Photoelectron spectroscopic study of the E⊗e Jahn–Teller effect in the presence of a tunable spin–orbit interaction. I. Photoionization dynamics of methyl iodide and rotational fine structure of CH3I+ and CD3I
The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{docum...
Saved in:
Published in | The Journal of chemical physics Vol. 134; no. 5; p. 054308 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
07.02.2011
|
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1089-7690 |
DOI | 10.1063/1.3547548 |
Cover
Loading…
Abstract | The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{document}E3/2←X̃1A1 transition of CH3I and CD3I have been recorded. The spectral resolution of better than 0.15 cm−1 enabled the observation of the rotational structure. CH3I+ and CD3I+ are subject to a weak \documentclass[12pt]{minimal}\begin{document}$\rm {E}\otimes \rm {e}$\end{document}E⊗e Jahn–Teller effect and strong spin–orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, \documentclass[12pt]{minimal}\begin{document}$\rm {C_{3v}^2(M)}$\end{document}C3v2(M), including the effects of the spin–orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin–orbit and linear Jahn–Teller coupling parameters of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [\documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CH}_3\rm {I})}/hc =76931.35(20)$\end{document}EI( CH 3I)/hc=76931.35(20) cm−1 and \documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CD}_3\rm {I})}/hc=76957.40(20)$\end{document}EI( CD 3I)/hc=76957.40(20) cm−1] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of \documentclass[12pt]{minimal}\begin{document}$\rm {CH}_3\rm {I}$\end{document} CH 3I and \documentclass[12pt]{minimal}\begin{document}$\rm {CD}_3\rm {I}$\end{document} CD 3I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)]. |
---|---|
AbstractList | The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)]. The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)]. The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{document}E3/2←X̃1A1 transition of CH3I and CD3I have been recorded. The spectral resolution of better than 0.15 cm−1 enabled the observation of the rotational structure. CH3I+ and CD3I+ are subject to a weak \documentclass[12pt]{minimal}\begin{document}$\rm {E}\otimes \rm {e}$\end{document}E⊗e Jahn–Teller effect and strong spin–orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, \documentclass[12pt]{minimal}\begin{document}$\rm {C_{3v}^2(M)}$\end{document}C3v2(M), including the effects of the spin–orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin–orbit and linear Jahn–Teller coupling parameters of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [\documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CH}_3\rm {I})}/hc =76931.35(20)$\end{document}EI( CH 3I)/hc=76931.35(20) cm−1 and \documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CD}_3\rm {I})}/hc=76957.40(20)$\end{document}EI( CD 3I)/hc=76957.40(20) cm−1] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of \documentclass[12pt]{minimal}\begin{document}$\rm {CH}_3\rm {I}$\end{document} CH 3I and \documentclass[12pt]{minimal}\begin{document}$\rm {CD}_3\rm {I}$\end{document} CD 3I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)]. |
Author | Grütter, M. Michaud, J. M. Merkt, F. |
Author_xml | – sequence: 1 givenname: M. surname: Grütter fullname: Grütter, M. – sequence: 2 givenname: J. M. surname: Michaud fullname: Michaud, J. M. – sequence: 3 givenname: F. surname: Merkt fullname: Merkt, F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21303121$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0b9v1DAUB3ALtaLXwsA_gLwhhHK148RJRnQUelUlGMoc-cezziixg-0M14mZlYE_jb1_CUnuYKg6-Yc-7z3pfc_RifMOEHpFyZoSzi7pmpVFVRb1M7SipG6yijfkBK0IyWnWcMLP0HmM3wghtMqL5-gsp4wwmtMV-vNl55OHDlQK3uE4LJeo_GAVjmnUe-wNTjvAVw8_fwO-ETv38OPXHXQdBAzGTB5bt4ghQASnYK4QOI1OyA6mlnau8EHaWSYIQiXr3Rpv13iZPj3svZj_sN470VsV5xY9pN2-w9ZrqwELp3HwaWGiw8a6qXUKo0pjWCZurtn23cI2H9j2BTo1oovw8nheoK8fr-4219nt50_bzfvbTOWsqDNtJICkYOqSSM24kmUjFaNcAuGirButFdDKUK6YqQ0xWsqiqBjXJRREALtAbw59h-C_jxBT29uopu0IB36MbV3yihekoJN8fZSj7EG3Q7C9CPv2XxYTeHsAagogBjD_CSXtnHNL22POk718ZJU97CYFYbsnKv4Ca0mwTg |
CitedBy_id | crossref_primary_10_1080_00268976_2011_609143 crossref_primary_10_1016_j_jms_2014_12_003 crossref_primary_10_1080_00268976_2018_1451002 crossref_primary_10_1021_acs_jpclett_7b03022 crossref_primary_10_1063_1_4943116 crossref_primary_10_1080_0144235X_2021_1874118 crossref_primary_10_1039_D4CP03906H crossref_primary_10_1063_1_3679655 crossref_primary_10_1063_5_0190794 crossref_primary_10_1080_00268976_2013_782439 crossref_primary_10_1016_j_cplett_2014_07_016 crossref_primary_10_1039_C7CP00319F crossref_primary_10_1039_D3SC04065H crossref_primary_10_1016_j_chemphys_2018_08_024 crossref_primary_10_1063_1_4894853 crossref_primary_10_1016_j_jms_2012_04_001 crossref_primary_10_1021_jp310241d crossref_primary_10_1063_1_4817201 crossref_primary_10_1063_1_4745002 |
Cites_doi | 10.1007/BF01400239 10.1016/S0301-0104(01)00466-9 10.1080/00268970601146864 10.1080/00268977100100591 10.1002/cphc.200800207 10.1063/1.442117 10.1103/PhysRevA.79.022505 10.1063/1.434534 10.1063/1.1310344 10.1063/1.2888557 10.1098/rsta.1970.0059 10.1063/1.448443 10.1063/1.2140739 10.1080/01442359309353282 10.1063/1.1673762 10.1006/jmsp.1998.7652 10.1080/002689797169745 10.1098/rsta.1970.0068 10.1016/j.chemphys.2005.09.009 10.1080/00268976800101381 10.1098/rsta.1961.0017 10.1098/rsta.1970.0061 10.1088/0031-8949/16/5-6/010 10.1021/jp8019649 10.1063/1.1447219 10.1016/j.chemphys.2004.04.021 10.1016/0022-2852(87)90120-2 10.1063/1.451178 10.1016/0022-2852(80)90330-6 10.1098/rspa.1958.0022 10.1088/0953-4075/43/10/105101 10.1021/j100059a008 10.1063/1.1700516 10.1002/jlcr.666 10.1006/jmsp.1995.1164 10.1063/1.2823032 10.1039/tf9716701242 10.1063/1.2778679 10.1088/0031-8949/16/5-6/014 10.1103/PhysRev.138.A1727 10.1063/1.2884340 10.1080/00268977000100081 10.1016/j.ijms.2005.06.004 10.1016/S0301-0104(00)00167-1 10.1103/RevModPhys.23.213 10.1063/1.1807818 10.1080/00268976200100441 10.1142/5406 10.1080/00268977100100801 10.1063/1.1396856 10.1080/014423598230036 10.1063/1.2748049 10.1063/1.447375 10.1063/1.3072104 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1063/1.3547548 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 21303121 10_1063_1_3547548 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 6TJ 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 MVM N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 NPM 7X8 |
ID | FETCH-LOGICAL-c2348-dfbeeb1ef850bd36cb59bc316be06a589ddce17f16c3f8f0fdbb44736d5e40ae3 |
ISSN | 0021-9606 1089-7690 |
IngestDate | Thu Jul 10 18:15:17 EDT 2025 Mon Jul 21 05:57:55 EDT 2025 Thu Apr 24 23:04:59 EDT 2025 Tue Jul 01 00:44:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2348-dfbeeb1ef850bd36cb59bc316be06a589ddce17f16c3f8f0fdbb44736d5e40ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3547548/13265030/054308_1_online.pdf |
PMID | 21303121 |
PQID | 856764041 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_856764041 pubmed_primary_21303121 crossref_primary_10_1063_1_3547548 crossref_citationtrail_10_1063_1_3547548 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-07 2011-Feb-07 20110207 |
PublicationDateYYYYMMDD | 2011-02-07 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2011 |
References | (2023080407420420700_c36) 2009; 79 (2023080407420420700_c43) 1930; 33 (2023080407420420700_c8) 1977; 16 (2023080407420420700_c5) 1970; 268 2023080407420420700_c33 (2023080407420420700_c27) 1984; 81 (2023080407420420700_c13) 2004; 304 (2023080407420420700_c1) 2006 (2023080407420420700_c31) 1971; 20 (2023080407420420700_c23) 1985; 82 (2023080407420420700_c17) 2004; 121 (2023080407420420700_c7) 1971; 20 (2023080407420420700_c40) 1965; 138 (2023080407420420700_c9) 2000; 257 (2023080407420420700_c39) 1980; 81 (2023080407420420700_c52) 1998; 191 (2023080407420420700_c38) 2006; 322 (2023080407420420700_c32) 1958; 244 (2023080407420420700_c45) 1962; 5 (2023080407420420700_c20) 2008; 128 (2023080407420420700_c49) 1951; 23 (2023080407420420700_c50) 1987; 124 (2023080407420420700_c19) 2008; 112 (2023080407420420700_c35) 2001; 115 (2023080407420420700_c34) 2000; 71 (2023080407420420700_c24) 2007; 127 (2023080407420420700_c42) 1952; 20 (2023080407420420700_c47) 1928; 51 (2023080407420420700_c30) 2009; 130 (2023080407420420700_c56) 2005; 245 (2023080407420420700_c25) 2008; 128 (2023080407420420700_c53) 1993; 12 (2023080407420420700_c58) 2005 (2023080407420420700_c48) 1961; 254 (2023080407420420700_c22) 1981; 75 (2023080407420420700_c15) 1994; 98 (2023080407420420700_c18) 2008; 128 (2023080407420420700_c29) 2007; 105 (2023080407420420700_c55) 1970; 268 (2023080407420420700_c12) 1977; 16 (2023080407420420700_c10) 2001; 272 Domcke (2023080407420420700_c2) 2004 (2023080407420420700_c16) 2002; 116 (2023080407420420700_c6) 1970; 268 (2023080407420420700_c51) 1995; 172 (2023080407420420700_c11) 2010; 43 (2023080407420420700_c41) 1991 (2023080407420420700_c4) 1970; 53 (2023080407420420700_c44) 1998 (2023080407420420700_c54) 1997; 92 (2023080407420420700_c26) 2008; 9 (2023080407420420700_c21) 1977; 67 (2023080407420420700_c60) 2007; 127 (2023080407420420700_c46) 1968; 15 (2023080407420420700_c14) 2005; 123 (2023080407420420700_c28) 1986; 85 (2023080407420420700_c59) 1971; 67 (2023080407420420700_c57) 1970; 18 (2023080407420420700_c37) 2003; 46 (2023080407420420700_c3) 1998; 17 |
References_xml | – volume: 51 start-page: 759 year: 1928 ident: 2023080407420420700_c47 publication-title: Z. Phys. doi: 10.1007/BF01400239 – volume: 272 start-page: 293 year: 2001 ident: 2023080407420420700_c10 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(01)00466-9 – volume: 105 start-page: 529 year: 2007 ident: 2023080407420420700_c29 publication-title: Mol. Phys. doi: 10.1080/00268970601146864 – volume: 20 start-page: 611 year: 1971 ident: 2023080407420420700_c7 publication-title: Mol. Phys. doi: 10.1080/00268977100100591 – volume: 9 start-page: 1709 year: 2008 ident: 2023080407420420700_c26 publication-title: ChemPhysChem doi: 10.1002/cphc.200800207 – volume: 75 start-page: 757 year: 1981 ident: 2023080407420420700_c22 publication-title: J. Chem. Phys. doi: 10.1063/1.442117 – volume: 79 start-page: 022505 year: 2009 ident: 2023080407420420700_c36 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.79.022505 – volume: 67 start-page: 368 year: 1977 ident: 2023080407420420700_c21 publication-title: J. Chem. Phys. doi: 10.1063/1.434534 – volume: 71 start-page: 4023 year: 2000 ident: 2023080407420420700_c34 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1310344 – volume: 128 start-page: 104306 year: 2008 ident: 2023080407420420700_c18 publication-title: J. Chem. Phys. doi: 10.1063/1.2888557 – volume: 268 start-page: 7 year: 1970 ident: 2023080407420420700_c5 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1970.0059 – volume: 82 start-page: 1237 year: 1985 ident: 2023080407420420700_c23 publication-title: J. Chem. Phys. doi: 10.1063/1.448443 – volume: 123 start-page: 231103 year: 2005 ident: 2023080407420420700_c14 publication-title: J. Chem. Phys. doi: 10.1063/1.2140739 – volume: 12 start-page: 205 year: 1993 ident: 2023080407420420700_c53 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442359309353282 – volume: 53 start-page: 178 year: 1970 ident: 2023080407420420700_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.1673762 – volume: 191 start-page: 368 year: 1998 ident: 2023080407420420700_c52 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1998.7652 – volume: 92 start-page: 793 year: 1997 ident: 2023080407420420700_c54 publication-title: Mol. Phys. doi: 10.1080/002689797169745 – volume: 268 start-page: 147 year: 1970 ident: 2023080407420420700_c55 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1970.0068 – volume: 322 start-page: 405 year: 2006 ident: 2023080407420420700_c38 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.09.009 – volume: 15 start-page: 479 year: 1968 ident: 2023080407420420700_c46 publication-title: Mol. Phys. doi: 10.1080/00268976800101381 – volume: 254 start-page: 259 year: 1961 ident: 2023080407420420700_c48 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1961.0017 – volume: 268 start-page: 59 year: 1970 ident: 2023080407420420700_c6 publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.1970.0061 – volume: 16 start-page: 225 year: 1977 ident: 2023080407420420700_c8 publication-title: Phys. Scr. doi: 10.1088/0031-8949/16/5-6/010 – volume-title: The Jahn-Teller Effect year: 2006 ident: 2023080407420420700_c1 – volume: 112 start-page: 9277 year: 2008 ident: 2023080407420420700_c19 publication-title: J. Phys. Chem. A doi: 10.1021/jp8019649 – volume: 116 start-page: 4938 year: 2002 ident: 2023080407420420700_c16 publication-title: J. Chem. Phys. doi: 10.1063/1.1447219 – volume: 304 start-page: 17 year: 2004 ident: 2023080407420420700_c13 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2004.04.021 – volume-title: Molecular Symmetry and Spectroscopy year: 1998 ident: 2023080407420420700_c44 – volume: 124 start-page: 53 year: 1987 ident: 2023080407420420700_c50 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(87)90120-2 – volume: 85 start-page: 1770 year: 1986 ident: 2023080407420420700_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.451178 – volume: 81 start-page: 73 year: 1980 ident: 2023080407420420700_c39 publication-title: J. Mol. Spectrosc. doi: 10.1016/0022-2852(80)90330-6 – volume: 33 start-page: 959 year: 1930 ident: 2023080407420420700_c43 publication-title: Proc. Kon. Akad. Wet. Amsterdam – volume: 244 start-page: 1 year: 1958 ident: 2023080407420420700_c32 publication-title: Proc. R. Soc. London, Ser. A doi: 10.1098/rspa.1958.0022 – volume: 43 start-page: 105101 year: 2010 ident: 2023080407420420700_c11 publication-title: J. Phys. B doi: 10.1088/0953-4075/43/10/105101 – volume: 98 start-page: 2024 year: 1994 ident: 2023080407420420700_c15 publication-title: J. Phys. Chem. doi: 10.1021/j100059a008 – volume: 20 start-page: 682 year: 1952 ident: 2023080407420420700_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.1700516 – volume-title: Handbook of Basic Atomic Spectroscopic Data year: 2005 ident: 2023080407420420700_c58 – ident: 2023080407420420700_c33 – volume: 46 start-page: 291 year: 2003 ident: 2023080407420420700_c37 publication-title: J. Labelled Compd. Radiopharm. doi: 10.1002/jlcr.666 – volume: 172 start-page: 176 year: 1995 ident: 2023080407420420700_c51 publication-title: J. Mol. Spectrosc. doi: 10.1006/jmsp.1995.1164 – volume: 128 start-page: 044310 year: 2008 ident: 2023080407420420700_c20 publication-title: J. Chem. Phys. doi: 10.1063/1.2823032 – volume: 67 start-page: 1242 year: 1971 ident: 2023080407420420700_c59 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9716701242 – volume: 127 start-page: 124313 year: 2007 ident: 2023080407420420700_c24 publication-title: J. Chem. Phys. doi: 10.1063/1.2778679 – volume: 16 start-page: 258 year: 1977 ident: 2023080407420420700_c12 publication-title: Phys. Scr. doi: 10.1088/0031-8949/16/5-6/014 – volume: 138 start-page: A1727 year: 1965 ident: 2023080407420420700_c40 publication-title: Phys. Rev. doi: 10.1103/PhysRev.138.A1727 – volume: 128 start-page: 124324 year: 2008 ident: 2023080407420420700_c25 publication-title: J. Chem. Phys. doi: 10.1063/1.2884340 – volume: 18 start-page: 95 year: 1970 ident: 2023080407420420700_c57 publication-title: Mol. Phys. doi: 10.1080/00268977000100081 – volume: 245 start-page: 14 year: 2005 ident: 2023080407420420700_c56 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2005.06.004 – volume: 257 start-page: 283 year: 2000 ident: 2023080407420420700_c9 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00167-1 – volume: 23 start-page: 213 year: 1951 ident: 2023080407420420700_c49 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.23.213 – volume: 121 start-page: 7049 year: 2004 ident: 2023080407420420700_c17 publication-title: J. Chem. Phys. doi: 10.1063/1.1807818 – volume: 5 start-page: 391 year: 1962 ident: 2023080407420420700_c45 publication-title: Mol. Phys. doi: 10.1080/00268976200100441 – volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy year: 2004 ident: 2023080407420420700_c2 doi: 10.1142/5406 – volume: 20 start-page: 817 year: 1971 ident: 2023080407420420700_c31 publication-title: Mol. Phys. doi: 10.1080/00268977100100801 – volume: 115 start-page: 5461 year: 2001 ident: 2023080407420420700_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.1396856 – volume-title: Molecular Spectra and Molecular Structure, Vol. III: Electronic Spectra and Electronic Structure of Polyatomic Molecules year: 1991 ident: 2023080407420420700_c41 – volume: 17 start-page: 435 year: 1998 ident: 2023080407420420700_c3 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/014423598230036 – volume: 127 start-page: 034303 year: 2007 ident: 2023080407420420700_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.2748049 – volume: 81 start-page: 122 year: 1984 ident: 2023080407420420700_c27 publication-title: J. Chem. Phys. doi: 10.1063/1.447375 – volume: 130 start-page: 074302 year: 2009 ident: 2023080407420420700_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.3072104 |
SSID | ssj0001724 |
Score | 2.0955296 |
Snippet | The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the... The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 054308 |
Title | Photoelectron spectroscopic study of the E⊗e Jahn–Teller effect in the presence of a tunable spin–orbit interaction. I. Photoionization dynamics of methyl iodide and rotational fine structure of CH3I+ and CD3I |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21303121 https://www.proquest.com/docview/856764041 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtMwGMetsQnBDYJxKidZiElIUbIkduzkcus61mkbk-ik3UVxYmsRU1K16Q2PwAvwODwEb8CT4EOcpDDE4SaqXNep8v2a_vP5OwDwJlZFzETC3ExE3MUkom6Wc-oGERMkwb6IMpXvfHpGji7w8WV0ubHxdRC1tGqYl3-6Ma_kf6wqx6RdVZbsP1i2W1QOyNfSvvIoLSyPf2Xj86u6qW0jG0cnTarilPW8zE3dWBsBMNExDXs7CeXOcXZVuTPlr1-00Rw21nGuU5FybnImm5VJq1rOy8qtF6xsdG2JhcmE8Jyp5-jzK4euyeV0CtPefmk27SUC105ZF2VhtigWdWM9j0JpW1O6Vm1gqJCQIzTdCff1xPEBmg5Fc5--poVzbmscGK9M91DwTu_674-bttdIH5-gUgNWGuXjwShffGz62Oaid-WqQNnBzdqPE5cS027U4zeM2Tt86y8th5vo-n4tBSvSdSV-_SuR2k15NTwUYRqZaqDr5brP3qeHFycn6WxyObsFtkJKVZzA1t7B6cmHTgxIfYhNjof5Wra4FUG73dLrkug3zzla78zug3vt9YZ7hroHYINX2-DO2PYH3Aa3z83lfwi-rXEI1ziEmkNYCygJg5Pvn79wOCAQGgJhWen3LYFqfgZbAmFPIBwSCKce_IlAaAlUCxgCoSEQSrBgTyBUBMKOQDVdEejoaYq_R-DicDIbH7ltsxA3DxGO3UIwLnUHF3HkswKRnEUJy1FAGPdJFsVJUeQ8oCIgORKx8EXBGMYUkSLi2M84egw2q7riTwFMMqWj5aNLwRKMGc1CnPmChqHwqaCIj8Bba680byvpq4Yu16mO6CAoDdLWtCPwups6N-VjbpoErdFTaUO1Y5dVvF4t0zgilGAfByPwxMDQrRIq8RmEwbM_f_g5uNv_fF6ATXlt-UsppRv2qsX1B0HK0Lc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectron+spectroscopic+study+of+the+E%E2%8A%97e+Jahn-Teller+effect+in+the+presence+of+a+tunable+spin-orbit+interaction.+I.+Photoionization+dynamics+of+methyl+iodide+and+rotational+fine+structure+of+CH3I%2B+and+CD3I&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Gr%C3%BCtter%2C+M&rft.au=Michaud%2C+J+M&rft.au=Merkt%2C+F&rft.date=2011-02-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=134&rft.issue=5&rft.spage=054308&rft_id=info:doi/10.1063%2F1.3547548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |