Research on Citrus grandis Granulation Determination Based on Hyperspectral Imaging through Deep Learning

Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation det...

Full description

Saved in:
Bibliographic Details
Published inFood analytical methods Vol. 14; no. 2; pp. 280 - 289
Main Authors Jie, Dengfei, Wu, Shuang, Wang, Ping, Li, Yan, Ye, Dapeng, Wei, Xuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits.
AbstractList Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits.
Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently, there is still a lack of rapid and nondestructive methods to detect citrus granulation. This study proposes a nondestructive granulation detecting method based on deep learning. Different models were established with the input of preprocessed transmission spectra obtained by hyperspectral imaging. Conventional convolution neural network (CNN) got the best accuracy at 88.02% for training, compared with the least-square support vector machine (LS-SVM) and back-propagation neural network (BP-NN). After adding the batch-normalization layer to the CNN, the experimental results show that the detection model obtained a 100% accuracy in train set and 97.9% in validation set, respectively. And then, through analyzing the well-trained model layer by layer, bands of 660.2–721.1 nm, 708.5–750 nm and 806.5–847 nm were the spectra greatly related to granulation. The model rebuilt with these feature bands obtained 90.1% and 85.4% accuracy in train set and validation set, respectively. This way, effective wavelength selection can find bands highly correlated with granulation.Combined with some research on functional group, it is possible that inference to internal matter changes in granulation process, which may provide some hints to explore the reason of granulation. It is also meaningful to develop granulation-detecting equipment for citrus fruits.
Author Wei, Xuan
Ye, Dapeng
Wu, Shuang
Wang, Ping
Li, Yan
Jie, Dengfei
Author_xml – sequence: 1
  givenname: Dengfei
  surname: Jie
  fullname: Jie, Dengfei
  organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University
– sequence: 2
  givenname: Shuang
  surname: Wu
  fullname: Wu, Shuang
  organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University
– sequence: 3
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  organization: College of Horticulture, Fujian Agriculture and Forestry University
– sequence: 4
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: College of Resources and Environment, Fujian Agriculture and Forestry University
– sequence: 5
  givenname: Dapeng
  surname: Ye
  fullname: Ye, Dapeng
  organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University
– sequence: 6
  givenname: Xuan
  orcidid: 0000-0002-8522-1886
  surname: Wei
  fullname: Wei, Xuan
  email: xuanweixuan@126.com
  organization: College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Engineering Research Center for Modern Agricultural Equipment, Fujian Agriculture and Forestry University
BookMark eNp9kF9LwzAUxYNMcJt-AZ8KPldzkyZtH3XqNhgIouBbSNrbrmNLa9I-7NubWdE3n-6_8zsXzoxMbGuRkGugt0BpeueBgYSYMhpTyFIeyzMyhZzLOE_lx-S3F3BBZt7vKJU0ATYlzSt61K7YRq2NFk3vBh_VTtuy8dEy1GGv-yacHrFHd2jsOD1oj-WJWB07dL7Dond6H60Pum5sHfVb1w71NkDYRZtgb8P2kpxXeu_x6qfOyfvz09tiFW9eluvF_SYuGE9kbEpNhciyAnjJtcCM5pU00hiURWoYVKygguWJMYkRUotUMl1BVgItsxJFzufkZvTtXPs5oO_Vrh2cDS8VSzJgFFKeBhUbVYVrvXdYqc41B-2OCqg6RarGSFWIVH1HqmSA-Aj5ILY1uj_rf6gvDvt8Rg
CitedBy_id crossref_primary_10_1016_j_scienta_2022_111683
crossref_primary_10_34133_2022_9753427
crossref_primary_10_1016_j_jfca_2024_106337
crossref_primary_10_3390_app13084976
crossref_primary_10_3390_foods11203268
crossref_primary_10_1016_j_atech_2023_100365
crossref_primary_10_1590_0034_737x202269030002
crossref_primary_10_1016_j_foodchem_2022_133499
crossref_primary_10_1111_ijfs_16173
crossref_primary_10_3389_fpls_2023_1260625
crossref_primary_10_1016_j_postharvbio_2023_112313
crossref_primary_10_1186_s40538_023_00456_x
crossref_primary_10_3389_fpls_2022_868745
crossref_primary_10_1016_j_compag_2023_108577
crossref_primary_10_1016_j_postharvbio_2023_112454
crossref_primary_10_1016_j_compag_2023_107920
crossref_primary_10_1002_jsfa_12024
Cites_doi 10.1145/3065386
10.1016/j.foodchem.2020.126861
10.1016/j.biosystemseng.2015.11.009
10.1016/j.compag.2019.01.013
10.1016/j.scienta.2003.10.010
10.1109/jstars.2019.2910990
10.1016/j.postharvbio.2019.03.009
10.1155/2016/3289801
10.1016/0925-5214(94)00026-O
10.1016/j.jfoodeng.2009.01.014
10.1111/1541-4337.12432
10.1007/s12161-015-0153-3
10.1016/j.foodchem.2017.08.086
10.1016/j.compag.2016.07.016
10.1016/j.compag.2018.04.002
10.1364/AO.45.005294
10.1080/10408398.2011.651542
10.13031/2013.40643
10.1109/5.726791
10.1162/neco.1989.1.4.541
10.5539/jas.v9n11p220
10.1002/nbm.3998
10.1007/s11947-011-0697-1
10.1016/j.foodchem.2013.09.021
10.1109/TPAMI.2016.2577031
10.16182/j.issn1004731x.joss.201807039
10.1016/j.scienta.2006.09.007
10.1016/j.postharvbio.2018.02.013
10.1016/j.jfoodeng.2017.08.009
10.1016/j.postharvbio.2019.111071
10.1080/2150704x.2017.1280200
10.1080/09540091.2019.1650330
10.1002/9780470027318.a1018
10.1002/mrc.5025
10.1002/cem.3122
10.1109/JSTARS.2019.2900705
10.1002/cem.2977
10.1109/JSTARS.2018.2869210
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s12161-020-01873-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Diet & Clinical Nutrition
EISSN 1936-976X
EndPage 289
ExternalDocumentID 10_1007_s12161_020_01873_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61705037
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Agricultural (Citrus) Industry Technology System Special Program
  grantid: CARS-26-01A
– fundername: the project of Gaoyuan Agricultural Engineering of Fujian
  grantid: 712018014
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
06C
06D
0R~
0VY
1N0
203
29H
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9N
PT4
QOR
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z5O
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
ZMTXR
~A9
~KM
AACDK
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
SJYHP
ID FETCH-LOGICAL-c2346-bda05588c13d3a5e809f6b6bbe6c7b21f2c05294bb4b56a5762af18d10d8de593
IEDL.DBID U2A
ISSN 1936-9751
IngestDate Thu Oct 10 17:44:14 EDT 2024
Thu Sep 12 19:42:04 EDT 2024
Sat Dec 16 12:10:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Granulation
Convolution neural network
Spectrum analyze
Internal quality
Batch normalization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2346-bda05588c13d3a5e809f6b6bbe6c7b21f2c05294bb4b56a5762af18d10d8de593
ORCID 0000-0002-8522-1886
PQID 2481201737
PQPubID 2043997
PageCount 10
ParticipantIDs proquest_journals_2481201737
crossref_primary_10_1007_s12161_020_01873_6
springer_journals_10_1007_s12161_020_01873_6
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Food analytical methods
PublicationTitleAbbrev Food Anal. Methods
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Feng, Sun (CR9) 2012; 52
Sonego, Ben-Arie, Raynal, Pech (CR33) 1995; 5
CR18
Arendse, Fawole, Magwaza, Opara (CR1) 2017; 217
Elmasry, Nakauchi (CR8) 2016; 142
Awasthi, Nauriyal (CR2) 1972; 12
CR34
Viana, Mercante, Felipetto, Kusminski, Bleil (CR38) 2017; 9
Yu, Lu, Wu (CR41) 2018; 141
CR11
CR10
Sharma, Saxena (CR28) 2004; 101
Shi, Zhong, Liu, Liu, Zhang (CR30) 2018; 30
Novikov, Fieremans, Jespersen, Kiselev (CR20) 2019; 32
Chen, Qiao, Lin, Xu, Tang, Cai (CR7) 2019; 157
Theanjumpol, Wongzeewasakun, Muenmanee, Wongsaipun, Krongchai, Changrue, Boonyakiat, Kittiwachana (CR36) 2019; 153
Wang, Wang, Qi, Zhou, Yang, Liao, Wang, Zhu, Chen (CR39) 2014; 145
Lecun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (CR13) 1989; 1
Chakrawar, Singh, Subbaih (CR5) 1980; 9
Zhang, Li, Zhang, Shen (CR42) 2017; 8
Ritenour, Albrigo, Burns, Miller (CR27) 2004; 117
Zhou, Hang, Liu, Yuan (CR43) 2019; 12
Badaro, Garcia-Martin, Lopez-Barrera, Barbin, Alvarez-Mateos (CR3) 2020; 323
Li, Huang, Tian, Wang, Fan, Zhao (CR15) 2016; 127
Munshi, Singh, Jawanda, Vij (CR19) 1978; 35
Qin, Burks, Zhao, Niphadkar, Ritenour (CR25) 2011; 54
CR4
Qin, Burks, Ritenour, Bonn (CR24) 2009; 93
Sharma, Singh, Saxena (CR29) 2006; 111
CR6
Lecun, Bottou, Bengio, Haffner (CR14) 1998; 86
Li, Li, Zhang (CR16) 2018; 242
Sladojevic, Arsenovic, Anderla, Culibrk, Stefanovic (CR32) 2016; 2016
Singh (CR31) 2001; 58
CR21
Pu, Lin, Sun (CR23) 2019; 18
Sullivan, Twardowski, Zaneveld, Moore, Barnard, Donaghay, Rhoades (CR35) 2006; 45
Picon, Alvarez-Gila, Seitz, Ortiz-Barredo, Echazarra, Johannes (CR22) 2019; 161
Wang, Sun, Yang, Pu, Zhu (CR40) 2015; 9
Tian, Fan, Huang, Wang, Li (CR37) 2019; 161
Ren, He, Girshick, Sun (CR26) 2015; 39
Krizhevsky, Sutskever, Hinton (CR12) 2012; 25
Magwaza, Opara, Nieuwoudt, Cronje, Saeys, Nicolaï (CR17) 2011; 5
S Sladojevic (1873_CR32) 2016; 2016
F Zhou (1873_CR43) 2019; 12
SK Munshi (1873_CR19) 1978; 35
H Zhang (1873_CR42) 2017; 8
R Singh (1873_CR31) 2001; 58
DS Novikov (1873_CR20) 2019; 32
Y Lecun (1873_CR14) 1998; 86
RR Sharma (1873_CR29) 2006; 111
E Arendse (1873_CR1) 2017; 217
P Theanjumpol (1873_CR36) 2019; 153
N-N Wang (1873_CR40) 2015; 9
XY Wang (1873_CR39) 2014; 145
A Picon (1873_CR22) 2019; 161
H Pu (1873_CR23) 2019; 18
1873_CR21
J Qin (1873_CR24) 2009; 93
J Qin (1873_CR25) 2011; 54
AT Badaro (1873_CR3) 2020; 323
1873_CR6
A Krizhevsky (1873_CR12) 2012; 25
1873_CR18
1873_CR4
J Sullivan (1873_CR35) 2006; 45
S Ren (1873_CR26) 2015; 39
G Elmasry (1873_CR8) 2016; 142
X Shi (1873_CR30) 2018; 30
OH Viana (1873_CR38) 2017; 9
M Ritenour (1873_CR27) 2004; 117
LS Magwaza (1873_CR17) 2011; 5
RP Awasthi (1873_CR2) 1972; 12
M Li (1873_CR16) 2018; 242
L Sonego (1873_CR33) 1995; 5
H Chen (1873_CR7) 2019; 157
YZ Feng (1873_CR9) 2012; 52
Y Lecun (1873_CR13) 1989; 1
J Li (1873_CR15) 2016; 127
RR Sharma (1873_CR28) 2004; 101
1873_CR11
X Tian (1873_CR37) 2019; 161
1873_CR10
VR Chakrawar (1873_CR5) 1980; 9
X Yu (1873_CR41) 2018; 141
1873_CR34
References_xml – volume: 58
  start-page: 112
  year: 2001
  end-page: 144
  ident: CR31
  article-title: 65-year research on citrus granulation
  publication-title: Ind J Hortic
  contributor:
    fullname: Singh
– volume: 25
  start-page: 84
  year: 2012
  end-page: 90
  ident: CR12
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: NIPS
  doi: 10.1145/3065386
  contributor:
    fullname: Hinton
– ident: CR18
– volume: 323
  start-page: 126861
  year: 2020
  ident: CR3
  article-title: Determination of pectin content in orange peels by near infrared hyperspectral imaging
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.126861
  contributor:
    fullname: Alvarez-Mateos
– volume: 142
  start-page: 53
  year: 2016
  end-page: 82
  ident: CR8
  article-title: Image analysis operations applied to hyperspectral images for non-invasive sensing of food quality – a comprehensive review
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2015.11.009
  contributor:
    fullname: Nakauchi
– volume: 35
  start-page: 85
  year: 1978
  end-page: 90
  ident: CR19
  article-title: Studies on granulation in dancy tangerine (Citrus tangerina Tanaka) in relation to various quality attributes [India]
  publication-title: Indian J Hortic
  contributor:
    fullname: Vij
– ident: CR4
– volume: 12
  start-page: 203
  year: 1972
  end-page: 211
  ident: CR2
  article-title: Studies on granulation in sweet orange. II. Differences in moisture, total soluble solids and ascorbic acid of juice vesicles in different stages of granulation
  publication-title: Punjab Hort J
  contributor:
    fullname: Nauriyal
– volume: 157
  start-page: 410
  year: 2019
  end-page: 416
  ident: CR7
  article-title: Study of modeling optimization for hyperspectral imaging quantitative determination of naringin content in pomelo peel
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.01.013
  contributor:
    fullname: Cai
– volume: 101
  start-page: 235
  year: 2004
  end-page: 242
  ident: CR28
  article-title: Rootstocks influence granulation in Kinnow mandarin
  publication-title: Sci Hortic-Amsterdam
  doi: 10.1016/j.scienta.2003.10.010
  contributor:
    fullname: Saxena
– volume: 12
  start-page: 1549
  year: 2019
  end-page: 1558
  ident: CR43
  article-title: Pyramid fully convolutional network for hyperspectral and multispectral image fusion
  publication-title: IEEE J-Stars
  doi: 10.1109/jstars.2019.2910990
  contributor:
    fullname: Yuan
– volume: 153
  start-page: 13
  year: 2019
  end-page: 20
  ident: CR36
  article-title: Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2019.03.009
  contributor:
    fullname: Kittiwachana
– volume: 2016
  start-page: 3289801
  year: 2016
  end-page: 3289811
  ident: CR32
  article-title: Deep neural networks based recognition of plant diseases by leaf image classification
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/3289801
  contributor:
    fullname: Stefanovic
– volume: 5
  start-page: 187
  year: 1995
  end-page: 198
  ident: CR33
  article-title: Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, X-ray computed tomography and pectin composition
  publication-title: Postharvest Biol Technol
  doi: 10.1016/0925-5214(94)00026-O
  contributor:
    fullname: Pech
– ident: CR10
– volume: 93
  start-page: 183
  year: 2009
  end-page: 191
  ident: CR24
  article-title: Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2009.01.014
  contributor:
    fullname: Bonn
– volume: 117
  start-page: 358
  year: 2004
  end-page: 361
  ident: CR27
  article-title: Granulation in Florida citrus
  publication-title: Proc Florida State Hortic Soc
  contributor:
    fullname: Miller
– volume: 18
  start-page: 853
  year: 2019
  end-page: 866
  ident: CR23
  article-title: Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: a review
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12432
  contributor:
    fullname: Sun
– ident: CR6
– volume: 9
  start-page: 178
  year: 2015
  end-page: 191
  ident: CR40
  article-title: Recent advances in the application of hyperspectral imaging for evaluating fruit quality
  publication-title: Food Anal Method
  doi: 10.1007/s12161-015-0153-3
  contributor:
    fullname: Zhu
– volume: 242
  start-page: 16
  year: 2018
  end-page: 21
  ident: CR16
  article-title: Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2017.08.086
  contributor:
    fullname: Zhang
– volume: 127
  start-page: 582
  year: 2016
  end-page: 592
  ident: CR15
  article-title: Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.07.016
  contributor:
    fullname: Zhao
– volume: 161
  start-page: 280
  year: 2019
  end-page: 290
  ident: CR22
  article-title: Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.002
  contributor:
    fullname: Johannes
– volume: 45
  start-page: 5294
  year: 2006
  end-page: 5309
  ident: CR35
  article-title: Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range
  publication-title: Appl Opt
  doi: 10.1364/AO.45.005294
  contributor:
    fullname: Rhoades
– volume: 52
  start-page: 1039
  year: 2012
  end-page: 1058
  ident: CR9
  article-title: Application of hyperspectral imaging in food safety inspection and control: a review
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2011.651542
  contributor:
    fullname: Sun
– volume: 54
  start-page: 2331
  year: 2011
  end-page: 2341
  ident: CR25
  article-title: Multispectral detection of citrus canker using hyperspectral band selection
  publication-title: T ASABE
  doi: 10.13031/2013.40643
  contributor:
    fullname: Ritenour
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR14
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: Haffner
– volume: 1
  start-page: 541
  year: 1989
  end-page: 551
  ident: CR13
  article-title: Backpropagation applied to handwritten zip code recognition
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
  contributor:
    fullname: Jackel
– volume: 9
  start-page: 220
  year: 2017
  ident: CR38
  article-title: Characterisation of the spectral-temporal pattern of the crambe crop using hyperspectral sensors
  publication-title: J Agric Sci-Cambridge
  doi: 10.5539/jas.v9n11p220
  contributor:
    fullname: Bleil
– ident: CR21
– volume: 32
  start-page: e3998
  year: 2019
  ident: CR20
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3998
  contributor:
    fullname: Kiselev
– volume: 5
  start-page: 425
  year: 2011
  end-page: 444
  ident: CR17
  article-title: NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review
  publication-title: Food Bioprocess Technol
  doi: 10.1007/s11947-011-0697-1
  contributor:
    fullname: Nicolaï
– volume: 145
  start-page: 984
  year: 2014
  end-page: 990
  ident: CR39
  article-title: Effects of granulation on organic acid metabolism and its relation to mineral elements in Citrus grandis juice sacs
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2013.09.021
  contributor:
    fullname: Chen
– volume: 9
  start-page: 17
  year: 1980
  end-page: 20
  ident: CR5
  article-title: Studies on citrus granulation III Sugar transport and fruit granulation in citrus
  publication-title: Haryana J Hortic Sci
  contributor:
    fullname: Subbaih
– ident: CR11
– volume: 39
  start-page: 1137
  year: 2015
  end-page: 1149
  ident: CR26
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE T Pattern Anal
  doi: 10.1109/TPAMI.2016.2577031
  contributor:
    fullname: Sun
– volume: 30
  start-page: 2744
  year: 2018
  end-page: 2752
  ident: CR30
  article-title: Deep learning method for hyperspectral remote sensing images with small samples
  publication-title: Xitong Fangzhen Xuebao/J Syst Simul
  doi: 10.16182/j.issn1004731x.joss.201807039
  contributor:
    fullname: Zhang
– volume: 111
  start-page: 91
  year: 2006
  end-page: 96
  ident: CR29
  article-title: Characteristics of citrus fruits in relation to granulation
  publication-title: Sci Hortic-Amsterdam
  doi: 10.1016/j.scienta.2006.09.007
  contributor:
    fullname: Saxena
– ident: CR34
– volume: 141
  start-page: 39
  year: 2018
  end-page: 49
  ident: CR41
  article-title: Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2018.02.013
  contributor:
    fullname: Wu
– volume: 217
  start-page: 11
  year: 2017
  end-page: 23
  ident: CR1
  article-title: Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2017.08.009
  contributor:
    fullname: Opara
– volume: 161
  start-page: 111071
  year: 2019
  ident: CR37
  article-title: Detection of early decay on citrus using hyperspectral transmittance imaging technology coupled with principal component analysis and improved watershed segmentation algorithms
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2019.111071
  contributor:
    fullname: Li
– volume: 8
  start-page: 438
  year: 2017
  end-page: 447
  ident: CR42
  article-title: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network
  publication-title: Remote Sens Lett
  doi: 10.1080/2150704x.2017.1280200
  contributor:
    fullname: Shen
– volume: 153
  start-page: 13
  year: 2019
  ident: 1873_CR36
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2019.03.009
  contributor:
    fullname: P Theanjumpol
– volume: 25
  start-page: 84
  year: 2012
  ident: 1873_CR12
  publication-title: NIPS
  doi: 10.1145/3065386
  contributor:
    fullname: A Krizhevsky
– volume: 45
  start-page: 5294
  year: 2006
  ident: 1873_CR35
  publication-title: Appl Opt
  doi: 10.1364/AO.45.005294
  contributor:
    fullname: J Sullivan
– volume: 5
  start-page: 425
  year: 2011
  ident: 1873_CR17
  publication-title: Food Bioprocess Technol
  doi: 10.1007/s11947-011-0697-1
  contributor:
    fullname: LS Magwaza
– volume: 5
  start-page: 187
  year: 1995
  ident: 1873_CR33
  publication-title: Postharvest Biol Technol
  doi: 10.1016/0925-5214(94)00026-O
  contributor:
    fullname: L Sonego
– ident: 1873_CR34
  doi: 10.1080/09540091.2019.1650330
– volume: 9
  start-page: 17
  year: 1980
  ident: 1873_CR5
  publication-title: Haryana J Hortic Sci
  contributor:
    fullname: VR Chakrawar
– volume: 145
  start-page: 984
  year: 2014
  ident: 1873_CR39
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2013.09.021
  contributor:
    fullname: XY Wang
– ident: 1873_CR21
  doi: 10.1002/9780470027318.a1018
– volume: 32
  start-page: e3998
  year: 2019
  ident: 1873_CR20
  publication-title: NMR Biomed
  doi: 10.1002/nbm.3998
  contributor:
    fullname: DS Novikov
– ident: 1873_CR4
  doi: 10.1002/mrc.5025
– volume: 9
  start-page: 178
  year: 2015
  ident: 1873_CR40
  publication-title: Food Anal Method
  doi: 10.1007/s12161-015-0153-3
  contributor:
    fullname: N-N Wang
– volume: 9
  start-page: 220
  year: 2017
  ident: 1873_CR38
  publication-title: J Agric Sci-Cambridge
  doi: 10.5539/jas.v9n11p220
  contributor:
    fullname: OH Viana
– volume: 142
  start-page: 53
  year: 2016
  ident: 1873_CR8
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2015.11.009
  contributor:
    fullname: G Elmasry
– volume: 161
  start-page: 280
  year: 2019
  ident: 1873_CR22
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.04.002
  contributor:
    fullname: A Picon
– volume: 12
  start-page: 1549
  year: 2019
  ident: 1873_CR43
  publication-title: IEEE J-Stars
  doi: 10.1109/jstars.2019.2910990
  contributor:
    fullname: F Zhou
– ident: 1873_CR6
  doi: 10.1002/cem.3122
– volume: 1
  start-page: 541
  year: 1989
  ident: 1873_CR13
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
  contributor:
    fullname: Y Lecun
– volume: 2016
  start-page: 3289801
  year: 2016
  ident: 1873_CR32
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/3289801
  contributor:
    fullname: S Sladojevic
– volume: 30
  start-page: 2744
  year: 2018
  ident: 1873_CR30
  publication-title: Xitong Fangzhen Xuebao/J Syst Simul
  doi: 10.16182/j.issn1004731x.joss.201807039
  contributor:
    fullname: X Shi
– volume: 157
  start-page: 410
  year: 2019
  ident: 1873_CR7
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.01.013
  contributor:
    fullname: H Chen
– volume: 127
  start-page: 582
  year: 2016
  ident: 1873_CR15
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2016.07.016
  contributor:
    fullname: J Li
– volume: 8
  start-page: 438
  year: 2017
  ident: 1873_CR42
  publication-title: Remote Sens Lett
  doi: 10.1080/2150704x.2017.1280200
  contributor:
    fullname: H Zhang
– ident: 1873_CR10
  doi: 10.1109/JSTARS.2019.2900705
– volume: 54
  start-page: 2331
  year: 2011
  ident: 1873_CR25
  publication-title: T ASABE
  doi: 10.13031/2013.40643
  contributor:
    fullname: J Qin
– volume: 111
  start-page: 91
  year: 2006
  ident: 1873_CR29
  publication-title: Sci Hortic-Amsterdam
  doi: 10.1016/j.scienta.2006.09.007
  contributor:
    fullname: RR Sharma
– volume: 35
  start-page: 85
  year: 1978
  ident: 1873_CR19
  publication-title: Indian J Hortic
  contributor:
    fullname: SK Munshi
– volume: 52
  start-page: 1039
  year: 2012
  ident: 1873_CR9
  publication-title: Crit Rev Food Sci Nutr
  doi: 10.1080/10408398.2011.651542
  contributor:
    fullname: YZ Feng
– volume: 161
  start-page: 111071
  year: 2019
  ident: 1873_CR37
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2019.111071
  contributor:
    fullname: X Tian
– volume: 323
  start-page: 126861
  year: 2020
  ident: 1873_CR3
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2020.126861
  contributor:
    fullname: AT Badaro
– ident: 1873_CR18
  doi: 10.1002/cem.2977
– volume: 86
  start-page: 2278
  year: 1998
  ident: 1873_CR14
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: Y Lecun
– volume: 58
  start-page: 112
  year: 2001
  ident: 1873_CR31
  publication-title: Ind J Hortic
  contributor:
    fullname: R Singh
– volume: 18
  start-page: 853
  year: 2019
  ident: 1873_CR23
  publication-title: Compr Rev Food Sci Food Saf
  doi: 10.1111/1541-4337.12432
  contributor:
    fullname: H Pu
– ident: 1873_CR11
  doi: 10.1109/JSTARS.2018.2869210
– volume: 217
  start-page: 11
  year: 2017
  ident: 1873_CR1
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2017.08.009
  contributor:
    fullname: E Arendse
– volume: 12
  start-page: 203
  year: 1972
  ident: 1873_CR2
  publication-title: Punjab Hort J
  contributor:
    fullname: RP Awasthi
– volume: 242
  start-page: 16
  year: 2018
  ident: 1873_CR16
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2017.08.086
  contributor:
    fullname: M Li
– volume: 117
  start-page: 358
  year: 2004
  ident: 1873_CR27
  publication-title: Proc Florida State Hortic Soc
  contributor:
    fullname: M Ritenour
– volume: 141
  start-page: 39
  year: 2018
  ident: 1873_CR41
  publication-title: Postharvest Biol Technol
  doi: 10.1016/j.postharvbio.2018.02.013
  contributor:
    fullname: X Yu
– volume: 101
  start-page: 235
  year: 2004
  ident: 1873_CR28
  publication-title: Sci Hortic-Amsterdam
  doi: 10.1016/j.scienta.2003.10.010
  contributor:
    fullname: RR Sharma
– volume: 93
  start-page: 183
  year: 2009
  ident: 1873_CR24
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2009.01.014
  contributor:
    fullname: J Qin
– volume: 39
  start-page: 1137
  year: 2015
  ident: 1873_CR26
  publication-title: IEEE T Pattern Anal
  doi: 10.1109/TPAMI.2016.2577031
  contributor:
    fullname: S Ren
SSID ssj0060412
Score 2.38155
Snippet Citrus fruit granulation is a major physical disorder during late maturity and post-harvest storage, and it greatly undermines the quality of fruit. Currently,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 280
SubjectTerms Accuracy
Analytical Chemistry
Artificial neural networks
Back propagation networks
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Citrus fruits
Convolution
Deep learning
Food Science
Fruits
Functional groups
Granulation
Hyperspectral imaging
Microbiology
Model accuracy
Neural networks
Nondestructive testing
Support vector machines
Title Research on Citrus grandis Granulation Determination Based on Hyperspectral Imaging through Deep Learning
URI https://link.springer.com/article/10.1007/s12161-020-01873-6
https://www.proquest.com/docview/2481201737
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BO8CCoIAolMoDYgFLjWM7zlj6CYhOVCpTZCd2VQla1Pb_C9uNFYFgYIqixDf4Jb473b13ADcsJoYLSXCeEImppAZLojQ2uSp0kfCUefrYy4SPp_RpxmYVj9s3u4eKpD-oK64bscEJdtmOmyMXY74PdRs8UNfHNSXdcPxyJyC1KyVznCYsKpkyv9v47o2qEPNHVdQ7m-ExHJVRIuruYD2BPb1swEEvDGdrQLO_0Ft0i0pZz3c0Car6p7AI3XRotUQ9z6pA87Wjr2zQyF7LgV2oHzph_N2DdWeFWzG2memOgLm2dh8__BgjVM7zsYv0JypFWednMB0OXntjXE5UwDmJKceqkB3GhMijuIgl06KTGq64UprniSKRIbmr_FGlqGJc2lyESBOJIuoUotAsjc-htlwt9QUgLjrUCG5iQwXNhUkTpzyjdMKlE7lXTbgLO5t97oQzskoi2eGQWRwyj0PGm9AKm5-VP9Ems9hGNj5J4qQJ9wGQ6vHf1i7_9_oVHBLXqeJ7sVtQs7joaxtqbFUb6t3R2_Og7T-xLzC0y_4
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGWBBPEV5ekAsYClxbMcZS3kUaDtRiS2yExtVgrRq-_-F7dqqQDAwRVHsG_w5vrPuvu8ALllGDBeS4ConElNJDZZEaWwqVes65wXz9LHBkPdG9PmNvQVS2DxWu8eUpD-pV2Q3YqMT7K47rpFchvk6bDh9dbevR6QTz1_uFKSWuWSOi5ylgSrzu43v7mgVY_5Ii3pv87AD2yFMRJ0lrruwpps92OzG7mx70L4b6wW6QkHX8wMNo6z-PoxjOR2aNKjraRXofeb4K3P0aJ-hYxe6i6Uw_u3W-rPazejZq-mSgTmzdp8-fR8jFBr62El6ioIq6_sBjB7uX7s9HFoq4IpklGNVy4QxIao0qzPJtEgKwxVXSvMqVyQ1pHKpP6oUVYxLexkh0qSiTpNa1JoV2SG0mkmjjwBxkVAjuMkMFbQSpsid9IzSOZdO5V614TqubDldKmeUK41kh0NpcSg9DiVvw2lc_DL8RfOSWIM2QMmzvA03EZDV57-tHf9v-AVs9l4H_bL_NHw5gS3iylZ8YfYptCxG-szGHQt17rfZF6-vzcU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRdrlAiwLorzWB8Rl19A4tuMcoaWUV7WHRYJTZMc2QkCooFz49diJrQKCA-IURYlHyYyTmdHM9w3AJkuJ5UISXGZEYiqpxZIog22ptNEZz1kNHzsd8sEZPTpn5y9Q_HW3eyxJNpgGz9JUjXdG2u5MgG_ERSrYpz5-qFyK-TeYpokLF1owvXtwcbwf_8bc80k1lWWO84wlATjzvpTXzmkScb4pkta-pz8HMj5103Jyvf04Vtvl0xtCx6-81jzMhsAU7TY76SdMmWoBfnTjPLgFaPeuzBhtocAkeoOGkcj_F1zFBj50V6FuDeRAl_ceMfOADtwxzAhDvdh8U5_tOQ-q_YqBS4YbzOe9k3t4W09OQmGEkFtkRijwwF4uwll__393gMMQB1ySlHKstOwwJkSZpDqVzIhObrniShleZooklpS-2EiVoopx6dIfIm0idNLRQhuWp0vQqu4qswyIiw61gtvUUkFLYfPMk90ok3HpefVVG_5E6xWjhqujmLAye9UWTrVFrdqCt2EtGrgI3-1DQZxAFxJladaGv9Fek8sfS1v53O2_4fu_Xr84ORwer8IM8X0ydSf4GrScicy6C3TGaiPs5WeIGfOX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Citrus+grandis+Granulation+Determination+Based+on+Hyperspectral+Imaging+through+Deep+Learning&rft.jtitle=Food+analytical+methods&rft.au=Dengfei%2C+Jie&rft.au=Wu%2C+Shuang&rft.au=Wang%2C+Ping&rft.au=Li%2C+Yan&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1936-9751&rft.eissn=1936-976X&rft.volume=14&rft.issue=2&rft.spage=280&rft.epage=289&rft_id=info:doi/10.1007%2Fs12161-020-01873-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-9751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-9751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-9751&client=summon