Research on Citrus grandis Granulation Determination Based on Hyperspectral Imaging through Deep Learning
Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation det...
Saved in:
Published in | Food analytical methods Vol. 14; no. 2; pp. 280 - 289 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits. |
---|---|
AbstractList | Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits. Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits. |
Author | Wei, Xuan Ye, Dapeng Wu, Shuang Wang, Ping Li, Yan Jie, Dengfei |
Author_xml | – sequence: 1 givenname: Dengfei surname: Jie fullname: Jie, Dengfei organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University – sequence: 2 givenname: Shuang surname: Wu fullname: Wu, Shuang organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University – sequence: 3 givenname: Ping surname: Wang fullname: Wang, Ping organization: College of Horticulture, Fujian Agriculture and Forestry University – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan organization: College of Resources and Environment, Fujian Agriculture and Forestry University – sequence: 5 givenname: Dapeng surname: Ye fullname: Ye, Dapeng organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University – sequence: 6 givenname: Xuan orcidid: 0000-0002-8522-1886 surname: Wei fullname: Wei, Xuan email: xuanweixuan@126.com organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University |
BookMark | eNp9kF9LwzAUxYNMcJt-AZ8KPldzkyZtH3XqNhgIouBbSNrbrmNLa9I-7NubWdE3n-6_8zsXzoxMbGuRkGugt0BpeueBgYSYMhpTyFIeyzMyhZzLOE_lx-S3F3BBZt7vKJU0ATYlzSt61K7YRq2NFk3vBh_VTtuy8dEy1GGv-yacHrFHd2jsOD1oj-WJWB07dL7Dond6H60Pum5sHfVb1w71NkDYRZtgb8P2kpxXeu_x6qfOyfvz09tiFW9eluvF_SYuGE9kbEpNhciyAnjJtcCM5pU00hiURWoYVKygguWJMYkRUotUMl1BVgItsxJFzufkZvTtXPs5oO_Vrh2cDS8VSzJgFFKeBhUbVYVrvXdYqc41B-2OCqg6RarGSFWIVH1HqmSA-Aj5ILY1uj_rf6gvDvt8Rg |
CitedBy_id | crossref_primary_10_1016_j_scienta_2022_111683 crossref_primary_10_34133_2022_9753427 crossref_primary_10_1016_j_jfca_2024_106337 crossref_primary_10_3390_app13084976 crossref_primary_10_3390_foods11203268 crossref_primary_10_1016_j_atech_2023_100365 crossref_primary_10_1590_0034_737x202269030002 crossref_primary_10_1016_j_foodchem_2022_133499 crossref_primary_10_1111_ijfs_16173 crossref_primary_10_3389_fpls_2023_1260625 crossref_primary_10_1016_j_postharvbio_2023_112313 crossref_primary_10_1186_s40538_023_00456_x crossref_primary_10_3389_fpls_2022_868745 crossref_primary_10_1016_j_compag_2023_108577 crossref_primary_10_1016_j_postharvbio_2023_112454 crossref_primary_10_1016_j_compag_2023_107920 crossref_primary_10_1002_jsfa_12024 |
Cites_doi | 10.1145/3065386 10.1016/j.foodchem.2020.126861 10.1016/j.biosystemseng.2015.11.009 10.1016/j.compag.2019.01.013 10.1016/j.scienta.2003.10.010 10.1109/jstars.2019.2910990 10.1016/j.postharvbio.2019.03.009 10.1155/2016/3289801 10.1016/0925-5214(94)00026-O 10.1016/j.jfoodeng.2009.01.014 10.1111/1541-4337.12432 10.1007/s12161-015-0153-3 10.1016/j.foodchem.2017.08.086 10.1016/j.compag.2016.07.016 10.1016/j.compag.2018.04.002 10.1364/AO.45.005294 10.1080/10408398.2011.651542 10.13031/2013.40643 10.1109/5.726791 10.1162/neco.1989.1.4.541 10.5539/jas.v9n11p220 10.1002/nbm.3998 10.1007/s11947-011-0697-1 10.1016/j.foodchem.2013.09.021 10.1109/TPAMI.2016.2577031 10.16182/j.issn1004731x.joss.201807039 10.1016/j.scienta.2006.09.007 10.1016/j.postharvbio.2018.02.013 10.1016/j.jfoodeng.2017.08.009 10.1016/j.postharvbio.2019.111071 10.1080/2150704x.2017.1280200 10.1080/09540091.2019.1650330 10.1002/9780470027318.a1018 10.1002/mrc.5025 10.1002/cem.3122 10.1109/JSTARS.2019.2900705 10.1002/cem.2977 10.1109/JSTARS.2018.2869210 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12161-020-01873-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Diet & Clinical Nutrition |
EISSN | 1936-976X |
EndPage | 289 |
ExternalDocumentID | 10_1007_s12161_020_01873_6 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61705037 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Agricultural (Citrus) Industry Technology System Special Program grantid: CARS-26-01A – fundername: the project of Gaoyuan Agricultural Engineering of Fujian grantid: 712018014 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C 06C 06D 0R~ 0VY 1N0 203 29H 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 875 8TC 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9N PT4 QOR QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z5O Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 ZMTXR ~A9 ~KM AACDK AAHBH AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 SJYHP |
ID | FETCH-LOGICAL-c2346-bda05588c13d3a5e809f6b6bbe6c7b21f2c05294bb4b56a5762af18d10d8de593 |
IEDL.DBID | U2A |
ISSN | 1936-9751 |
IngestDate | Thu Oct 10 17:44:14 EDT 2024 Thu Sep 12 19:42:04 EDT 2024 Sat Dec 16 12:10:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Granulation Convolution neural network Spectrum analyze Internal quality Batch normalization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2346-bda05588c13d3a5e809f6b6bbe6c7b21f2c05294bb4b56a5762af18d10d8de593 |
ORCID | 0000-0002-8522-1886 |
PQID | 2481201737 |
PQPubID | 2043997 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2481201737 crossref_primary_10_1007_s12161_020_01873_6 springer_journals_10_1007_s12161_020_01873_6 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Food analytical methods |
PublicationTitleAbbrev | Food Anal. Methods |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Feng, Sun (CR9) 2012; 52 Sonego, Ben-Arie, Raynal, Pech (CR33) 1995; 5 CR18 Arendse, Fawole, Magwaza, Opara (CR1) 2017; 217 Elmasry, Nakauchi (CR8) 2016; 142 Awasthi, Nauriyal (CR2) 1972; 12 CR34 Viana, Mercante, Felipetto, Kusminski, Bleil (CR38) 2017; 9 Yu, Lu, Wu (CR41) 2018; 141 CR11 CR10 Sharma, Saxena (CR28) 2004; 101 Shi, Zhong, Liu, Liu, Zhang (CR30) 2018; 30 Novikov, Fieremans, Jespersen, Kiselev (CR20) 2019; 32 Chen, Qiao, Lin, Xu, Tang, Cai (CR7) 2019; 157 Theanjumpol, Wongzeewasakun, Muenmanee, Wongsaipun, Krongchai, Changrue, Boonyakiat, Kittiwachana (CR36) 2019; 153 Wang, Wang, Qi, Zhou, Yang, Liao, Wang, Zhu, Chen (CR39) 2014; 145 Lecun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR13) 1989; 1 Chakrawar, Singh, Subbaih (CR5) 1980; 9 Zhang, Li, Zhang, Shen (CR42) 2017; 8 Ritenour, Albrigo, Burns, Miller (CR27) 2004; 117 Zhou, Hang, Liu, Yuan (CR43) 2019; 12 Badaro, Garcia-Martin, Lopez-Barrera, Barbin, Alvarez-Mateos (CR3) 2020; 323 Li, Huang, Tian, Wang, Fan, Zhao (CR15) 2016; 127 Munshi, Singh, Jawanda, Vij (CR19) 1978; 35 Qin, Burks, Zhao, Niphadkar, Ritenour (CR25) 2011; 54 CR4 Qin, Burks, Ritenour, Bonn (CR24) 2009; 93 Sharma, Singh, Saxena (CR29) 2006; 111 CR6 Lecun, Bottou, Bengio, Haffner (CR14) 1998; 86 Li, Li, Zhang (CR16) 2018; 242 Sladojevic, Arsenovic, Anderla, Culibrk, Stefanovic (CR32) 2016; 2016 Singh (CR31) 2001; 58 CR21 Pu, Lin, Sun (CR23) 2019; 18 Sullivan, Twardowski, Zaneveld, Moore, Barnard, Donaghay, Rhoades (CR35) 2006; 45 Picon, Alvarez-Gila, Seitz, Ortiz-Barredo, Echazarra, Johannes (CR22) 2019; 161 Wang, Sun, Yang, Pu, Zhu (CR40) 2015; 9 Tian, Fan, Huang, Wang, Li (CR37) 2019; 161 Ren, He, Girshick, Sun (CR26) 2015; 39 Krizhevsky, Sutskever, Hinton (CR12) 2012; 25 Magwaza, Opara, Nieuwoudt, Cronje, Saeys, Nicolaï (CR17) 2011; 5 S Sladojevic (1873_CR32) 2016; 2016 F Zhou (1873_CR43) 2019; 12 SK Munshi (1873_CR19) 1978; 35 H Zhang (1873_CR42) 2017; 8 R Singh (1873_CR31) 2001; 58 DS Novikov (1873_CR20) 2019; 32 Y Lecun (1873_CR14) 1998; 86 RR Sharma (1873_CR29) 2006; 111 E Arendse (1873_CR1) 2017; 217 P Theanjumpol (1873_CR36) 2019; 153 N-N Wang (1873_CR40) 2015; 9 XY Wang (1873_CR39) 2014; 145 A Picon (1873_CR22) 2019; 161 H Pu (1873_CR23) 2019; 18 1873_CR21 J Qin (1873_CR24) 2009; 93 J Qin (1873_CR25) 2011; 54 AT Badaro (1873_CR3) 2020; 323 1873_CR6 A Krizhevsky (1873_CR12) 2012; 25 1873_CR18 1873_CR4 J Sullivan (1873_CR35) 2006; 45 S Ren (1873_CR26) 2015; 39 G Elmasry (1873_CR8) 2016; 142 X Shi (1873_CR30) 2018; 30 OH Viana (1873_CR38) 2017; 9 M Ritenour (1873_CR27) 2004; 117 LS Magwaza (1873_CR17) 2011; 5 RP Awasthi (1873_CR2) 1972; 12 M Li (1873_CR16) 2018; 242 L Sonego (1873_CR33) 1995; 5 H Chen (1873_CR7) 2019; 157 YZ Feng (1873_CR9) 2012; 52 Y Lecun (1873_CR13) 1989; 1 J Li (1873_CR15) 2016; 127 RR Sharma (1873_CR28) 2004; 101 1873_CR11 X Tian (1873_CR37) 2019; 161 1873_CR10 VR Chakrawar (1873_CR5) 1980; 9 X Yu (1873_CR41) 2018; 141 1873_CR34 |
References_xml | – volume: 58 start-page: 112 year: 2001 end-page: 144 ident: CR31 article-title: 65-year research on citrus granulation publication-title: Ind J Hortic contributor: fullname: Singh – volume: 25 start-page: 84 year: 2012 end-page: 90 ident: CR12 article-title: ImageNet classification with deep convolutional neural networks publication-title: NIPS doi: 10.1145/3065386 contributor: fullname: Hinton – ident: CR18 – volume: 323 start-page: 126861 year: 2020 ident: CR3 article-title: Determination of pectin content in orange peels by near infrared hyperspectral imaging publication-title: Food Chem doi: 10.1016/j.foodchem.2020.126861 contributor: fullname: Alvarez-Mateos – volume: 142 start-page: 53 year: 2016 end-page: 82 ident: CR8 article-title: Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality – a comprehensive review publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2015.11.009 contributor: fullname: Nakauchi – volume: 35 start-page: 85 year: 1978 end-page: 90 ident: CR19 article-title: Studies on granulation in dancy tangerine (Citrus tangerina Tanaka) in relation to various quality attributes [India] publication-title: Indian J Hortic contributor: fullname: Vij – ident: CR4 – volume: 12 start-page: 203 year: 1972 end-page: 211 ident: CR2 article-title: Studies on granulation in sweet orange. II. Differences in moisture, total soluble solids and ascorbic acid of juice vesicles in different stages of granulation publication-title: Punjab Hort J contributor: fullname: Nauriyal – volume: 157 start-page: 410 year: 2019 end-page: 416 ident: CR7 article-title: Study of modeling optimization for hyperspectral imaging quantitative determination of naringin content in pomelo peel publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.01.013 contributor: fullname: Cai – volume: 101 start-page: 235 year: 2004 end-page: 242 ident: CR28 article-title: Rootstocks influence granulation in Kinnow mandarin publication-title: Sci Hortic-Amsterdam doi: 10.1016/j.scienta.2003.10.010 contributor: fullname: Saxena – volume: 12 start-page: 1549 year: 2019 end-page: 1558 ident: CR43 article-title: Pyramid fully convolutional network for hyperspectral and multispectral image fusion publication-title: IEEE J-Stars doi: 10.1109/jstars.2019.2910990 contributor: fullname: Yuan – volume: 153 start-page: 13 year: 2019 end-page: 20 ident: CR36 article-title: Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2019.03.009 contributor: fullname: Kittiwachana – volume: 2016 start-page: 3289801 year: 2016 end-page: 3289811 ident: CR32 article-title: Deep neural networks based recognition of plant diseases by leaf image classification publication-title: Comput Intell Neurosci doi: 10.1155/2016/3289801 contributor: fullname: Stefanovic – volume: 5 start-page: 187 year: 1995 end-page: 198 ident: CR33 article-title: Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, X-ray computed tomography and pectin composition publication-title: Postharvest Biol Technol doi: 10.1016/0925-5214(94)00026-O contributor: fullname: Pech – ident: CR10 – volume: 93 start-page: 183 year: 2009 end-page: 191 ident: CR24 article-title: Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2009.01.014 contributor: fullname: Bonn – volume: 117 start-page: 358 year: 2004 end-page: 361 ident: CR27 article-title: Granulation in Florida citrus publication-title: Proc Florida State Hortic Soc contributor: fullname: Miller – volume: 18 start-page: 853 year: 2019 end-page: 866 ident: CR23 article-title: Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: a review publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12432 contributor: fullname: Sun – ident: CR6 – volume: 9 start-page: 178 year: 2015 end-page: 191 ident: CR40 article-title: Recent advances in the application of hyperspectral imaging for evaluating fruit quality publication-title: Food Anal Method doi: 10.1007/s12161-015-0153-3 contributor: fullname: Zhu – volume: 242 start-page: 16 year: 2018 end-page: 21 ident: CR16 article-title: Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI publication-title: Food Chem doi: 10.1016/j.foodchem.2017.08.086 contributor: fullname: Zhang – volume: 127 start-page: 582 year: 2016 end-page: 592 ident: CR15 article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.07.016 contributor: fullname: Zhao – volume: 161 start-page: 280 year: 2019 end-page: 290 ident: CR22 article-title: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.002 contributor: fullname: Johannes – volume: 45 start-page: 5294 year: 2006 end-page: 5309 ident: CR35 article-title: Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range publication-title: Appl Opt doi: 10.1364/AO.45.005294 contributor: fullname: Rhoades – volume: 52 start-page: 1039 year: 2012 end-page: 1058 ident: CR9 article-title: Application of hyperspectral imaging in food safety inspection and control: a review publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2011.651542 contributor: fullname: Sun – volume: 54 start-page: 2331 year: 2011 end-page: 2341 ident: CR25 article-title: Multispectral detection of citrus canker using hyperspectral band selection publication-title: T ASABE doi: 10.13031/2013.40643 contributor: fullname: Ritenour – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR14 article-title: Gradient-based learning applied to document recognition publication-title: Proc IEEE doi: 10.1109/5.726791 contributor: fullname: Haffner – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: CR13 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 contributor: fullname: Jackel – volume: 9 start-page: 220 year: 2017 ident: CR38 article-title: Characterisation of the spectral-temporal pattern of the crambe crop using hyperspectral sensors publication-title: J Agric Sci-Cambridge doi: 10.5539/jas.v9n11p220 contributor: fullname: Bleil – ident: CR21 – volume: 32 start-page: e3998 year: 2019 ident: CR20 article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation publication-title: NMR Biomed doi: 10.1002/nbm.3998 contributor: fullname: Kiselev – volume: 5 start-page: 425 year: 2011 end-page: 444 ident: CR17 article-title: NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review publication-title: Food Bioprocess Technol doi: 10.1007/s11947-011-0697-1 contributor: fullname: Nicolaï – volume: 145 start-page: 984 year: 2014 end-page: 990 ident: CR39 article-title: Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs publication-title: Food Chem doi: 10.1016/j.foodchem.2013.09.021 contributor: fullname: Chen – volume: 9 start-page: 17 year: 1980 end-page: 20 ident: CR5 article-title: Studies on citrus granulation III Sugar transport and fruit granulation in citrus publication-title: Haryana J Hortic Sci contributor: fullname: Subbaih – ident: CR11 – volume: 39 start-page: 1137 year: 2015 end-page: 1149 ident: CR26 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2016.2577031 contributor: fullname: Sun – volume: 30 start-page: 2744 year: 2018 end-page: 2752 ident: CR30 article-title: Deep learning method for hyperspectral remote sensing images with small samples publication-title: Xitong Fangzhen Xuebao/J Syst Simul doi: 10.16182/j.issn1004731x.joss.201807039 contributor: fullname: Zhang – volume: 111 start-page: 91 year: 2006 end-page: 96 ident: CR29 article-title: Characteristics of citrus fruits in relation to granulation publication-title: Sci Hortic-Amsterdam doi: 10.1016/j.scienta.2006.09.007 contributor: fullname: Saxena – ident: CR34 – volume: 141 start-page: 39 year: 2018 end-page: 49 ident: CR41 article-title: Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2018.02.013 contributor: fullname: Wu – volume: 217 start-page: 11 year: 2017 end-page: 23 ident: CR1 article-title: Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2017.08.009 contributor: fullname: Opara – volume: 161 start-page: 111071 year: 2019 ident: CR37 article-title: Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2019.111071 contributor: fullname: Li – volume: 8 start-page: 438 year: 2017 end-page: 447 ident: CR42 article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network publication-title: Remote Sens Lett doi: 10.1080/2150704x.2017.1280200 contributor: fullname: Shen – volume: 153 start-page: 13 year: 2019 ident: 1873_CR36 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2019.03.009 contributor: fullname: P Theanjumpol – volume: 25 start-page: 84 year: 2012 ident: 1873_CR12 publication-title: NIPS doi: 10.1145/3065386 contributor: fullname: A Krizhevsky – volume: 45 start-page: 5294 year: 2006 ident: 1873_CR35 publication-title: Appl Opt doi: 10.1364/AO.45.005294 contributor: fullname: J Sullivan – volume: 5 start-page: 425 year: 2011 ident: 1873_CR17 publication-title: Food Bioprocess Technol doi: 10.1007/s11947-011-0697-1 contributor: fullname: LS Magwaza – volume: 5 start-page: 187 year: 1995 ident: 1873_CR33 publication-title: Postharvest Biol Technol doi: 10.1016/0925-5214(94)00026-O contributor: fullname: L Sonego – ident: 1873_CR34 doi: 10.1080/09540091.2019.1650330 – volume: 9 start-page: 17 year: 1980 ident: 1873_CR5 publication-title: Haryana J Hortic Sci contributor: fullname: VR Chakrawar – volume: 145 start-page: 984 year: 2014 ident: 1873_CR39 publication-title: Food Chem doi: 10.1016/j.foodchem.2013.09.021 contributor: fullname: XY Wang – ident: 1873_CR21 doi: 10.1002/9780470027318.a1018 – volume: 32 start-page: e3998 year: 2019 ident: 1873_CR20 publication-title: NMR Biomed doi: 10.1002/nbm.3998 contributor: fullname: DS Novikov – ident: 1873_CR4 doi: 10.1002/mrc.5025 – volume: 9 start-page: 178 year: 2015 ident: 1873_CR40 publication-title: Food Anal Method doi: 10.1007/s12161-015-0153-3 contributor: fullname: N-N Wang – volume: 9 start-page: 220 year: 2017 ident: 1873_CR38 publication-title: J Agric Sci-Cambridge doi: 10.5539/jas.v9n11p220 contributor: fullname: OH Viana – volume: 142 start-page: 53 year: 2016 ident: 1873_CR8 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2015.11.009 contributor: fullname: G Elmasry – volume: 161 start-page: 280 year: 2019 ident: 1873_CR22 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.04.002 contributor: fullname: A Picon – volume: 12 start-page: 1549 year: 2019 ident: 1873_CR43 publication-title: IEEE J-Stars doi: 10.1109/jstars.2019.2910990 contributor: fullname: F Zhou – ident: 1873_CR6 doi: 10.1002/cem.3122 – volume: 1 start-page: 541 year: 1989 ident: 1873_CR13 publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 contributor: fullname: Y Lecun – volume: 2016 start-page: 3289801 year: 2016 ident: 1873_CR32 publication-title: Comput Intell Neurosci doi: 10.1155/2016/3289801 contributor: fullname: S Sladojevic – volume: 30 start-page: 2744 year: 2018 ident: 1873_CR30 publication-title: Xitong Fangzhen Xuebao/J Syst Simul doi: 10.16182/j.issn1004731x.joss.201807039 contributor: fullname: X Shi – volume: 157 start-page: 410 year: 2019 ident: 1873_CR7 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.01.013 contributor: fullname: H Chen – volume: 127 start-page: 582 year: 2016 ident: 1873_CR15 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2016.07.016 contributor: fullname: J Li – volume: 8 start-page: 438 year: 2017 ident: 1873_CR42 publication-title: Remote Sens Lett doi: 10.1080/2150704x.2017.1280200 contributor: fullname: H Zhang – ident: 1873_CR10 doi: 10.1109/JSTARS.2019.2900705 – volume: 54 start-page: 2331 year: 2011 ident: 1873_CR25 publication-title: T ASABE doi: 10.13031/2013.40643 contributor: fullname: J Qin – volume: 111 start-page: 91 year: 2006 ident: 1873_CR29 publication-title: Sci Hortic-Amsterdam doi: 10.1016/j.scienta.2006.09.007 contributor: fullname: RR Sharma – volume: 35 start-page: 85 year: 1978 ident: 1873_CR19 publication-title: Indian J Hortic contributor: fullname: SK Munshi – volume: 52 start-page: 1039 year: 2012 ident: 1873_CR9 publication-title: Crit Rev Food Sci Nutr doi: 10.1080/10408398.2011.651542 contributor: fullname: YZ Feng – volume: 161 start-page: 111071 year: 2019 ident: 1873_CR37 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2019.111071 contributor: fullname: X Tian – volume: 323 start-page: 126861 year: 2020 ident: 1873_CR3 publication-title: Food Chem doi: 10.1016/j.foodchem.2020.126861 contributor: fullname: AT Badaro – ident: 1873_CR18 doi: 10.1002/cem.2977 – volume: 86 start-page: 2278 year: 1998 ident: 1873_CR14 publication-title: Proc IEEE doi: 10.1109/5.726791 contributor: fullname: Y Lecun – volume: 58 start-page: 112 year: 2001 ident: 1873_CR31 publication-title: Ind J Hortic contributor: fullname: R Singh – volume: 18 start-page: 853 year: 2019 ident: 1873_CR23 publication-title: Compr Rev Food Sci Food Saf doi: 10.1111/1541-4337.12432 contributor: fullname: H Pu – ident: 1873_CR11 doi: 10.1109/JSTARS.2018.2869210 – volume: 217 start-page: 11 year: 2017 ident: 1873_CR1 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2017.08.009 contributor: fullname: E Arendse – volume: 12 start-page: 203 year: 1972 ident: 1873_CR2 publication-title: Punjab Hort J contributor: fullname: RP Awasthi – volume: 242 start-page: 16 year: 2018 ident: 1873_CR16 publication-title: Food Chem doi: 10.1016/j.foodchem.2017.08.086 contributor: fullname: M Li – volume: 117 start-page: 358 year: 2004 ident: 1873_CR27 publication-title: Proc Florida State Hortic Soc contributor: fullname: M Ritenour – volume: 141 start-page: 39 year: 2018 ident: 1873_CR41 publication-title: Postharvest Biol Technol doi: 10.1016/j.postharvbio.2018.02.013 contributor: fullname: X Yu – volume: 101 start-page: 235 year: 2004 ident: 1873_CR28 publication-title: Sci Hortic-Amsterdam doi: 10.1016/j.scienta.2003.10.010 contributor: fullname: RR Sharma – volume: 93 start-page: 183 year: 2009 ident: 1873_CR24 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2009.01.014 contributor: fullname: J Qin – volume: 39 start-page: 1137 year: 2015 ident: 1873_CR26 publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2016.2577031 contributor: fullname: S Ren |
SSID | ssj0060412 |
Score | 2.38155 |
Snippet | Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 280 |
SubjectTerms | Accuracy Analytical Chemistry Artificial neural networks Back propagation networks Chemistry Chemistry and Materials Science Chemistry/Food Science Citrus fruits Convolution Deep learning Food Science Fruits Functional groups Granulation Hyperspectral imaging Microbiology Model accuracy Neural networks Nondestructive testing Support vector machines |
Title | Research on Citrus grandis Granulation Determination Based on Hyperspectral Imaging through Deep Learning |
URI | https://link.springer.com/article/10.1007/s12161-020-01873-6 https://www.proquest.com/docview/2481201737 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BO8CCoIAolMoDYgFLjWM7zlj6CYhOVCpTZCd2VQla1Pb_C9uNFYFgYIqixDf4Jb473b13ADcsJoYLSXCeEImppAZLojQ2uSp0kfCUefrYy4SPp_RpxmYVj9s3u4eKpD-oK64bscEJdtmOmyMXY74PdRs8UNfHNSXdcPxyJyC1KyVznCYsKpkyv9v47o2qEPNHVdQ7m-ExHJVRIuruYD2BPb1swEEvDGdrQLO_0Ft0i0pZz3c0Car6p7AI3XRotUQ9z6pA87Wjr2zQyF7LgV2oHzph_N2DdWeFWzG2memOgLm2dh8__BgjVM7zsYv0JypFWednMB0OXntjXE5UwDmJKceqkB3GhMijuIgl06KTGq64UprniSKRIbmr_FGlqGJc2lyESBOJIuoUotAsjc-htlwt9QUgLjrUCG5iQwXNhUkTpzyjdMKlE7lXTbgLO5t97oQzskoi2eGQWRwyj0PGm9AKm5-VP9Ems9hGNj5J4qQJ9wGQ6vHf1i7_9_oVHBLXqeJ7sVtQs7joaxtqbFUb6t3R2_Og7T-xLzC0y_4 |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWBBPEV5ekAsYClxbMcZS3kUaDtRiS2yExtVgrRq-_-F7dqqQDAwRVHsG_w5vrPuvu8ALllGDBeS4ConElNJDZZEaWwqVes65wXz9LHBkPdG9PmNvQVS2DxWu8eUpD-pV2Q3YqMT7K47rpFchvk6bDh9dbevR6QTz1_uFKSWuWSOi5ylgSrzu43v7mgVY_5Ii3pv87AD2yFMRJ0lrruwpps92OzG7mx70L4b6wW6QkHX8wMNo6z-PoxjOR2aNKjraRXofeb4K3P0aJ-hYxe6i6Uw_u3W-rPazejZq-mSgTmzdp8-fR8jFBr62El6ioIq6_sBjB7uX7s9HFoq4IpklGNVy4QxIao0qzPJtEgKwxVXSvMqVyQ1pHKpP6oUVYxLexkh0qSiTpNa1JoV2SG0mkmjjwBxkVAjuMkMFbQSpsid9IzSOZdO5V614TqubDldKmeUK41kh0NpcSg9DiVvw2lc_DL8RfOSWIM2QMmzvA03EZDV57-tHf9v-AVs9l4H_bL_NHw5gS3iylZ8YfYptCxG-szGHQt17rfZF6-vzcU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRdrlAiwLorzWB8Rl19A4tuMcoaWUV7WHRYJTZMc2QkCooFz49diJrQKCA-IURYlHyYyTmdHM9w3AJkuJ5UISXGZEYiqpxZIog22ptNEZz1kNHzsd8sEZPTpn5y9Q_HW3eyxJNpgGz9JUjXdG2u5MgG_ERSrYpz5-qFyK-TeYpokLF1owvXtwcbwf_8bc80k1lWWO84wlATjzvpTXzmkScb4pkta-pz8HMj5103Jyvf04Vtvl0xtCx6-81jzMhsAU7TY76SdMmWoBfnTjPLgFaPeuzBhtocAkeoOGkcj_F1zFBj50V6FuDeRAl_ceMfOADtwxzAhDvdh8U5_tOQ-q_YqBS4YbzOe9k3t4W09OQmGEkFtkRijwwF4uwll__393gMMQB1ySlHKstOwwJkSZpDqVzIhObrniShleZooklpS-2EiVoopx6dIfIm0idNLRQhuWp0vQqu4qswyIiw61gtvUUkFLYfPMk90ok3HpefVVG_5E6xWjhqujmLAye9UWTrVFrdqCt2EtGrgI3-1DQZxAFxJladaGv9Fek8sfS1v53O2_4fu_Xr84ORwer8IM8X0ydSf4GrScicy6C3TGaiPs5WeIGfOX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Citrus+grandis+Granulation+Determination+Based+on+Hyperspectral+Imaging+through+Deep+Learning&rft.jtitle=Food+analytical+methods&rft.au=Dengfei%2C+Jie&rft.au=Wu%2C+Shuang&rft.au=Wang%2C+Ping&rft.au=Li%2C+Yan&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-9751&rft.eissn=1936-976X&rft.volume=14&rft.issue=2&rft.spage=280&rft.epage=289&rft_id=info:doi/10.1007%2Fs12161-020-01873-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-9751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-9751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-9751&client=summon |