EXTRACTION METHOD FOR CENTERLINES OF RICE SEEDLINGS BASED ON FAST-SCNN SEMANTIC SEGMENTATION
For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature p...
Saved in:
Published in | INMATEH - Agricultural Engineering pp. 335 - 344 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
31.08.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature points were extracted using the FAST (Features from Accelerated Segment Test) corner detection algorithm after the pre-processing of original images. All the outer contours of the segmentation results were extracted, and feature point classification was carried out based on the extracted outer contour. For each class of points, Hough transformation based on known points was used to fit the seedling row centerline. It has been verified by experiments that this algorithm has high robustness in each period within three weeks after transplanting. In a 1280×1024-pixel PNG format color image, the accuracy of this algorithm is 95.9% and the average time of each frame is 158ms, which meets the real-time requirement of visual navigation in paddy field. |
---|---|
AbstractList | For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic segmentation network. By training the FAST-SCNN network, the optimal model was selected to separate the seedling from the picture. Feature points were extracted using the FAST (Features from Accelerated Segment Test) corner detection algorithm after the pre-processing of original images. All the outer contours of the segmentation results were extracted, and feature point classification was carried out based on the extracted outer contour. For each class of points, Hough transformation based on known points was used to fit the seedling row centerline. It has been verified by experiments that this algorithm has high robustness in each period within three weeks after transplanting. In a 1280×1024-pixel PNG format color image, the accuracy of this algorithm is 95.9% and the average time of each frame is 158ms, which meets the real-time requirement of visual navigation in paddy field. |
Author | Geng, Changxing Chen, Yusong Shen, Renyuan Zhu, Guofeng Wang, Yong |
Author_xml | – sequence: 1 givenname: Yusong surname: Chen fullname: Chen, Yusong organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China – sequence: 2 givenname: Changxing surname: Geng fullname: Geng, Changxing organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China – sequence: 3 givenname: Yong surname: Wang fullname: Wang, Yong organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China – sequence: 4 givenname: Guofeng surname: Zhu fullname: Zhu, Guofeng organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China – sequence: 5 givenname: Renyuan surname: Shen fullname: Shen, Renyuan organization: Robotics and Microsystems Centre, Soochow University, Suzhou/China |
BookMark | eNotkEFPgzAcxRszE-fc1XO_QGfbfylwxK4wkg0SqIkHE1JKiTNuM7CL315UTu-X9_Le4d2jxfly9gg9MrqBQAI8Hc8ne_XvRAoCcIOWnMqIcA7xYmbBWXCH1uP4QSnlYSwYpUv0pl9NlSiTlwU-aLMrtzgtK6x0YXS1zwtd4zLFVa40rrXeTk5W4-ek1ls8NdKkNqRWRTGFh6QwuZogO0zl5HfxAd329nP061lX6CXVRu3IvsxyleyJ4yCuhLHeUuta3rW9s52VMYjeMyoiZ33gw9CKOHRRCzF3kbRRJ3zLWCs6IbvWuR5WaPO_64bLOA6-b76G48kO3w2jzd89zXxPI0UDAD8velUt |
Cites_doi | 10.1109/tpami.2016.2572683 10.1016/j.compag.2017.09.008 10.3788/aos201838.1110001 10.1016/j.compag.2017.09.028 10.35633/inmateh-61-31 10.3788/aos20092909.2607 10.1109/tsmc.1979.4310076 10.1007/11744023_34 10.1007/s11119-016-9494-1 10.4236/csa.2012.22021 10.12677/csa.2019.92036 10.1007/978-3-030-01219-9_25 10.1016/0734-189x(85)90016-7 10.35633/inmateh-62-23 10.1007/978-3-030-01261-8_20 10.1016/s0168-1699(02)00140-0 10.1016/j.patcog.2014.08.027 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.35633/inmateh-64-33 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2068-2239 |
EndPage | 344 |
ExternalDocumentID | 10_35633_inmateh_64_33 |
GroupedDBID | AAYXX ABDBF ALMA_UNASSIGNED_HOLDINGS CITATION EAP ECGQY EOJEC ESX OBODZ OK1 |
ID | FETCH-LOGICAL-c234t-11fa0acb2dbfcada6934fe1048cae5e77a497c8b392c86a8d4eb11b4d46dbccf3 |
ISSN | 2068-4215 |
IngestDate | Fri Aug 23 00:43:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c234t-11fa0acb2dbfcada6934fe1048cae5e77a497c8b392c86a8d4eb11b4d46dbccf3 |
OpenAccessLink | https://api.inmateh.eu/public/uploads/64-33-N350---Yusong-Chen3dde1986-5524-4628-8600-3ce938d89dee.pdf |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_35633_inmateh_64_33 |
PublicationCentury | 2000 |
PublicationDate | 2021-8-31 |
PublicationDateYYYYMMDD | 2021-08-31 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-8-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | INMATEH - Agricultural Engineering |
PublicationYear | 2021 |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref0 ref2 ref1 ref17 ref16 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref5 doi: 10.1109/tpami.2016.2572683 – ident: ref16 doi: 10.1016/j.compag.2017.09.008 – ident: ref4 doi: 10.3788/aos201838.1110001 – ident: ref2 doi: 10.1016/j.compag.2017.09.028 – ident: ref7 doi: 10.35633/inmateh-61-31 – ident: ref6 doi: 10.3788/aos20092909.2607 – ident: ref9 doi: 10.1109/tsmc.1979.4310076 – ident: ref11 doi: 10.1007/11744023_34 – ident: ref1 doi: 10.1007/s11119-016-9494-1 – ident: ref17 doi: 10.4236/csa.2012.22021 – ident: ref0 doi: 10.12677/csa.2019.92036 – ident: ref18 doi: 10.1007/978-3-030-01219-9_25 – ident: ref13 doi: 10.1016/0734-189x(85)90016-7 – ident: ref3 doi: 10.35633/inmateh-62-23 – ident: ref14 doi: 10.1007/978-3-030-01261-8_20 – ident: ref10 – ident: ref12 doi: 10.1016/s0168-1699(02)00140-0 – ident: ref8 doi: 10.1016/j.patcog.2014.08.027 – ident: ref15 doi: 10.35633/inmateh-61-31 |
SSID | ssj0002794100 ssib044739808 |
Score | 2.2260075 |
Snippet | For the extraction of paddy rice seedling centerline, this study proposed a method based on Fast-SCNN (Fast Segmentation Convolutional Neural Network) semantic... |
SourceID | crossref |
SourceType | Aggregation Database |
StartPage | 335 |
Title | EXTRACTION METHOD FOR CENTERLINES OF RICE SEEDLINGS BASED ON FAST-SCNN SEMANTIC SEGMENTATION |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgu8AB8VOMX_IBiUPk0cSu4xyz1mmHaCYtmegQUmU7NoNDh6ZWQvz1vMRpkk07DC5R9GJbbb5Pz88vfp8Reh9W1HEXM6IVGxGWKEYU1xFRI8dgwo5j4-p650XO52fs03K87D8XNNUlG31o_txaV_I_qIINcK2rZP8B2W5QMMA94AtXQBiud8JYLstTvwskWMhyfjINYE0XTGQtc_u5Pk6j3tNzejyRQSHlFCyzAhbmhZwG0CNLi5IUkzyHh4s0LwGOQs5qbf8-bdVGrcf5Ii3lPCBB-v2qF-sYaBn2uwS8GzvfQhzfWWfWe5SmlOH3oPmXNlt9Pmj89WLbJOu3l8621jYrEXVp1p3zikZcEBb5Us1D29sgHEkGDpPS8WDupV4L8qZbp2Ne552zH2uI4u0F4Yx49Yzr-tk35rVutyGsc5oRVm3_FWcrSu-j_QicE3jF_fRoepTtvBBjMU1Eq3j0s_k0m7CwqWXq_pRX_2wG_XjtRw2im0GYUj5Gj9r1BU49WZ6ge3b9FD3sYbPP0LeeNtjTBgNt8IA2-CTDNW1wRxvc0AZDj442eEcbPKTNc3SWyXIyJ-0hG8RElG1IGDo1UkZHlXZGVYonlDkLi3RhlB3bOFYsiY3QEEcbwZWoGMzuoWYV45U2xtEXaG99ubYvEYbIWlAhWKQrUx9soIWJ4R0pCiE5d0wcoA-7l7P65bVUVrdj8-rOLV-jBz393qC9zdXWvoUwcaPftbj-BRfpWTc |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EXTRACTION+METHOD+FOR+CENTERLINES+OF+RICE+SEEDLINGS+BASED+ON+FAST-SCNN+SEMANTIC+SEGMENTATION&rft.jtitle=INMATEH+-+Agricultural+Engineering&rft.au=Chen%2C+Yusong&rft.au=Geng%2C+Changxing&rft.au=Wang%2C+Yong&rft.au=Zhu%2C+Guofeng&rft.date=2021-08-31&rft.issn=2068-4215&rft.eissn=2068-2239&rft.spage=335&rft.epage=344&rft_id=info:doi/10.35633%2Finmateh-64-33&rft.externalDBID=n%2Fa&rft.externalDocID=10_35633_inmateh_64_33 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2068-4215&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2068-4215&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2068-4215&client=summon |