Photoelectron spectroscopic study of the E⊗e Jahn–Teller effect in the presence of a tunable spin–orbit interaction. I. Photoionization dynamics of methyl iodide and rotational fine structure of CH3I+ and CD3I

The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{docum...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 134; no. 5; p. 054308
Main Authors Grütter, M., Michaud, J. M., Merkt, F.
Format Journal Article
LanguageEnglish
Published United States 07.02.2011
Online AccessGet full text
ISSN0021-9606
1089-7690
1089-7690
DOI10.1063/1.3547548

Cover

Loading…
Abstract The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{document}E3/2←X̃1A1 transition of CH3I and CD3I have been recorded. The spectral resolution of better than 0.15 cm−1 enabled the observation of the rotational structure. CH3I+ and CD3I+ are subject to a weak \documentclass[12pt]{minimal}\begin{document}$\rm {E}\otimes \rm {e}$\end{document}E⊗e Jahn–Teller effect and strong spin–orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, \documentclass[12pt]{minimal}\begin{document}$\rm {C_{3v}^2(M)}$\end{document}C3v2(M), including the effects of the spin–orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin–orbit and linear Jahn–Teller coupling parameters of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [\documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CH}_3\rm {I})}/hc =76931.35(20)$\end{document}EI( CH 3I)/hc=76931.35(20) cm−1 and \documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CD}_3\rm {I})}/hc=76957.40(20)$\end{document}EI( CD 3I)/hc=76957.40(20) cm−1] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of \documentclass[12pt]{minimal}\begin{document}$\rm {CH}_3\rm {I}$\end{document} CH 3I and \documentclass[12pt]{minimal}\begin{document}$\rm {CD}_3\rm {I}$\end{document} CD 3I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].
AbstractList The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].
The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and CD(3)I have been recorded. The spectral resolution of better than 0.15 cm(-1) enabled the observation of the rotational structure. CH(3)I(+) and CD(3)I(+) are subject to a weak E⊗e Jahn-Teller effect and strong spin-orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, C(3v)(2)(M), including the effects of the spin-orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin-orbit and linear Jahn-Teller coupling parameters of the X̃(+) ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [E(I)(CH(3)I)/hc=76931.35(20) cm(-1) and E(I)(CD(3)I)/hc=76957.40(20) cm(-1)] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of CH(3)I and CD(3)I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].
The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ 2\documentclass[12pt]{minimal}\begin{document}$\rm {E_{3/2}}\leftarrow \tilde{\rm {X}}\, ^1{\rm A}_1$\end{document}E3/2←X̃1A1 transition of CH3I and CD3I have been recorded. The spectral resolution of better than 0.15 cm−1 enabled the observation of the rotational structure. CH3I+ and CD3I+ are subject to a weak \documentclass[12pt]{minimal}\begin{document}$\rm {E}\otimes \rm {e}$\end{document}E⊗e Jahn–Teller effect and strong spin–orbit coupling. The treatment of the rovibronic structure of the photoelectron spectra in the corresponding spin double group, \documentclass[12pt]{minimal}\begin{document}$\rm {C_{3v}^2(M)}$\end{document}C3v2(M), including the effects of the spin–orbit interaction and the vibrational angular momentum, allowed the reproduction of the experimentally observed transitions with spectroscopic accuracy. The relevant spin–orbit and linear Jahn–Teller coupling parameters of the \documentclass[12pt]{minimal}\begin{document}$\tilde{\rm {X}}^+$\end{document}X̃+ ground state were derived from the analysis of the spectra of the two isotopomers, and improved values were obtained for the adiabatic ionization energies [\documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CH}_3\rm {I})}/hc =76931.35(20)$\end{document}EI( CH 3I)/hc=76931.35(20) cm−1 and \documentclass[12pt]{minimal}\begin{document}${E_{\rm {I}}(\rm {CD}_3\rm {I})}/hc=76957.40(20)$\end{document}EI( CD 3I)/hc=76957.40(20) cm−1] and the rotational constants of the cations. Rovibronic photoionization selection rules were derived for transitions connecting neutral states following Hund's-case-(b)-type angular momentum coupling and ionic states following Hund's-case-(a)-type coupling. The selection rules, expressed in terms of the angular momentum projection quantum number P, account for all observed transitions and provide an explanation for the nonobservation of several rotational sub-bands in the mass-analyzed threshold-ionization spectra of \documentclass[12pt]{minimal}\begin{document}$\rm {CH}_3\rm {I}$\end{document} CH 3I and \documentclass[12pt]{minimal}\begin{document}$\rm {CD}_3\rm {I}$\end{document} CD 3I reported recently by Lee et al. [J. Chem. Phys. 128, 044310 (2008)].
Author Grütter, M.
Michaud, J. M.
Merkt, F.
Author_xml – sequence: 1
  givenname: M.
  surname: Grütter
  fullname: Grütter, M.
– sequence: 2
  givenname: J. M.
  surname: Michaud
  fullname: Michaud, J. M.
– sequence: 3
  givenname: F.
  surname: Merkt
  fullname: Merkt, F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21303121$$D View this record in MEDLINE/PubMed
BookMark eNpt0b9v1DAUB3ALtaLXwsA_gLwhhHK148RJRnQUelUlGMoc-cezziixg-0M14mZlYE_jb1_CUnuYKg6-Yc-7z3pfc_RifMOEHpFyZoSzi7pmpVFVRb1M7SipG6yijfkBK0IyWnWcMLP0HmM3wghtMqL5-gsp4wwmtMV-vNl55OHDlQK3uE4LJeo_GAVjmnUe-wNTjvAVw8_fwO-ETv38OPXHXQdBAzGTB5bt4ghQASnYK4QOI1OyA6mlnau8EHaWSYIQiXr3Rpv13iZPj3svZj_sN470VsV5xY9pN2-w9ZrqwELp3HwaWGiw8a6qXUKo0pjWCZurtn23cI2H9j2BTo1oovw8nheoK8fr-4219nt50_bzfvbTOWsqDNtJICkYOqSSM24kmUjFaNcAuGirButFdDKUK6YqQ0xWsqiqBjXJRREALtAbw59h-C_jxBT29uopu0IB36MbV3yihekoJN8fZSj7EG3Q7C9CPv2XxYTeHsAagogBjD_CSXtnHNL22POk718ZJU97CYFYbsnKv4Ca0mwTg
CitedBy_id crossref_primary_10_1080_00268976_2011_609143
crossref_primary_10_1016_j_jms_2014_12_003
crossref_primary_10_1080_00268976_2018_1451002
crossref_primary_10_1021_acs_jpclett_7b03022
crossref_primary_10_1063_1_4943116
crossref_primary_10_1080_0144235X_2021_1874118
crossref_primary_10_1039_D4CP03906H
crossref_primary_10_1063_1_3679655
crossref_primary_10_1063_5_0190794
crossref_primary_10_1080_00268976_2013_782439
crossref_primary_10_1016_j_cplett_2014_07_016
crossref_primary_10_1039_C7CP00319F
crossref_primary_10_1039_D3SC04065H
crossref_primary_10_1016_j_chemphys_2018_08_024
crossref_primary_10_1063_1_4894853
crossref_primary_10_1016_j_jms_2012_04_001
crossref_primary_10_1021_jp310241d
crossref_primary_10_1063_1_4817201
crossref_primary_10_1063_1_4745002
Cites_doi 10.1007/BF01400239
10.1016/S0301-0104(01)00466-9
10.1080/00268970601146864
10.1080/00268977100100591
10.1002/cphc.200800207
10.1063/1.442117
10.1103/PhysRevA.79.022505
10.1063/1.434534
10.1063/1.1310344
10.1063/1.2888557
10.1098/rsta.1970.0059
10.1063/1.448443
10.1063/1.2140739
10.1080/01442359309353282
10.1063/1.1673762
10.1006/jmsp.1998.7652
10.1080/002689797169745
10.1098/rsta.1970.0068
10.1016/j.chemphys.2005.09.009
10.1080/00268976800101381
10.1098/rsta.1961.0017
10.1098/rsta.1970.0061
10.1088/0031-8949/16/5-6/010
10.1021/jp8019649
10.1063/1.1447219
10.1016/j.chemphys.2004.04.021
10.1016/0022-2852(87)90120-2
10.1063/1.451178
10.1016/0022-2852(80)90330-6
10.1098/rspa.1958.0022
10.1088/0953-4075/43/10/105101
10.1021/j100059a008
10.1063/1.1700516
10.1002/jlcr.666
10.1006/jmsp.1995.1164
10.1063/1.2823032
10.1039/tf9716701242
10.1063/1.2778679
10.1088/0031-8949/16/5-6/014
10.1103/PhysRev.138.A1727
10.1063/1.2884340
10.1080/00268977000100081
10.1016/j.ijms.2005.06.004
10.1016/S0301-0104(00)00167-1
10.1103/RevModPhys.23.213
10.1063/1.1807818
10.1080/00268976200100441
10.1142/5406
10.1080/00268977100100801
10.1063/1.1396856
10.1080/014423598230036
10.1063/1.2748049
10.1063/1.447375
10.1063/1.3072104
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1063/1.3547548
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 21303121
10_1063_1_3547548
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
NPM
7X8
ID FETCH-LOGICAL-c2348-dfbeeb1ef850bd36cb59bc316be06a589ddce17f16c3f8f0fdbb44736d5e40ae3
ISSN 0021-9606
1089-7690
IngestDate Thu Jul 10 18:15:17 EDT 2025
Mon Jul 21 05:57:55 EDT 2025
Thu Apr 24 23:04:59 EDT 2025
Tue Jul 01 00:44:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2348-dfbeeb1ef850bd36cb59bc316be06a589ddce17f16c3f8f0fdbb44736d5e40ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.3547548/13265030/054308_1_online.pdf
PMID 21303121
PQID 856764041
PQPubID 23479
ParticipantIDs proquest_miscellaneous_856764041
pubmed_primary_21303121
crossref_primary_10_1063_1_3547548
crossref_citationtrail_10_1063_1_3547548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-07
2011-Feb-07
20110207
PublicationDateYYYYMMDD 2011-02-07
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2011
References (2023080407420420700_c36) 2009; 79
(2023080407420420700_c43) 1930; 33
(2023080407420420700_c8) 1977; 16
(2023080407420420700_c5) 1970; 268
2023080407420420700_c33
(2023080407420420700_c27) 1984; 81
(2023080407420420700_c13) 2004; 304
(2023080407420420700_c1) 2006
(2023080407420420700_c31) 1971; 20
(2023080407420420700_c23) 1985; 82
(2023080407420420700_c17) 2004; 121
(2023080407420420700_c7) 1971; 20
(2023080407420420700_c40) 1965; 138
(2023080407420420700_c9) 2000; 257
(2023080407420420700_c39) 1980; 81
(2023080407420420700_c52) 1998; 191
(2023080407420420700_c38) 2006; 322
(2023080407420420700_c32) 1958; 244
(2023080407420420700_c45) 1962; 5
(2023080407420420700_c20) 2008; 128
(2023080407420420700_c49) 1951; 23
(2023080407420420700_c50) 1987; 124
(2023080407420420700_c19) 2008; 112
(2023080407420420700_c35) 2001; 115
(2023080407420420700_c34) 2000; 71
(2023080407420420700_c24) 2007; 127
(2023080407420420700_c42) 1952; 20
(2023080407420420700_c47) 1928; 51
(2023080407420420700_c30) 2009; 130
(2023080407420420700_c56) 2005; 245
(2023080407420420700_c25) 2008; 128
(2023080407420420700_c53) 1993; 12
(2023080407420420700_c58) 2005
(2023080407420420700_c48) 1961; 254
(2023080407420420700_c22) 1981; 75
(2023080407420420700_c15) 1994; 98
(2023080407420420700_c18) 2008; 128
(2023080407420420700_c29) 2007; 105
(2023080407420420700_c55) 1970; 268
(2023080407420420700_c12) 1977; 16
(2023080407420420700_c10) 2001; 272
Domcke (2023080407420420700_c2) 2004
(2023080407420420700_c16) 2002; 116
(2023080407420420700_c6) 1970; 268
(2023080407420420700_c51) 1995; 172
(2023080407420420700_c11) 2010; 43
(2023080407420420700_c41) 1991
(2023080407420420700_c4) 1970; 53
(2023080407420420700_c44) 1998
(2023080407420420700_c54) 1997; 92
(2023080407420420700_c26) 2008; 9
(2023080407420420700_c21) 1977; 67
(2023080407420420700_c60) 2007; 127
(2023080407420420700_c46) 1968; 15
(2023080407420420700_c14) 2005; 123
(2023080407420420700_c28) 1986; 85
(2023080407420420700_c59) 1971; 67
(2023080407420420700_c57) 1970; 18
(2023080407420420700_c37) 2003; 46
(2023080407420420700_c3) 1998; 17
References_xml – volume: 51
  start-page: 759
  year: 1928
  ident: 2023080407420420700_c47
  publication-title: Z. Phys.
  doi: 10.1007/BF01400239
– volume: 272
  start-page: 293
  year: 2001
  ident: 2023080407420420700_c10
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(01)00466-9
– volume: 105
  start-page: 529
  year: 2007
  ident: 2023080407420420700_c29
  publication-title: Mol. Phys.
  doi: 10.1080/00268970601146864
– volume: 20
  start-page: 611
  year: 1971
  ident: 2023080407420420700_c7
  publication-title: Mol. Phys.
  doi: 10.1080/00268977100100591
– volume: 9
  start-page: 1709
  year: 2008
  ident: 2023080407420420700_c26
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200800207
– volume: 75
  start-page: 757
  year: 1981
  ident: 2023080407420420700_c22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.442117
– volume: 79
  start-page: 022505
  year: 2009
  ident: 2023080407420420700_c36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.022505
– volume: 67
  start-page: 368
  year: 1977
  ident: 2023080407420420700_c21
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.434534
– volume: 71
  start-page: 4023
  year: 2000
  ident: 2023080407420420700_c34
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1310344
– volume: 128
  start-page: 104306
  year: 2008
  ident: 2023080407420420700_c18
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2888557
– volume: 268
  start-page: 7
  year: 1970
  ident: 2023080407420420700_c5
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1970.0059
– volume: 82
  start-page: 1237
  year: 1985
  ident: 2023080407420420700_c23
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448443
– volume: 123
  start-page: 231103
  year: 2005
  ident: 2023080407420420700_c14
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2140739
– volume: 12
  start-page: 205
  year: 1993
  ident: 2023080407420420700_c53
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442359309353282
– volume: 53
  start-page: 178
  year: 1970
  ident: 2023080407420420700_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1673762
– volume: 191
  start-page: 368
  year: 1998
  ident: 2023080407420420700_c52
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1998.7652
– volume: 92
  start-page: 793
  year: 1997
  ident: 2023080407420420700_c54
  publication-title: Mol. Phys.
  doi: 10.1080/002689797169745
– volume: 268
  start-page: 147
  year: 1970
  ident: 2023080407420420700_c55
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1970.0068
– volume: 322
  start-page: 405
  year: 2006
  ident: 2023080407420420700_c38
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.09.009
– volume: 15
  start-page: 479
  year: 1968
  ident: 2023080407420420700_c46
  publication-title: Mol. Phys.
  doi: 10.1080/00268976800101381
– volume: 254
  start-page: 259
  year: 1961
  ident: 2023080407420420700_c48
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1961.0017
– volume: 268
  start-page: 59
  year: 1970
  ident: 2023080407420420700_c6
  publication-title: Philos. Trans. R. Soc. London, Ser. A
  doi: 10.1098/rsta.1970.0061
– volume: 16
  start-page: 225
  year: 1977
  ident: 2023080407420420700_c8
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/16/5-6/010
– volume-title: The Jahn-Teller Effect
  year: 2006
  ident: 2023080407420420700_c1
– volume: 112
  start-page: 9277
  year: 2008
  ident: 2023080407420420700_c19
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8019649
– volume: 116
  start-page: 4938
  year: 2002
  ident: 2023080407420420700_c16
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1447219
– volume: 304
  start-page: 17
  year: 2004
  ident: 2023080407420420700_c13
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2004.04.021
– volume-title: Molecular Symmetry and Spectroscopy
  year: 1998
  ident: 2023080407420420700_c44
– volume: 124
  start-page: 53
  year: 1987
  ident: 2023080407420420700_c50
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(87)90120-2
– volume: 85
  start-page: 1770
  year: 1986
  ident: 2023080407420420700_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.451178
– volume: 81
  start-page: 73
  year: 1980
  ident: 2023080407420420700_c39
  publication-title: J. Mol. Spectrosc.
  doi: 10.1016/0022-2852(80)90330-6
– volume: 33
  start-page: 959
  year: 1930
  ident: 2023080407420420700_c43
  publication-title: Proc. Kon. Akad. Wet. Amsterdam
– volume: 244
  start-page: 1
  year: 1958
  ident: 2023080407420420700_c32
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1958.0022
– volume: 43
  start-page: 105101
  year: 2010
  ident: 2023080407420420700_c11
  publication-title: J. Phys. B
  doi: 10.1088/0953-4075/43/10/105101
– volume: 98
  start-page: 2024
  year: 1994
  ident: 2023080407420420700_c15
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100059a008
– volume: 20
  start-page: 682
  year: 1952
  ident: 2023080407420420700_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1700516
– volume-title: Handbook of Basic Atomic Spectroscopic Data
  year: 2005
  ident: 2023080407420420700_c58
– ident: 2023080407420420700_c33
– volume: 46
  start-page: 291
  year: 2003
  ident: 2023080407420420700_c37
  publication-title: J. Labelled Compd. Radiopharm.
  doi: 10.1002/jlcr.666
– volume: 172
  start-page: 176
  year: 1995
  ident: 2023080407420420700_c51
  publication-title: J. Mol. Spectrosc.
  doi: 10.1006/jmsp.1995.1164
– volume: 128
  start-page: 044310
  year: 2008
  ident: 2023080407420420700_c20
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2823032
– volume: 67
  start-page: 1242
  year: 1971
  ident: 2023080407420420700_c59
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9716701242
– volume: 127
  start-page: 124313
  year: 2007
  ident: 2023080407420420700_c24
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2778679
– volume: 16
  start-page: 258
  year: 1977
  ident: 2023080407420420700_c12
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/16/5-6/014
– volume: 138
  start-page: A1727
  year: 1965
  ident: 2023080407420420700_c40
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.138.A1727
– volume: 128
  start-page: 124324
  year: 2008
  ident: 2023080407420420700_c25
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2884340
– volume: 18
  start-page: 95
  year: 1970
  ident: 2023080407420420700_c57
  publication-title: Mol. Phys.
  doi: 10.1080/00268977000100081
– volume: 245
  start-page: 14
  year: 2005
  ident: 2023080407420420700_c56
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/j.ijms.2005.06.004
– volume: 257
  start-page: 283
  year: 2000
  ident: 2023080407420420700_c9
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(00)00167-1
– volume: 23
  start-page: 213
  year: 1951
  ident: 2023080407420420700_c49
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.23.213
– volume: 121
  start-page: 7049
  year: 2004
  ident: 2023080407420420700_c17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1807818
– volume: 5
  start-page: 391
  year: 1962
  ident: 2023080407420420700_c45
  publication-title: Mol. Phys.
  doi: 10.1080/00268976200100441
– volume-title: Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
  year: 2004
  ident: 2023080407420420700_c2
  doi: 10.1142/5406
– volume: 20
  start-page: 817
  year: 1971
  ident: 2023080407420420700_c31
  publication-title: Mol. Phys.
  doi: 10.1080/00268977100100801
– volume: 115
  start-page: 5461
  year: 2001
  ident: 2023080407420420700_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1396856
– volume-title: Molecular Spectra and Molecular Structure, Vol. III: Electronic Spectra and Electronic Structure of Polyatomic Molecules
  year: 1991
  ident: 2023080407420420700_c41
– volume: 17
  start-page: 435
  year: 1998
  ident: 2023080407420420700_c3
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/014423598230036
– volume: 127
  start-page: 034303
  year: 2007
  ident: 2023080407420420700_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2748049
– volume: 81
  start-page: 122
  year: 1984
  ident: 2023080407420420700_c27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447375
– volume: 130
  start-page: 074302
  year: 2009
  ident: 2023080407420420700_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3072104
SSID ssj0001724
Score 2.0955296
Snippet The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the...
The high-resolution single-photon pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X̃(+) (2)E(3/2)←X̃(1)A(1) transition of CH(3)I and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 054308
Title Photoelectron spectroscopic study of the E⊗e Jahn–Teller effect in the presence of a tunable spin–orbit interaction. I. Photoionization dynamics of methyl iodide and rotational fine structure of CH3I+ and CD3I
URI https://www.ncbi.nlm.nih.gov/pubmed/21303121
https://www.proquest.com/docview/856764041
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbtMwGMetsQnBDYJxKidZiElIUbIkduzkcus61mkbk-ik3UVxYmsRU1K16Q2PwAvwODwEb8CT4EOcpDDE4SaqXNep8v2a_vP5OwDwJlZFzETC3ExE3MUkom6Wc-oGERMkwb6IMpXvfHpGji7w8WV0ubHxdRC1tGqYl3-6Ma_kf6wqx6RdVZbsP1i2W1QOyNfSvvIoLSyPf2Xj86u6qW0jG0cnTarilPW8zE3dWBsBMNExDXs7CeXOcXZVuTPlr1-00Rw21nGuU5FybnImm5VJq1rOy8qtF6xsdG2JhcmE8Jyp5-jzK4euyeV0CtPefmk27SUC105ZF2VhtigWdWM9j0JpW1O6Vm1gqJCQIzTdCff1xPEBmg5Fc5--poVzbmscGK9M91DwTu_674-bttdIH5-gUgNWGuXjwShffGz62Oaid-WqQNnBzdqPE5cS027U4zeM2Tt86y8th5vo-n4tBSvSdSV-_SuR2k15NTwUYRqZaqDr5brP3qeHFycn6WxyObsFtkJKVZzA1t7B6cmHTgxIfYhNjof5Wra4FUG73dLrkug3zzla78zug3vt9YZ7hroHYINX2-DO2PYH3Aa3z83lfwi-rXEI1ziEmkNYCygJg5Pvn79wOCAQGgJhWen3LYFqfgZbAmFPIBwSCKce_IlAaAlUCxgCoSEQSrBgTyBUBMKOQDVdEejoaYq_R-DicDIbH7ltsxA3DxGO3UIwLnUHF3HkswKRnEUJy1FAGPdJFsVJUeQ8oCIgORKx8EXBGMYUkSLi2M84egw2q7riTwFMMqWj5aNLwRKMGc1CnPmChqHwqaCIj8Bba680byvpq4Yu16mO6CAoDdLWtCPwups6N-VjbpoErdFTaUO1Y5dVvF4t0zgilGAfByPwxMDQrRIq8RmEwbM_f_g5uNv_fF6ATXlt-UsppRv2qsX1B0HK0Lc
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectron+spectroscopic+study+of+the+E%E2%8A%97e+Jahn-Teller+effect+in+the+presence+of+a+tunable+spin-orbit+interaction.+I.+Photoionization+dynamics+of+methyl+iodide+and+rotational+fine+structure+of+CH3I%2B+and+CD3I&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Gr%C3%BCtter%2C+M&rft.au=Michaud%2C+J+M&rft.au=Merkt%2C+F&rft.date=2011-02-07&rft.issn=1089-7690&rft.eissn=1089-7690&rft.volume=134&rft.issue=5&rft.spage=054308&rft_id=info:doi/10.1063%2F1.3547548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon