EXTRACTION METHOD FOR CENTERLINES OF RICE SEEDLINGS BASED ON FAST-SCNN SEMANTIC SEGMENTATION

For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature p...

Full description

Saved in:
Bibliographic Details
Published inINMATEH - Agricultural Engineering pp. 335 - 344
Main Authors Chen, Yusong, Geng, Changxing, Wang, Yong, Zhu, Guofeng, Shen, Renyuan
Format Journal Article
LanguageEnglish
Published 31.08.2021
Online AccessGet full text

Cover

Loading…
Abstract For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature points were extracted using the FAST (Features from Accelerated Segment Test) corner detection algorithm after the pre-processing of original images. All the outer contours of the segmentation results were extracted, and feature point classification was carried out based on the extracted outer contour. For each class of points, Hough transformation based on known points was used to fit the seedling row centerline. It has been verified by experiments that this algorithm has high robustness in each period within three weeks after transplanting. In a 1280×1024-pixel PNG format color image, the accuracy of this algorithm is 95.9% and the average time of each frame is 158ms, which meets the real-time requirement of visual navigation in paddy field.
AbstractList For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature points were extracted using the FAST (Features from Accelerated Segment Test) corner detection algorithm after the pre-processing of original images. All the outer contours of the segmentation results were extracted, and feature point classification was carried out based on the extracted outer contour. For each class of points, Hough transformation based on known points was used to fit the seedling row centerline. It has been verified by experiments that this algorithm has high robustness in each period within three weeks after transplanting. In a 1280×1024-pixel PNG format color image, the accuracy of this algorithm is 95.9% and the average time of each frame is 158ms, which meets the real-time requirement of visual navigation in paddy field.
Author Geng, Changxing
Chen, Yusong
Shen, Renyuan
Zhu, Guofeng
Wang, Yong
Author_xml – sequence: 1
  givenname: Yusong
  surname: Chen
  fullname: Chen, Yusong
  organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China
– sequence: 2
  givenname: Changxing
  surname: Geng
  fullname: Geng, Changxing
  organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China
– sequence: 3
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China
– sequence: 4
  givenname: Guofeng
  surname: Zhu
  fullname: Zhu, Guofeng
  organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China
– sequence: 5
  givenname: Renyuan
  surname: Shen
  fullname: Shen, Renyuan
  organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China
BookMark eNotkEFPgzAcxRszE-fc1XO_QGfbfylwxK4wkg0SqIkHE1JKiTNuM7CL315UTu-X9_Le4d2jxfly9gg9MrqBQAI8Hc8ne_XvRAoCcIOWnMqIcA7xYmbBWXCH1uP4QSnlYSwYpUv0pl9NlSiTlwU-aLMrtzgtK6x0YXS1zwtd4zLFVa40rrXeTk5W4-ek1ls8NdKkNqRWRTGFh6QwuZogO0zl5HfxAd329nP061lX6CXVRu3IvsxyleyJ4yCuhLHeUuta3rW9s52VMYjeMyoiZ33gw9CKOHRRCzF3kbRRJ3zLWCs6IbvWuR5WaPO_64bLOA6-b76G48kO3w2jzd89zXxPI0UDAD8velUt
Cites_doi 10.1109/tpami.2016.2572683
10.1016/j.compag.2017.09.008
10.3788/aos201838.1110001
10.1016/j.compag.2017.09.028
10.35633/inmateh-61-31
10.3788/aos20092909.2607
10.1109/tsmc.1979.4310076
10.1007/11744023_34
10.1007/s11119-016-9494-1
10.4236/csa.2012.22021
10.12677/csa.2019.92036
10.1007/978-3-030-01219-9_25
10.1016/0734-189x(85)90016-7
10.35633/inmateh-62-23
10.1007/978-3-030-01261-8_20
10.1016/s0168-1699(02)00140-0
10.1016/j.patcog.2014.08.027
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.35633/inmateh-64-33
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2068-2239
EndPage 344
ExternalDocumentID 10_35633_inmateh_64_33
GroupedDBID AAYXX
ABDBF
ALMA_UNASSIGNED_HOLDINGS
CITATION
EAP
ECGQY
EOJEC
ESX
OBODZ
OK1
ID FETCH-LOGICAL-c234t-11fa0acb2dbfcada6934fe1048cae5e77a497c8b392c86a8d4eb11b4d46dbccf3
ISSN 2068-4215
IngestDate Fri Aug 23 00:43:59 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c234t-11fa0acb2dbfcada6934fe1048cae5e77a497c8b392c86a8d4eb11b4d46dbccf3
OpenAccessLink https://api.inmateh.eu/public/uploads/64-33-N350---Yusong-Chen3dde1986-5524-4628-8600-3ce938d89dee.pdf
PageCount 10
ParticipantIDs crossref_primary_10_35633_inmateh_64_33
PublicationCentury 2000
PublicationDate 2021-8-31
PublicationDateYYYYMMDD 2021-08-31
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-8-31
  day: 31
PublicationDecade 2020
PublicationTitle INMATEH - Agricultural Engineering
PublicationYear 2021
References ref13
ref12
ref15
ref14
ref11
ref10
ref0
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/tpami.2016.2572683
– ident: ref16
  doi: 10.1016/j.compag.2017.09.008
– ident: ref4
  doi: 10.3788/aos201838.1110001
– ident: ref2
  doi: 10.1016/j.compag.2017.09.028
– ident: ref7
  doi: 10.35633/inmateh-61-31
– ident: ref6
  doi: 10.3788/aos20092909.2607
– ident: ref9
  doi: 10.1109/tsmc.1979.4310076
– ident: ref11
  doi: 10.1007/11744023_34
– ident: ref1
  doi: 10.1007/s11119-016-9494-1
– ident: ref17
  doi: 10.4236/csa.2012.22021
– ident: ref0
  doi: 10.12677/csa.2019.92036
– ident: ref18
  doi: 10.1007/978-3-030-01219-9_25
– ident: ref13
  doi: 10.1016/0734-189x(85)90016-7
– ident: ref3
  doi: 10.35633/inmateh-62-23
– ident: ref14
  doi: 10.1007/978-3-030-01261-8_20
– ident: ref10
– ident: ref12
  doi: 10.1016/s0168-1699(02)00140-0
– ident: ref8
  doi: 10.1016/j.patcog.2014.08.027
– ident: ref15
  doi: 10.35633/inmateh-61-31
SSID ssj0002794100
ssib044739808
Score 2.2260075
Snippet For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic...
SourceID crossref
SourceType Aggregation Database
StartPage 335
Title EXTRACTION METHOD FOR CENTERLINES OF RICE SEEDLINGS BASED ON FAST-SCNN SEMANTIC SEGMENTATION
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgu8AB8VOMX_IBiUPk0cSu4xyz1mmHaCYtmegQUmU7NoNDh6ZWQvz1vMRpkk07DC5R9GJbbb5Pz88vfp8Reh9W1HEXM6IVGxGWKEYU1xFRI8dgwo5j4-p650XO52fs03K87D8XNNUlG31o_txaV_I_qIINcK2rZP8B2W5QMMA94AtXQBiud8JYLstTvwskWMhyfjINYE0XTGQtc_u5Pk6j3tNzejyRQSHlFCyzAhbmhZwG0CNLi5IUkzyHh4s0LwGOQs5qbf8-bdVGrcf5Ii3lPCBB-v2qF-sYaBn2uwS8GzvfQhzfWWfWe5SmlOH3oPmXNlt9Pmj89WLbJOu3l8621jYrEXVp1p3zikZcEBb5Us1D29sgHEkGDpPS8WDupV4L8qZbp2Ne552zH2uI4u0F4Yx49Yzr-tk35rVutyGsc5oRVm3_FWcrSu-j_QicE3jF_fRoepTtvBBjMU1Eq3j0s_k0m7CwqWXq_pRX_2wG_XjtRw2im0GYUj5Gj9r1BU49WZ6ge3b9FD3sYbPP0LeeNtjTBgNt8IA2-CTDNW1wRxvc0AZDj442eEcbPKTNc3SWyXIyJ-0hG8RElG1IGDo1UkZHlXZGVYonlDkLi3RhlB3bOFYsiY3QEEcbwZWoGMzuoWYV45U2xtEXaG99ubYvEYbIWlAhWKQrUx9soIWJ4R0pCiE5d0wcoA-7l7P65bVUVrdj8-rOLV-jBz393qC9zdXWvoUwcaPftbj-BRfpWTc
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXTRACTION+METHOD+FOR+CENTERLINES+OF+RICE+SEEDLINGS+BASED+ON+FAST-SCNN+SEMANTIC+SEGMENTATION&rft.jtitle=INMATEH+-+Agricultural+Engineering&rft.au=Chen%2C+Yusong&rft.au=Geng%2C+Changxing&rft.au=Wang%2C+Yong&rft.au=Zhu%2C+Guofeng&rft.date=2021-08-31&rft.issn=2068-4215&rft.eissn=2068-2239&rft.spage=335&rft.epage=344&rft_id=info:doi/10.35633%2Finmateh-64-33&rft.externalDBID=n%2Fa&rft.externalDocID=10_35633_inmateh_64_33
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2068-4215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2068-4215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2068-4215&client=summon