, Sharma (b0115) 2020 Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; Nevo, S.; Pappenberger, F.; Prudhomme, C.; Shalev, G.; Shenzis, S.; Tekalign, T. Y.; Weitzner, D.; Matias, Y., 2024. Global prediction of extreme floods in ungauged watersheds. 37 (8).http://dx.doi.org/10.1002/hyp.14948. Fu, B.; Horsburgh, J. S.; Jakeman, A. J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T. R.; Quinn, N. W. T.; Volk, M.; Hunt, R. J.; Vezzaro, L.; Croke, B. F. W.; Jakeman, J. D.; Snow, V.; Rashleigh, B., 2020. Modeling Water Quality in Watersheds: From Here to the Next Generation. 12 (10).http://dx.doi.org/10.1029/2024ef004751. An, Lyu, Wu, Luo, Jiang, Peng, Yu (b0020) 2015; 38 Gao, H.; Ju, Q.; Zhang, D.; Wang, Z.; Hao, Z.; Kirchner, J. W., 2025. Quantifying Dynamic Linkages Between Precipitation, Groundwater Recharge, and Streamflow Using Ensemble Rainfall-Runoff Analysis. Ding, Zhang, Chu, Wu (b0055) 2020 Legrand (b0120) 1973; 179 Liu, Lu, Zhang, Liu, Jiang (b0145) 2022; 56 Tang, Carey (b0215) 2017; 31 Yan, B.; Xu, Y., 2022. Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes. Solanki, H.; Vegad, U.; Kushwaha, A.; Mishra, V., 2025. Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods. Baffaut, Benson (b0025) 2009; 52 61 (1).http://dx.doi.org/10.1029/2024wr037821. Zhi, Appling, Golden, Podgorski, Li (b0330) 2024 Aas, Jullum, Loland (b0005) 2021 10.1016/j.ecolind.2025.113862_b0085 Li (10.1016/j.ecolind.2025.113862_b0130) 2023 10.1016/j.ecolind.2025.113862_b0165 Zhou (10.1016/j.ecolind.2025.113862_b0345) 2020; 8 Jiang (10.1016/j.ecolind.2025.113862_b0105) 2024; 58 Deng (10.1016/j.ecolind.2025.113862_b0050) 2022 Al Khoury (10.1016/j.ecolind.2025.113862_b0015) 2023 Chen (10.1016/j.ecolind.2025.113862_b0040) 2024 Mo (10.1016/j.ecolind.2025.113862_b0160) 2021 10.1016/j.ecolind.2025.113862_b0205 An (10.1016/j.ecolind.2025.113862_b0020) 2015; 38 Liu (10.1016/j.ecolind.2025.113862_b0145) 2022; 56 Tang (10.1016/j.ecolind.2025.113862_b0215) 2017; 31 Aas (10.1016/j.ecolind.2025.113862_b0005) 2021 Wan (10.1016/j.ecolind.2025.113862_b0225) 2022 Pardo-Iguzquiza (10.1016/j.ecolind.2025.113862_b0180) 2012; 470 Zhang (10.1016/j.ecolind.2025.113862_b0305) 2024 Xiong (10.1016/j.ecolind.2025.113862_b0265) 2022; 56 Zeiger (10.1016/j.ecolind.2025.113862_b0290) 2021 10.1016/j.ecolind.2025.113862_b0075 10.1016/j.ecolind.2025.113862_b0350 10.1016/j.ecolind.2025.113862_b0275 Mirzaee (10.1016/j.ecolind.2025.113862_b0150) 2023 Sanikhani (10.1016/j.ecolind.2025.113862_b0195) 2025 Xiao (10.1016/j.ecolind.2025.113862_b0250) 2023; 51 Kulshrestha (10.1016/j.ecolind.2025.113862_b0115) 2020 10.1016/j.ecolind.2025.113862_b0270 Zhi (10.1016/j.ecolind.2025.113862_b0330) 2024 Zhang (10.1016/j.ecolind.2025.113862_b0310) 2021; 12 Zhi (10.1016/j.ecolind.2025.113862_b0335) 2021; 55 Hu (10.1016/j.ecolind.2025.113862_b0095) 2025 Huang (10.1016/j.ecolind.2025.113862_b0100) 2014; 511 Koskelo (10.1016/j.ecolind.2025.113862_b0110) 2012; 450 Gao (10.1016/j.ecolind.2025.113862_b0070) 2019; 26 Wang (10.1016/j.ecolind.2025.113862_b0235) 2022 Aguilera (10.1016/j.ecolind.2025.113862_b0010) 2022 10.1016/j.ecolind.2025.113862_b0185 10.1016/j.ecolind.2025.113862_b0065 10.1016/j.ecolind.2025.113862_b0220 10.1016/j.ecolind.2025.113862_b0060 Chen (10.1016/j.ecolind.2025.113862_b0045) 2020 Zhang (10.1016/j.ecolind.2025.113862_b0295) 2023 Liu (10.1016/j.ecolind.2025.113862_b0140) 2020; 54 Zhang (10.1016/j.ecolind.2025.113862_b0320) 2020 Shorrocks (10.1016/j.ecolind.2025.113862_b0200) 2013; 11 Zhou (10.1016/j.ecolind.2025.113862_b0355) 2022 Mo (10.1016/j.ecolind.2025.113862_b0155) 2025 Ng (10.1016/j.ecolind.2025.113862_b0170) 2023 Bi (10.1016/j.ecolind.2025.113862_b0035) 2023 Zheng (10.1016/j.ecolind.2025.113862_b0325) 2014; 42 Baffaut (10.1016/j.ecolind.2025.113862_b0025) 2009; 52 Yoshioka (10.1016/j.ecolind.2025.113862_b0285) 2024; 38 Xie (10.1016/j.ecolind.2025.113862_b0260) 2020 10.1016/j.ecolind.2025.113862_b0175 Xiao (10.1016/j.ecolind.2025.113862_b0245) 2022 Wang (10.1016/j.ecolind.2025.113862_b0230) 2020 Zhang (10.1016/j.ecolind.2025.113862_b0300) 2024; 35 10.1016/j.ecolind.2025.113862_b0255 Legrand (10.1016/j.ecolind.2025.113862_b0120) 1973; 179 Ricci (10.1016/j.ecolind.2025.113862_b0190) 2023; 68 White (10.1016/j.ecolind.2025.113862_b0240) 2002; 65 Bakalowicz (10.1016/j.ecolind.2025.113862_b0030) 2005; 13 He (10.1016/j.ecolind.2025.113862_b0090) 2011; 64 Zhou (10.1016/j.ecolind.2025.113862_b0340) 2021; 6 Hartmann (10.1016/j.ecolind.2025.113862_b0080) 2014; 52 Song (10.1016/j.ecolind.2025.113862_b0210) 2017; 7 Li (10.1016/j.ecolind.2025.113862_b0125) 2013; 41 Li (10.1016/j.ecolind.2025.113862_b0135) 2017; 18 Ding (10.1016/j.ecolind.2025.113862_b0055) 2020 Zhang (10.1016/j.ecolind.2025.113862_b0315) 2022; 53 Yang (10.1016/j.ecolind.2025.113862_b0280) 2025; 3 |
References_xml | – volume: 58 year: 2024 ident: b0105 article-title: Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach – reference: Tao, Y.; Sun, H.; Cai, Y., 2022. Predictions of Deep Excavation Responses Considering Model Uncertainty: Integrating BiLSTM Neural Networks with Bayesian Updating. – volume: 52 start-page: 469 year: 2009 end-page: 479 ident: b0025 article-title: MODELING FLOW AND POLLUTANT TRANSPORT IN A KARST WATERSHED WITH SWAT – start-page: 5206 year: 2023 end-page: 5211 ident: b0035 article-title: Yuan, H – year: 2023 ident: b0295 article-title: Real-time load forecasting model for the smart grid using bayesian optimized CNN-BiLSTM – reference: Solanki, H.; Vegad, U.; Kushwaha, A.; Mishra, V., 2025. Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods. – year: 2020 ident: b0055 article-title: Simulation of groundwater dynamic response to hydrological factors in karst aquifer system – volume: 11 year: 2013 ident: b0200 article-title: Decomposition procedures for distributional analysis: a unified framework based on the Shapley value – year: 2025 ident: b0095 article-title: Nitrogen and phosphorus non-point source pollution in the upper Wujiang River Karst Basin: Critical source areas identification and influencing factors – year: 2022 ident: b0050 article-title: Machine Learning Guided Polyamide Membrane with Exceptional Solute-Solute Selectivity and Permeance – year: 2022 ident: b0010 article-title: Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics – reference: 118 (20).http://dx.doi.org/10.1073/pnas.2024492118. – year: 2024 ident: b0330 article-title: Deep learning for water quality – year: 2025 ident: b0195 article-title: Advanced Framework for Predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced Forecasting Accuracy – volume: 38 start-page: 117 year: 2015 end-page: 122 ident: b0020 article-title: Hydro-chemical Characteristics of Upper Chishui River Basin in Dry Season – volume: 6 year: 2021 ident: b0340 article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization – volume: 3 year: 2025 ident: b0280 article-title: Unravelling groundwater-stream connections over the continental United States – year: 2025 ident: b0155 article-title: Comprehensive evaluation and attribution analysis of baseflow variation in a typical karst basin, Southwest China – volume: 55 year: 2021 ident: b0335 article-title: From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? – year: 2022 ident: b0355 article-title: Using an Improved SWAT Model to Simulate Karst Sinkholes: A Case Study in Southwest China – volume: 450 year: 2012 ident: b0110 article-title: A new precipitation-based method of baseflow separation and event identification for small watersheds (<50 km<SUP>2</SUP>) – year: 2021 ident: b0160 article-title: Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China – reference: Hartmann, A.; Jasechko, S.; Gleeson, T.; Wada, Y.; Andreo, B.; Barbera, J. A.; Brielmann, H.; Bouchaou, L.; Charlier, J.-B.; Darling, W. G.; Filippini, M.; Garvelmann, J.; Goldscheider, N.; Kralik, M.; Kunstmann, H.; Ladouche, B.; Lange, J.; Lucianetti, G.; Martin, J. F.; Mudarra, M.; Sanchez, D.; Stumpp, C.; Zagana, E.; Wagener, T., 2021. Risk of groundwater contamination widely underestimated because of fast flow into aquifers. – year: 2020 ident: b0115 article-title: Bayesian BILSTM approach for tourism demand forecasting – volume: 8 year: 2020 ident: b0345 article-title: The challenge of soil loss control and vegetation restoration in the karst area of southwestern China – reference: 13 (24).http://dx.doi.org/10.3390/w13243552. – reference: 627 (8004).http://dx.doi.org/10.1038/s41586-024-07145-1. – volume: 179 year: 1973 ident: b0120 article-title: Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems publication-title: 1 – year: 2020 ident: b0230 article-title: Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope – volume: 38 year: 2024 ident: b0285 article-title: Risk assessment of river water quality using long-memory processes subject to divergence or Wasserstein uncertainty – year: 2021 ident: b0290 article-title: Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application – volume: 511 year: 2014 ident: b0100 article-title: Monthly streamflow prediction using modified EMD-based support vector machine – reference: 37 (8).http://dx.doi.org/10.1002/hyp.14948. – reference: 60 (4).http://dx.doi.org/10.1029/2022wr032602. – reference: 14 (1).http://dx.doi.org/10.1038/s41598-024-59145-w. – year: 2020 ident: b0320 article-title: Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone – volume: 54 year: 2020 ident: b0140 article-title: Global Phosphorus Losses from Croplands under Future Precipitation Scenarios – reference: 22 (1).http://dx.doi.org/10.1061/(asce)gm.1943-5622.0002245. – reference: Fu, B.; Horsburgh, J. S.; Jakeman, A. J.; Gualtieri, C.; Arnold, T.; Marshall, L.; Green, T. R.; Quinn, N. W. T.; Volk, M.; Hunt, R. J.; Vezzaro, L.; Croke, B. F. W.; Jakeman, J. D.; Snow, V.; Rashleigh, B., 2020. Modeling Water Quality in Watersheds: From Here to the Next Generation. – reference: Zhou, R.; Zhang, Y., 2023. Predicting and explaining karst spring dissolved oxygen using interpretable deep learning approach. – year: 2021 ident: b0005 article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values – year: 2024 ident: b0305 article-title: A hybrid framework based on LSTM for predicting karst spring discharge using historical data – volume: 53 start-page: 56 year: 2022 end-page: 65 ident: b0315 article-title: Responses of Ecohydrological Processes to Land Use/Cover Change in the Chishui River Basin – volume: 51 start-page: 564 year: 2023 end-page: 573 ident: b0250 article-title: Environmental Pollution Characteristics of Surface Water and Groundwater in Southwest China and Its Research Prospects – volume: 56 year: 2022 ident: b0145 article-title: Data-Driven Machine Learning in Environmental Pollution: Gains and Problems – reference: Poelz, A.; Blaschke, A. P.; Komma, J.; Farnleitner, A. H.; Derx, J., 2024. Transformer Versus LSTM: A Comparison of Deep Learning Models for Karst Spring Discharge Forecasting. – year: 2020 ident: b0045 article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data – volume: 12 year: 2021 ident: b0310 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization – volume: 26 year: 2019 ident: b0070 article-title: The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region – year: 2022 ident: b0225 article-title: papers A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods – reference: 61 (1).http://dx.doi.org/10.1029/2024wr038192. – volume: 13 year: 2005 ident: b0030 article-title: Karst groundwater: a challenge for new resources – reference: Geng, X.; Zhang, C.; Zhang, F. e.; Chen, Z.; Nie, Z.; Liu, M., 2021. Hydrological Modeling of Karst Watershed Containing Subterranean River Using a Modified SWAT Model: A Case Study of the Daotian River Basin, Southwest China. – volume: 65 start-page: 85 year: 2002 end-page: 105 ident: b0240 article-title: Karst hydrology: recent developments and open questions – reference: Xu, Y.; Lin, K.; Hu, C.; Chen, X.; Zhang, J.; Xiao, M.; Xu, C.-Y., 2024. Uncovering the Dynamic Drivers of Floods Through Interpretable Deep Learning. – reference: 17 (3).http://dx.doi.org/10.1371/journal.pone.0261859. – volume: 35 year: 2024 ident: b0300 publication-title: Research progress on structure and hydrological processes in the karst critical zone of southwest China. – volume: 42 start-page: 221 year: 2014 end-page: 227 ident: b0325 article-title: Rainfall - runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China – volume: 31 year: 2017 ident: b0215 article-title: HydRun: A MATLAB toolbox for rainfall-runoff analysis – reference: 12 (10).http://dx.doi.org/10.1029/2024ef004751. – year: 2022 ident: b0245 article-title: Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River – volume: 41 year: 2013 ident: b0125 article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter – reference: Palash, W.; Akanda, A. S.; Islam, S., 2024. A data-driven global flood forecasting system for medium to large rivers. – volume: 56 year: 2022 ident: b0265 article-title: Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions – reference: Gao, H.; Ju, Q.; Zhang, D.; Wang, Z.; Hao, Z.; Kirchner, J. W., 2025. Quantifying Dynamic Linkages Between Precipitation, Groundwater Recharge, and Streamflow Using Ensemble Rainfall-Runoff Analysis. – volume: 15 (5).http://dx.doi.org/10.3390/w15050954 year: 2023 ident: b0015 article-title: A Review of the Application of the Soil and Water Assessment Tool (SWAT) in Karst Watersheds – volume: 64 year: 2011 ident: b0090 article-title: Overview of karst geo-environments and karst water resources in north and south China – year: 2023 ident: b0150 article-title: Estimation of internal states in a Li-ion battery using BiLSTM with Bayesian hyperparameter optimization – volume: 470 year: 2012 ident: b0180 article-title: Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain) – year: 2020 ident: b0260 article-title: Evaluation of typical methods for baseflow separation in the contiguous United States – reference: 56 (11).http://dx.doi.org/10.1029/2020wr027721. – volume: 7 year: 2017 ident: b0210 article-title: Nitrogen loss from karst area in China in recent 50years: Anin-situ simulated rainfall experiment's assessment – reference: Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; Nevo, S.; Pappenberger, F.; Prudhomme, C.; Shalev, G.; Shenzis, S.; Tekalign, T. Y.; Weitzner, D.; Matias, Y., 2024. Global prediction of extreme floods in ungauged watersheds. – volume: 18 year: 2017 ident: b0135 article-title: Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China – reference: Yan, B.; Xu, Y., 2022. Quantifying interaction uncertainty between subwatersheds and base-flow partitions on hydrological processes. – reference: Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W. R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S., 2024. Majority of global river flow sustained by groundwater. – year: 2023 ident: b0170 article-title: A review of hybrid deep learning applications for streamflow forecasting – volume: 14 (10).http://dx.doi.org/10.3390/su14105789 year: 2022 ident: b0235 article-title: Studies on Hydrological Processes on Karst Slopes for Control of Soil and Water Loss – year: 2023 ident: b0130 article-title: Delay-aware karst spring discharge prediction – reference: 61 (1).http://dx.doi.org/10.1029/2024wr037821. – volume: 52 year: 2014 ident: b0080 article-title: Karst water resources in a changing world: Review of hydrological modeling approaches – volume: 68 year: 2023 ident: b0190 article-title: Modelling daily streamflow in a temporary karst river system: comparing three approaches using the SWAT model – year: 2024 ident: b0040 article-title: Distribution mechanisms of soil surface erosion and underground leakage in karst areas of China: A systematic, quantitative review – reference: 17 (8).http://dx.doi.org/10.1038/s41561-024-01483-5. – year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0005 article-title: Explaining individual predictions when features are dependent: more accurate approximations to shapley values publication-title: Artif. Intell. doi: 10.1016/j.artint.2021.103502 – ident: 10.1016/j.ecolind.2025.113862_b0220 doi: 10.1061/(ASCE)GM.1943-5622.0002245 – year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0015 article-title: A Review of the Application of the Soil and Water Assessment Tool (SWAT) in Karst Watersheds publication-title: Water. doi: 10.3390/w15050954 – ident: 10.1016/j.ecolind.2025.113862_b0075 doi: 10.3390/w13243552 – ident: 10.1016/j.ecolind.2025.113862_b0085 doi: 10.1073/pnas.2024492118 – volume: 13 issue: 1 year: 2005 ident: 10.1016/j.ecolind.2025.113862_b0030 article-title: Karst groundwater: a challenge for new resources publication-title: Hydrgeol. J. – start-page: 5206 year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0035 – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0320 article-title: Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone publication-title: Sci. Total Environ. – year: 2025 ident: 10.1016/j.ecolind.2025.113862_b0155 article-title: Comprehensive evaluation and attribution analysis of baseflow variation in a typical karst basin, Southwest China publication-title: Journal of Hydrology-Regional Studies. doi: 10.1016/j.ejrh.2025.102185 – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0115 article-title: Bayesian BILSTM approach for tourism demand forecasting publication-title: Ann. Tour. Res. doi: 10.1016/j.annals.2020.102925 – volume: 58 issue: 29 year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0105 article-title: Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.4c03160 – volume: 7 issue: 23 year: 2017 ident: 10.1016/j.ecolind.2025.113862_b0210 article-title: Nitrogen loss from karst area in China in recent 50years: Anin-situ simulated rainfall experiment's assessment publication-title: Ecol. Evol. doi: 10.1002/ece3.3502 – ident: 10.1016/j.ecolind.2025.113862_b0255 doi: 10.1038/s41561-024-01483-5 – volume: 56 issue: 14 year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0265 article-title: Predicting Dynamic Riverine Nitrogen Export in Unmonitored Watersheds: Leveraging Insights of AI from Data-Rich Regions publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.2c02232 – volume: 41 year: 2013 ident: 10.1016/j.ecolind.2025.113862_b0125 article-title: Framework for assessing and improving the performance of recursive digital filters for baseflow estimation with application to the Lyne and Hollick filter publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2012.11.009 – volume: 12 issue: 1 year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0310 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.03.007 – ident: 10.1016/j.ecolind.2025.113862_b0065 doi: 10.1029/2024WR037821 – year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0305 article-title: A hybrid framework based on LSTM for predicting karst spring discharge using historical data publication-title: J. Hydrol. – volume: 26 issue: 26 year: 2019 ident: 10.1016/j.ecolind.2025.113862_b0070 article-title: The production processes and characteristics of nitrogen pollution in bare sloping farmland in a karst region publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-05838-z – volume: 31 issue: 15 year: 2017 ident: 10.1016/j.ecolind.2025.113862_b0215 article-title: HydRun: A MATLAB toolbox for rainfall-runoff analysis publication-title: Hydrol. Process. doi: 10.1002/hyp.11185 – year: 2025 ident: 10.1016/j.ecolind.2025.113862_b0095 article-title: Nitrogen and phosphorus non-point source pollution in the upper Wujiang River Karst Basin: Critical source areas identification and influencing factors publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2024.112989 – volume: 470 year: 2012 ident: 10.1016/j.ecolind.2025.113862_b0180 article-title: Estimation of spatio-temporal recharge of aquifers in mountainous karst terrains: Application to Sierra de las Nieves (Spain) publication-title: J. Hydrol. – year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0330 article-title: Deep learning for water quality publication-title: Nature – volume: 8 issue: 1 year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0345 article-title: The challenge of soil loss control and vegetation restoration in the karst area of southwestern China publication-title: International Soil and Water Conservation Research. doi: 10.1016/j.iswcr.2019.12.001 – volume: 54 issue: 22 year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0140 article-title: Global Phosphorus Losses from Croplands under Future Precipitation Scenarios publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.0c03978 – volume: 38 issue: 8 year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0285 article-title: Risk assessment of river water quality using long-memory processes subject to divergence or Wasserstein uncertainty publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-024-02726-y – volume: 511 year: 2014 ident: 10.1016/j.ecolind.2025.113862_b0100 article-title: Monthly streamflow prediction using modified EMD-based support vector machine publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.01.062 – year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0295 article-title: Real-time load forecasting model for the smart grid using bayesian optimized CNN-BiLSTM publication-title: Front. Energy Res. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0235 article-title: Studies on Hydrological Processes on Karst Slopes for Control of Soil and Water Loss publication-title: Sustainability. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0355 article-title: Using an Improved SWAT Model to Simulate Karst Sinkholes: A Case Study in Southwest China publication-title: Front. Environ. Sci. – ident: 10.1016/j.ecolind.2025.113862_b0060 doi: 10.1029/2020WR027721 – volume: 450 year: 2012 ident: 10.1016/j.ecolind.2025.113862_b0110 article-title: A new precipitation-based method of baseflow separation and event identification for small watersheds (<50 km2) publication-title: J. Hydrol. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0225 article-title: papers A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128081 – volume: 6 issue: 5 year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0340 article-title: Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization publication-title: Underground Space doi: 10.1016/j.undsp.2020.05.008 – volume: 18 issue: 10 year: 2017 ident: 10.1016/j.ecolind.2025.113862_b0135 article-title: Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-17-0032.1 – volume: 68 issue: 3 year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0190 article-title: Modelling daily streamflow in a temporary karst river system: comparing three approaches using the SWAT model publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2023.2174027 – year: 2025 ident: 10.1016/j.ecolind.2025.113862_b0195 article-title: Advanced Framework for Predicting Rainfall-Runoff: Comparative Evaluation of AI Models for Enhanced Forecasting Accuracy publication-title: Water Resour. – volume: 52 start-page: 469 issue: 2 year: 2009 ident: 10.1016/j.ecolind.2025.113862_b0025 article-title: MODELING FLOW AND POLLUTANT TRANSPORT IN A KARST WATERSHED WITH SWAT publication-title: Trans. ASABE doi: 10.13031/2013.26840 – volume: 56 issue: 4 year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0145 article-title: Data-Driven Machine Learning in Environmental Pollution: Gains and Problems publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.1c06157 – volume: 55 issue: 4 year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0335 article-title: From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.0c06783 – ident: 10.1016/j.ecolind.2025.113862_b0270 doi: 10.1029/2024EF004751 – year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0160 article-title: Impact of climate change and human activities on the baseflow in a typical karst basin, Southwest China publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2021.107628 – volume: 179 issue: 4076 year: 1973 ident: 10.1016/j.ecolind.2025.113862_b0120 article-title: Hydrological and Ecological Problems of Karst Regions: Hydrological actions on limestone regions cause distinctive ecological problems publication-title: Science (New York, N.Y.) 1 – ident: 10.1016/j.ecolind.2025.113862_b0175 doi: 10.1038/s41598-024-59145-w – year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0150 article-title: Estimation of internal states in a Li-ion battery using BiLSTM with Bayesian hyperparameter optimization publication-title: J. Storage Mater. – volume: 42 start-page: 221 issue: 2 year: 2014 ident: 10.1016/j.ecolind.2025.113862_b0325 article-title: Rainfall - runoff Response Characteristic Analysis of Chenqi Karst Watershed in Southern China publication-title: Earth and Environment. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0050 article-title: Machine Learning Guided Polyamide Membrane with Exceptional Solute-Solute Selectivity and Permeance publication-title: Environmental Science & – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0055 article-title: Simulation of groundwater dynamic response to hydrological factors in karst aquifer system publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124995 – ident: 10.1016/j.ecolind.2025.113862_b0205 doi: 10.1029/2024WR038192 – volume: 53 start-page: 56 issue: 1 year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0315 article-title: Responses of Ecohydrological Processes to Land Use/Cover Change in the Chishui River Basin publication-title: Chin. J. Soil Sci. – volume: 64 issue: 7 year: 2011 ident: 10.1016/j.ecolind.2025.113862_b0090 article-title: Overview of karst geo-environments and karst water resources in north and south China publication-title: Environ. Earth Sci. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0245 article-title: Runoff Forecasting Using Machine-Learning Methods: Case Study in the Middle Reaches of Xijiang River publication-title: Front. Big Data doi: 10.3389/fdata.2021.752406 – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0260 article-title: Evaluation of typical methods for baseflow separation in the contiguous United States publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124628 – year: 2021 ident: 10.1016/j.ecolind.2025.113862_b0290 article-title: Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147295 – ident: 10.1016/j.ecolind.2025.113862_b0275 doi: 10.1371/journal.pone.0261859 – volume: 11 issue: 1 year: 2013 ident: 10.1016/j.ecolind.2025.113862_b0200 article-title: Decomposition procedures for distributional analysis: a unified framework based on the Shapley value publication-title: J. Econ. Inequal. doi: 10.1007/s10888-011-9214-z – year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0130 article-title: Delay-aware karst spring discharge prediction publication-title: J. Hydrol. – volume: 38 start-page: 117 issue: 8 year: 2015 ident: 10.1016/j.ecolind.2025.113862_b0020 article-title: Hydro-chemical Characteristics of Upper Chishui River Basin in Dry Season publication-title: Environ. Sci. Tech. – volume: 35 issue: 4 year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0300 publication-title: Research progress on structure and hydrological processes in the karst critical zone of southwest China. Ying yong sheng tai xue bao = The journal of applied ecology. – year: 2022 ident: 10.1016/j.ecolind.2025.113862_b0010 article-title: Building inexpensive topsoil saturated hydraulic conductivity maps for land planning based on machine learning and geostatistics publication-title: Catena doi: 10.1016/j.catena.2021.105788 – ident: 10.1016/j.ecolind.2025.113862_b0185 doi: 10.1029/2022WR032602 – year: 2024 ident: 10.1016/j.ecolind.2025.113862_b0040 article-title: Distribution mechanisms of soil surface erosion and underground leakage in karst areas of China: A systematic, quantitative review publication-title: Catena doi: 10.1016/j.catena.2024.108466 – ident: 10.1016/j.ecolind.2025.113862_b0165 doi: 10.1038/s41586-024-07145-1 – year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0170 article-title: A review of hybrid deep learning applications for streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130141 – volume: 51 start-page: 564 issue: 5 year: 2023 ident: 10.1016/j.ecolind.2025.113862_b0250 article-title: Environmental Pollution Characteristics of Surface Water and Groundwater in Southwest China and Its Research Prospects publication-title: Earth and Environment. – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0045 article-title: Comparative analysis of surface water quality prediction performance and identification of key water parameters using different machine learning models based on big data publication-title: Water Res. – volume: 52 issue: 3 year: 2014 ident: 10.1016/j.ecolind.2025.113862_b0080 article-title: Karst water resources in a changing world: Review of hydrological modeling approaches publication-title: Rev. Geophys. doi: 10.1002/2013RG000443 – volume: 65 start-page: 85 issue: 2–3 year: 2002 ident: 10.1016/j.ecolind.2025.113862_b0240 article-title: Karst hydrology: recent developments and open questions publication-title: Eng. Geol. doi: 10.1016/S0013-7952(01)00116-8 – year: 2020 ident: 10.1016/j.ecolind.2025.113862_b0230 article-title: Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope publication-title: J. Hydrol. – volume: 3 issue: 1 year: 2025 ident: 10.1016/j.ecolind.2025.113862_b0280 article-title: Unravelling groundwater-stream connections over the continental United States publication-title: Nat. Water doi: 10.1038/s44221-024-00366-8 – ident: 10.1016/j.ecolind.2025.113862_b0350 doi: 10.1002/hyp.14948 |
SSID | ssj0016996 |
Score | 2.4350557 |
Snippet | [Display omitted]
•A conceptual framework-based model that enables hydrology and water quality simulation.•The increase in rainfall and runoff has deteriorated... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 113862 |
SubjectTerms | Baseflow segmentation Hydrology Machine learning models Rainfall-stormflow analysis River water quality Simulations |
Title | A novel method for hydrology and water quality simulation in karst regions using machine learning model |
URI | https://dx.doi.org/10.1016/j.ecolind.2025.113862 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrAgXhXlUXlgTZM4dh5jVbUqIHWBSt0ix7mUFhqqNoC68Ns5Jw4FCTEwxslJ0Wfn7rv4Ox8h16EEJ2LgW1xkwtIRwpJZJCyMJFHgJg4alQLZsT-a8NupmDZIv66F0bJK4_srn156azNiGzTt1Xxu37s80MejTTGIO0HEdEU554Fe5d2PL5mH60dRVWEUOJZ-elfFYy-6mOEhmdMHhjKhu5uEPvs9Pn2LOcNDcmDIIu1V73NEGpAfk9ZgV5uGN83HuTkhsx7NX97gmVZdoSnSUfq4Tdflj3Mq85S-I7Fc06qOcks386Xp3UXnOX3CDLeguk8DrkOq5fAzuiyVlkBNawkc0H1zTslkOHjojyzTR8FSzOOFxViqd1ul8iUIN4mUI8FLlKdSyQDClCmeeYiTcDgo0DuXqctB6OwjVBF4Xos085cczghF8oVz7oCSic-z1E0k0pEAeOJmaCxYm3Rr9OJVdVxGXOvIFrGBO9ZwxxXcbRLWGMc_5j1Gl_636fn_TS_Ivr6qtGKXpFmsX-EKyUWRdMrV0yF7vZu70bhTpuif2_DSmQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQHOCCWMXOHOCYNnHtLAcOiEUt24VW6i04zgTKklZtAfXCT_GDjBOXgoQ4IHF1NFL0Mpp5jt_4MbYXKnQjjr4jZCYd0yEclUXSoU4SBV7iUlAhkL3y6y1x1pbtKfY-noUxskpb-8uaXlRru1K1aFZ7nU712hOBuR6tTU3cDSIeWGXlOY5ead82OGgc00fe5_z0pHlUd6y1gKN5TQwdzlNzAKm0r1B6SaRdhbVE13SqOGKYci2ymh9F0hWo0RzmpZ5AaQh5qCM0f0Gp7s8IKhfGNqHy9qkr8SiqHGkKXMe83mRsqHpfoS0lsUdzQymXxk4l9PnPDfFLkztdYPOWncJhCcAim8J8ia2eTIbh6KGtBoNldnsIefcFH6G0oQbiv3A3SvvFn3pQeQqvxGT7UA5ujmDQebJmYdDJ4YG21EMwxhCU-GD097fwVEg7EayXBS0Yo54V1voXdFfZdN7NcY0BsT1KMhe1SnyRpV6iiP8EKBIvo2DJ11lljF7cK-_niMfCtfvYwh0buOMS7nUWjjGOvyVaTD3k99CNv4fustl68_IivmhcnW-yOfOkFKptselh_xm3idkMk50ik4Dd_HfqfgDvtA2x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+hydrology+and+water+quality+simulation+in+karst+regions+using+machine+learning+model&rft.jtitle=Ecological+indicators&rft.au=Wang%2C+Wanbin&rft.au=Zhao%2C+Yangyi&rft.au=Guan%2C+Tangzhen&rft.au=Qin%2C+Chengxin&rft.date=2025-09-01&rft.issn=1470-160X&rft.volume=178&rft.spage=113862&rft_id=info:doi/10.1016%2Fj.ecolind.2025.113862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolind_2025_113862 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1470-160X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1470-160X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1470-160X&client=summon |