Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms
Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchar...
Saved in:
Published in | SN computer science Vol. 5; no. 6; p. 700 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchards. By leveraging advanced computational techniques, the research aims to enhance early detection and diagnosis of diseases, thereby enabling proactive disease management. The study utilizes a dataset comprising diverse environmental and plant health factors to train and validate the models. Key highlights include the comparative analysis of machine learning and deep learning approaches, the identification of optimal feature sets, and the assessment of model performance. The findings contribute to the development of efficient and accurate tools for precision agriculture, facilitating timely intervention and sustainable orchard management. The apple industry in Kashmir faces a significant challenge due to the prevalence of various diseases affecting apple trees. One prominent disease that adversely impacts apple yields in the region is the Apple Scab, caused by the fungus Venturia inadequacies. Apple Scab is characterized by dark, scaly lesions on leaves, fruit, and twigs, leading to defoliation and reduced fruit quality. The disease thrives in cool and humid conditions, which are prevalent in the Kashmir Valley. This study addresses the limitations of traditional, labor-intensive, and time-consuming laboratory methods for diagnosing apple plant diseases. The goal is to provide an accurate and efficient deep learning-based system for the prompt identification and prediction of foliar diseases in Kashmiri apple plants. Our study begins involves the creation of a dataset annotated by experts containing approximately 10,000 high-quality RGB images that illustrate key symptoms associated with foliar diseases. In the next step, an approach to deep learning that utilizes convolutional neural networks (CNNs) was developed. Comparative analysis five different deep learning algorithms, including Faster R-CNN, showed that the method was effective in detecting apple diseases in real time. The proposed framework, when tested, achieves state-of-the-art results with a remarkable 92% accuracy in identifying apple plant diseases. A new dataset is presented that includes samples of leaves from Kashmiri apple plants that have three different illnesses. The findings hold promise for revolutionizing orchard management practices, ultimately benefiting apple growers and sustaining the thriving apple industry in the Kashmir Valley. |
---|---|
AbstractList | Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchards. By leveraging advanced computational techniques, the research aims to enhance early detection and diagnosis of diseases, thereby enabling proactive disease management. The study utilizes a dataset comprising diverse environmental and plant health factors to train and validate the models. Key highlights include the comparative analysis of machine learning and deep learning approaches, the identification of optimal feature sets, and the assessment of model performance. The findings contribute to the development of efficient and accurate tools for precision agriculture, facilitating timely intervention and sustainable orchard management. The apple industry in Kashmir faces a significant challenge due to the prevalence of various diseases affecting apple trees. One prominent disease that adversely impacts apple yields in the region is the Apple Scab, caused by the fungus Venturia inadequacies. Apple Scab is characterized by dark, scaly lesions on leaves, fruit, and twigs, leading to defoliation and reduced fruit quality. The disease thrives in cool and humid conditions, which are prevalent in the Kashmir Valley. This study addresses the limitations of traditional, labor-intensive, and time-consuming laboratory methods for diagnosing apple plant diseases. The goal is to provide an accurate and efficient deep learning-based system for the prompt identification and prediction of foliar diseases in Kashmiri apple plants. Our study begins involves the creation of a dataset annotated by experts containing approximately 10,000 high-quality RGB images that illustrate key symptoms associated with foliar diseases. In the next step, an approach to deep learning that utilizes convolutional neural networks (CNNs) was developed. Comparative analysis five different deep learning algorithms, including Faster R-CNN, showed that the method was effective in detecting apple diseases in real time. The proposed framework, when tested, achieves state-of-the-art results with a remarkable 92% accuracy in identifying apple plant diseases. A new dataset is presented that includes samples of leaves from Kashmiri apple plants that have three different illnesses. The findings hold promise for revolutionizing orchard management practices, ultimately benefiting apple growers and sustaining the thriving apple industry in the Kashmir Valley. |
ArticleNumber | 700 |
Author | Ahmed, Imtiaz Yadav, Pramod Kumar |
Author_xml | – sequence: 1 givenname: Imtiaz orcidid: 0000-0002-2590-6357 surname: Ahmed fullname: Ahmed, Imtiaz email: imtiaz_02phd19@nitsri.ac.in organization: Department of Computer Science and Engineering, NIT Srinagar – sequence: 2 givenname: Pramod Kumar surname: Yadav fullname: Yadav, Pramod Kumar organization: Department of Computer Science and Engineering, NIT Srinagar |
BookMark | eNp9kD1PwzAQhi1UJErpH2CyxBxw7NiJx6rlSypqBzpbtnNpXaVOsNOBf09KkEAMHU53Or3PfbzXaOQbDwjdpuQ-JSR_iBmVuUwIzfqQXCb0Ao2pEGlSSJKP_tRXaBrjnhBCOckywcdIrQOUznbOb_GsbWvA61r7Di9cBB0hYufxKtidDmXEm3iSvWm7cx7wEnTwp4b2JV4AtL-dWb1tgut2h3iDLitdR5j-5AnaPD2-z1-S5er5dT5bJpayjCalhJzLwhRGFpqDlYwJawSIikgKJjWiEv1nWpeZMJKZtLDGFjmlVhaCS2ATdDfMbUPzcYTYqX1zDL5fqRjJeSYl42mvKgaVDU2MASplXac71_guaFerlKiTo2pwVPWOqm9HFe1R-g9tgzvo8HkeYgMUe7HfQvi96gz1BW_Qil8 |
CitedBy_id | crossref_primary_10_3390_agriculture14101755 crossref_primary_10_1007_s41976_025_00192_w crossref_primary_10_3390_math13050840 |
Cites_doi | 10.1007/s11042-022-12687-5 10.1016/j.eswa.2020.113594 10.3390/drones6090230 10.1016/j.biosystemseng.2022.05.004 10.1016/j.biosystemseng.2022.09.006 10.1016/j.jfoodeng.2022.111213 10.1007/s00521-022-07744-x 10.1007/s11042-022-12868-2 10.1016/j.eswa.2022.118117 10.3389/fpls.2022.1064854 10.2139/ssrn.4250238 10.1111/exsy.13136 10.3389/fpls.2021.684328 10.1016/j.ifacol.2022.11.118 10.3390/agriculture12010009 10.1007/s00371-021-02164-9 10.1016/j.eswa.2022.118573 10.1016/j.iot.2022.100658 10.3390/agronomy12102363 10.1007/978-981-19-0707-4_72 10.1016/j.atech.2022.100166 10.1016/j.inpa.2021.01.005 10.1016/j.aac.2022.10.001 10.1016/j.compeleceng.2023.108582 10.1016/j.jksuci.2022.01.005 10.3389/fpls.2020.01086 10.1016/j.atech.2022.100146 10.1016/j.ailsci.2023.100057 10.3389/fpls.2022.946154 10.1016/j.agwat.2022.108064 10.1155/2022/8457173 10.3390/agriculture12060856 10.1007/s00521-021-06651-x 10.1016/j.atech.2022.100099 10.1007/s11119-021-09846-3 10.1016/j.patrec.2021.04.022 10.1016/j.aiia.2020.04.003 10.1007/s40030-022-00668-8 10.3390/fi14110341 10.1007/s11831-022-09761-4 10.1016/j.micpro.2021.104321 10.1016/j.jhazmat.2022.130568 10.1016/j.aiia.2022.09.007 10.3389/fpls.2022.802761 10.1016/j.atech.2023.100186 10.1016/j.inpa.2022.12.001 10.1007/s11119-021-09806-x 10.1186/s13007-021-00722-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s42979-024-02959-2 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Agriculture |
EISSN | 2661-8907 |
ExternalDocumentID | 10_1007_s42979_024_02959_2 |
GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAPOH BSONS DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABRTQ AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2342-d9e7598b8b98a5ec9336cb6e6f092eb1b6f6959aad46b93b18cbc8722c98659e3 |
IEDL.DBID | BENPR |
ISSN | 2661-8907 2662-995X |
IngestDate | Wed Aug 13 07:13:33 EDT 2025 Tue Jul 01 00:17:55 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 Fri Feb 21 02:40:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Deep learning Convolutional neural network Apple disease classification Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2342-d9e7598b8b98a5ec9336cb6e6f092eb1b6f6959aad46b93b18cbc8722c98659e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2590-6357 |
PQID | 3075499351 |
PQPubID | 6623307 |
ParticipantIDs | proquest_journals_3075499351 crossref_citationtrail_10_1007_s42979_024_02959_2 crossref_primary_10_1007_s42979_024_02959_2 springer_journals_10_1007_s42979_024_02959_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Kolkata |
PublicationTitle | SN computer science |
PublicationTitleAbbrev | SN COMPUT. SCI |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer Nature B.V |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V |
References | Ahmed, Yadav (CR48) 2022 Chu, Li, Lammers, Lu, Liu (CR40) 2021; 147 Zhang (CR13) 2022; 221 Maheswari, Raja, Apolo-Apolo, Pérez-Ruiz (CR41) 2021; 12 Liu, Qiao, Li, Zhang, Zhang, Wang (CR24) 2022; 12 Gajjar, Gajjar, Thakor, Patel, Ruparelia (CR30) 2022; 38 Yang, Hu, Yao, Gao, Liu (CR21) 2022; 2022 Habib, Sharma, Ibrahim, Ahmad, Qureshi, Ishfaq (CR46) 2022; 14 Ai, Chen, Yue, Wang (CR3) 2023; 445 Ji, Pan, Xu, Wang (CR23) 2022; 12 Jiang, Li, Safara (CR39) 2021 Tang, Zhou, Wang, Zhang (CR6) 2023; 211 Gill, Murugesan, Khehra, Sajja, Gupta, Bhatt (CR34) 2022; 81 Jia, Zhang, Shao, Ji, Hou (CR35) 2022; 23 Chen, Lu, Liu, Chen, Li, Qian (CR33) 2022; 81 Liu, Liang, Wang, Hu, Wan, Zheng (CR1) 2023; 106 Das, Esau, Zaman, Farooque, Schumann, Hennessy (CR10) 2023; 4 Zhang, Xun, Chen (CR14) 2022; 223 Georgantopoulos, Papadimitriou, Constantinopoulos, Manios (CR11) 2023; 4 da Silva Andrea, Nascimento, Mota, Oliveira (CR28) 2022 Zhang, Liang, Wang, Wang, Huang, Luo (CR18) 2022 Liu, Wang (CR43) 2021; 17 Wakchaure, Patle, Mahindrakar (CR8) 2023; 3 Akbar (CR27) 2022; 13 Saedi, Khosravi (CR5) 2020; 159 Orchi, Sadik, Khaldoun (CR22) 2022; 12 Sharma, Dharavath, Edla (CR7) 2023; 21 Ismail, Malik (CR17) 2022; 9 Fang, Zhao, Wang, Li, Zhu, Yu (CR25) 2022; 13 Chakraborty, Chandel, Jat, Tiwari, Rajwade, Subeesh (CR32) 2022; 34 Thakur, Khanna, Sheorey, Ojha (CR15) 2022; 208 Parmar, Patel, Tiwari (CR12) 2023; 4 Jia, Wang, Zhang, Yang, Hou, Zheng (CR16) 2022; 34 Lu (CR26) 2022; 13 Javaid, Haleem, Khan, Suman (CR38) 2022 Roy, Bose, Bhaduri (CR31) 2022; 34 Apolo-Apolo, Pérez-Ruiz, Martínez-Guanter, Valente (CR45) 2020; 11 Narmilan, Gonzalez, Salgadoe, Powell (CR29) 2022 Saleem, Potgieter, Arif (CR42) 2021; 22 Ding (CR19) 2022; 55 Dhanya (CR20) 2022; 6 Yang, Liu, Huang, Zhu, Zhao (CR2) 2023; 336 MacEachern, Esau, Schumann, Hennessy, Zaman (CR9) 2023; 3 Mahato, Pundir, Saxena (CR37) 2022; 103 Shao, Han, Zhang, Zhang, Wang, Zhang (CR4) 2023; 276 Gao, Shao, Xuan, Wang, Liu, Han (CR44) 2020; 4 Shaikh, Mir, Rasool, Sofi (CR36) 2022; 29 Ahmed, Yadav (CR47) 2022; 40 G Shao (2959_CR4) 2023; 276 W Jia (2959_CR35) 2022; 23 X Zhang (2959_CR14) 2022; 223 HS Gill (2959_CR34) 2022; 81 A Narmilan (2959_CR29) 2022 M Wakchaure (2959_CR8) 2023; 3 SH Parmar (2959_CR12) 2023; 4 J Lu (2959_CR26) 2022; 13 R Gajjar (2959_CR30) 2022; 38 P Chu (2959_CR40) 2021; 147 PS Thakur (2959_CR15) 2022; 208 M Akbar (2959_CR27) 2022; 13 AM Roy (2959_CR31) 2022; 34 M Javaid (2959_CR38) 2022 RP Sharma (2959_CR7) 2023; 21 J Liu (2959_CR43) 2021; 17 G Habib (2959_CR46) 2022; 14 S Fang (2959_CR25) 2022; 13 S Liu (2959_CR24) 2022; 12 M Zhang (2959_CR18) 2022 Y Tang (2959_CR6) 2023; 211 W Ji (2959_CR23) 2022; 12 CB MacEachern (2959_CR9) 2023; 3 W Jia (2959_CR16) 2022; 34 N Ismail (2959_CR17) 2022; 9 MH Saleem (2959_CR42) 2021; 22 Y Yang (2959_CR2) 2023; 336 SK Chakraborty (2959_CR32) 2022; 34 Z Gao (2959_CR44) 2020; 4 I Ahmed (2959_CR47) 2022; 40 SI Saedi (2959_CR5) 2020; 159 P Maheswari (2959_CR41) 2021; 12 W Chen (2959_CR33) 2022; 81 DK Mahato (2959_CR37) 2022; 103 L Liu (2959_CR1) 2023; 106 OE Apolo-Apolo (2959_CR45) 2020; 11 AK Das (2959_CR10) 2023; 4 VG Dhanya (2959_CR20) 2022; 6 H Jiang (2959_CR39) 2021 W Ai (2959_CR3) 2023; 445 H Orchi (2959_CR22) 2022; 12 C Zhang (2959_CR13) 2022; 221 PS Georgantopoulos (2959_CR11) 2023; 4 R Ding (2959_CR19) 2022; 55 TA Shaikh (2959_CR36) 2022; 29 R Yang (2959_CR21) 2022; 2022 MC da Silva Andrea (2959_CR28) 2022 I Ahmed (2959_CR48) 2022 |
References_xml | – volume: 81 start-page: 31363 issue: 22 year: 2022 end-page: 31389 ident: CR33 article-title: CitrusYOLO: a algorithm for citrus detection under orchard environment based on YOLOv4 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12687-5 – volume: 159 year: 2020 ident: CR5 article-title: A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113594 – year: 2022 ident: CR29 article-title: Detection of white leaf disease in sugarcane using machine learning techniques over UAV multispectral images publication-title: Drones doi: 10.3390/drones6090230 – volume: 221 start-page: 164 year: 2022 end-page: 180 ident: CR13 article-title: Automatic flower cluster estimation in apple orchards using aerial and ground based point clouds publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2022.05.004 – volume: 223 start-page: 249 year: 2022 end-page: 258 ident: CR14 article-title: Automated identification of citrus diseases in orchards using deep learning publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2022.09.006 – volume: 336 start-page: 111213 issue: April 2022 year: 2023 ident: CR2 article-title: Automatic detection of multi-type defects on potatoes using multispectral imaging combined with a deep learning model publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2022.111213 – volume: 34 start-page: 20539 issue: 23 year: 2022 end-page: 20573 ident: CR32 article-title: Deep learning approaches and interventions for futuristic engineering in agriculture publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07744-x – volume: 81 start-page: 33269 issue: 23 year: 2022 end-page: 33290 ident: CR34 article-title: Fruit recognition from images using deep learning applications publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-12868-2 – volume: 208 start-page: 118117 issue: February year: 2022 ident: CR15 article-title: Trends in vision-based machine learning techniques for plant disease identification: a systematic review publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118117 – volume: 13 start-page: 1 issue: November year: 2022 end-page: 18 ident: CR27 article-title: An effective deep learning approach for the classification of Bacteriosis in peach leave publication-title: Front Plant Sci doi: 10.3389/fpls.2022.1064854 – year: 2022 ident: CR28 article-title: Predictive framework of plant height in commercial cotton fields using a remote sensing and machine learning approach publication-title: SSRN Electron J doi: 10.2139/ssrn.4250238 – volume: 40 year: 2022 ident: CR47 article-title: Plant disease detection using machine learning approaches publication-title: Expert Syst doi: 10.1111/exsy.13136 – volume: 12 start-page: 1 issue: June year: 2021 end-page: 18 ident: CR41 article-title: Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—a review publication-title: Front Plant Sci doi: 10.3389/fpls.2021.684328 – volume: 55 start-page: 78 issue: 32 year: 2022 end-page: 82 ident: CR19 article-title: Improved ResNet based apple leaf diseases identification publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2022.11.118 – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 9 ident: CR22 article-title: On using artificial intelligence and the internet of things for crop disease detection: a contemporary survey publication-title: Agriculture doi: 10.3390/agriculture12010009 – volume: 38 start-page: 2923 issue: 8 year: 2022 end-page: 2938 ident: CR30 article-title: Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform publication-title: Vis Comput doi: 10.1007/s00371-021-02164-9 – volume: 211 start-page: 118573 issue: August 2022 year: 2023 ident: CR6 article-title: Fruit detection and positioning technology for a C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118573 – volume: 21 start-page: 100658 issue: December 2022 year: 2023 ident: CR7 article-title: IoFT-FIS: Internet of farm things based prediction for crop pest infestation using optimized fuzzy inference system publication-title: Internet of Things (Netherlands) doi: 10.1016/j.iot.2022.100658 – volume: 12 start-page: 1 issue: 10 year: 2022 end-page: 17 ident: CR24 article-title: An improved lightweight network for real-time detection of apple leaf diseases in natural scenes publication-title: Agronomy doi: 10.3390/agronomy12102363 – start-page: 803 year: 2022 end-page: 814 ident: CR48 article-title: An automated system for early identification of diseases in plant through machine learning publication-title: Soft computing: theories and applications doi: 10.1007/978-981-19-0707-4_72 – volume: 4 start-page: 100166 issue: November 2022 year: 2023 ident: CR10 article-title: Machine vision system for real-time debris detection on mechanical wild blueberry harvesters publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100166 – volume: 9 start-page: 24 issue: 1 year: 2022 end-page: 37 ident: CR17 article-title: Real-time visual inspection system for grading fruits using computer vision and deep learning techniques publication-title: Inf Process Agric doi: 10.1016/j.inpa.2021.01.005 – year: 2022 ident: CR38 article-title: Understanding the potential applications of artificial intelligence in agriculture sector publication-title: Adv Agrochem doi: 10.1016/j.aac.2022.10.001 – volume: 106 start-page: 108582 issue: January year: 2023 ident: CR1 article-title: An improved YOLOv5-based approach to soybean phenotype information perception publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2023.108582 – volume: 34 start-page: 5156 issue: 8 year: 2022 end-page: 5169 ident: CR16 article-title: A fast and efficient green apple object detection model based on Foveabox publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2022.01.005 – volume: 11 start-page: 1 issue: July year: 2020 end-page: 15 ident: CR45 article-title: A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique publication-title: Front Plant Sci doi: 10.3389/fpls.2020.01086 – volume: 4 start-page: 100146 issue: November 2022 year: 2023 ident: CR11 article-title: Smart agricultural technology a multispectral dataset for the detection of and in tomato plants publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100146 – volume: 3 start-page: 100057 issue: November 2022 year: 2023 ident: CR8 article-title: Artificial intelligence in the life sciences application of ai techniques and robotics in agriculture: a review publication-title: Artif Intell Life Sci doi: 10.1016/j.ailsci.2023.100057 – volume: 13 start-page: 1 issue: November year: 2022 end-page: 17 ident: CR26 article-title: Citrus green fruit detection via improved feature network extraction publication-title: Front Plant Sci doi: 10.3389/fpls.2022.946154 – volume: 276 start-page: 108064 issue: November 2022 year: 2023 ident: CR4 article-title: Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.108064 – volume: 2022 start-page: 1 year: 2022 end-page: 8 ident: CR21 article-title: Fruit target detection based on BCo-YOLOv5 model publication-title: Mob Inf Syst doi: 10.1155/2022/8457173 – volume: 12 start-page: 856 issue: 6 year: 2022 ident: CR23 article-title: A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX publication-title: Agriculture doi: 10.3390/agriculture12060856 – volume: 34 start-page: 3895 issue: 5 year: 2022 end-page: 3921 ident: CR31 article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06651-x – volume: 3 start-page: 100099 issue: February 2022 year: 2023 ident: CR9 article-title: Detection of fruit maturity stage and yield estimation in wild blueberry using deep learning convolutional neural networks publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100099 – volume: 23 start-page: 492 issue: 2 year: 2022 end-page: 513 ident: CR35 article-title: RS-Net: robust segmentation of green overlapped apples publication-title: Precis Agric doi: 10.1007/s11119-021-09846-3 – volume: 147 start-page: 206 year: 2021 end-page: 211 ident: CR40 article-title: Deep learning-based apple detection using a suppression mask R-CNN publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2021.04.022 – volume: 4 start-page: 31 year: 2020 end-page: 38 ident: CR44 article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning publication-title: Artif Intell Agric doi: 10.1016/j.aiia.2020.04.003 – volume: 103 start-page: 975 issue: 4 year: 2022 end-page: 987 ident: CR37 article-title: An improved deep convolutional neural network for image-based apple plant leaf disease detection and identification publication-title: J Inst Eng Ser A doi: 10.1007/s40030-022-00668-8 – volume: 14 start-page: 341 issue: 11 year: 2022 ident: CR46 article-title: Blockchain technology: benefits, challenges, applications, and integration of blockchain technology with cloud computing publication-title: Future Internet doi: 10.3390/fi14110341 – volume: 29 start-page: 4557 issue: 7 year: 2022 end-page: 4597 ident: CR36 article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09761-4 – year: 2021 ident: CR39 article-title: IoT-based agriculture: deep learning in detecting apple fruit diseases publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2021.104321 – volume: 445 start-page: 130568 issue: November 2022 year: 2023 ident: CR3 article-title: Application of hyperspectral and deep learning in farmland soil microplastic detection publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.130568 – volume: 6 start-page: 211 year: 2022 end-page: 229 ident: CR20 article-title: Deep learning based computer vision approaches for smart agricultural applications publication-title: Artif Intell Agric doi: 10.1016/j.aiia.2022.09.007 – volume: 13 start-page: 1 issue: March year: 2022 end-page: 12 ident: CR25 article-title: Surface-enhanced raman scattering spectroscopy combined with chemical imaging analysis for detecting apple valsa canker at an early stage publication-title: Front Plant Sci doi: 10.3389/fpls.2022.802761 – volume: 4 start-page: 100186 issue: November 2022 year: 2023 ident: CR12 article-title: Smart Agricultural Technology Assessment of crop water requirement of maize using remote sensing and GIS publication-title: Smart Agric Technol doi: 10.1016/j.atech.2023.100186 – year: 2022 ident: CR18 article-title: Damaged apple detection with a hybrid YOLOv3 algorithm publication-title: Inf Process Agric doi: 10.1016/j.inpa.2022.12.001 – volume: 22 start-page: 2053 issue: 6 year: 2021 end-page: 2091 ident: CR42 article-title: Automation in agriculture by machine and deep learning techniques: a review of recent developments publication-title: Precis Agric doi: 10.1007/s11119-021-09806-x – volume: 17 start-page: 1 issue: 1 year: 2021 end-page: 18 ident: CR43 article-title: Plant diseases and pests detection based on deep learning: a review publication-title: Plant Methods doi: 10.1186/s13007-021-00722-9 – volume: 13 start-page: 1 issue: November year: 2022 ident: 2959_CR26 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.946154 – volume: 34 start-page: 3895 issue: 5 year: 2022 ident: 2959_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-021-06651-x – volume: 14 start-page: 341 issue: 11 year: 2022 ident: 2959_CR46 publication-title: Future Internet doi: 10.3390/fi14110341 – volume: 3 start-page: 100057 issue: November 2022 year: 2023 ident: 2959_CR8 publication-title: Artif Intell Life Sci doi: 10.1016/j.ailsci.2023.100057 – year: 2021 ident: 2959_CR39 publication-title: Microprocess Microsyst doi: 10.1016/j.micpro.2021.104321 – volume: 211 start-page: 118573 issue: August 2022 year: 2023 ident: 2959_CR6 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118573 – volume: 4 start-page: 100146 issue: November 2022 year: 2023 ident: 2959_CR11 publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100146 – volume: 38 start-page: 2923 issue: 8 year: 2022 ident: 2959_CR30 publication-title: Vis Comput doi: 10.1007/s00371-021-02164-9 – volume: 13 start-page: 1 issue: November year: 2022 ident: 2959_CR27 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.1064854 – volume: 12 start-page: 1 issue: 10 year: 2022 ident: 2959_CR24 publication-title: Agronomy doi: 10.3390/agronomy12102363 – volume: 29 start-page: 4557 issue: 7 year: 2022 ident: 2959_CR36 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09761-4 – volume: 106 start-page: 108582 issue: January year: 2023 ident: 2959_CR1 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2023.108582 – volume: 21 start-page: 100658 issue: December 2022 year: 2023 ident: 2959_CR7 publication-title: Internet of Things (Netherlands) doi: 10.1016/j.iot.2022.100658 – start-page: 803 volume-title: Soft computing: theories and applications year: 2022 ident: 2959_CR48 doi: 10.1007/978-981-19-0707-4_72 – volume: 23 start-page: 492 issue: 2 year: 2022 ident: 2959_CR35 publication-title: Precis Agric doi: 10.1007/s11119-021-09846-3 – volume: 55 start-page: 78 issue: 32 year: 2022 ident: 2959_CR19 publication-title: IFAC PapersOnLine doi: 10.1016/j.ifacol.2022.11.118 – volume: 9 start-page: 24 issue: 1 year: 2022 ident: 2959_CR17 publication-title: Inf Process Agric doi: 10.1016/j.inpa.2021.01.005 – volume: 147 start-page: 206 year: 2021 ident: 2959_CR40 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2021.04.022 – volume: 223 start-page: 249 year: 2022 ident: 2959_CR14 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2022.09.006 – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 2959_CR22 publication-title: Agriculture doi: 10.3390/agriculture12010009 – volume: 17 start-page: 1 issue: 1 year: 2021 ident: 2959_CR43 publication-title: Plant Methods doi: 10.1186/s13007-021-00722-9 – year: 2022 ident: 2959_CR29 publication-title: Drones doi: 10.3390/drones6090230 – volume: 221 start-page: 164 year: 2022 ident: 2959_CR13 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2022.05.004 – volume: 4 start-page: 31 year: 2020 ident: 2959_CR44 publication-title: Artif Intell Agric doi: 10.1016/j.aiia.2020.04.003 – volume: 159 year: 2020 ident: 2959_CR5 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113594 – volume: 103 start-page: 975 issue: 4 year: 2022 ident: 2959_CR37 publication-title: J Inst Eng Ser A doi: 10.1007/s40030-022-00668-8 – volume: 4 start-page: 100186 issue: November 2022 year: 2023 ident: 2959_CR12 publication-title: Smart Agric Technol doi: 10.1016/j.atech.2023.100186 – volume: 4 start-page: 100166 issue: November 2022 year: 2023 ident: 2959_CR10 publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100166 – year: 2022 ident: 2959_CR28 publication-title: SSRN Electron J doi: 10.2139/ssrn.4250238 – volume: 22 start-page: 2053 issue: 6 year: 2021 ident: 2959_CR42 publication-title: Precis Agric doi: 10.1007/s11119-021-09806-x – volume: 3 start-page: 100099 issue: February 2022 year: 2023 ident: 2959_CR9 publication-title: Smart Agric Technol doi: 10.1016/j.atech.2022.100099 – volume: 13 start-page: 1 issue: March year: 2022 ident: 2959_CR25 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.802761 – volume: 11 start-page: 1 issue: July year: 2020 ident: 2959_CR45 publication-title: Front Plant Sci doi: 10.3389/fpls.2020.01086 – year: 2022 ident: 2959_CR18 publication-title: Inf Process Agric doi: 10.1016/j.inpa.2022.12.001 – volume: 12 start-page: 856 issue: 6 year: 2022 ident: 2959_CR23 publication-title: Agriculture doi: 10.3390/agriculture12060856 – volume: 6 start-page: 211 year: 2022 ident: 2959_CR20 publication-title: Artif Intell Agric doi: 10.1016/j.aiia.2022.09.007 – volume: 40 year: 2022 ident: 2959_CR47 publication-title: Expert Syst doi: 10.1111/exsy.13136 – volume: 34 start-page: 5156 issue: 8 year: 2022 ident: 2959_CR16 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2022.01.005 – volume: 12 start-page: 1 issue: June year: 2021 ident: 2959_CR41 publication-title: Front Plant Sci doi: 10.3389/fpls.2021.684328 – volume: 445 start-page: 130568 issue: November 2022 year: 2023 ident: 2959_CR3 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.130568 – volume: 2022 start-page: 1 year: 2022 ident: 2959_CR21 publication-title: Mob Inf Syst doi: 10.1155/2022/8457173 – volume: 81 start-page: 33269 issue: 23 year: 2022 ident: 2959_CR34 publication-title: Multimedia Tools Appl doi: 10.1007/s11042-022-12868-2 – volume: 276 start-page: 108064 issue: November 2022 year: 2023 ident: 2959_CR4 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2022.108064 – year: 2022 ident: 2959_CR38 publication-title: Adv Agrochem doi: 10.1016/j.aac.2022.10.001 – volume: 81 start-page: 31363 issue: 22 year: 2022 ident: 2959_CR33 publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12687-5 – volume: 208 start-page: 118117 issue: February year: 2022 ident: 2959_CR15 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118117 – volume: 34 start-page: 20539 issue: 23 year: 2022 ident: 2959_CR32 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07744-x – volume: 336 start-page: 111213 issue: April 2022 year: 2023 ident: 2959_CR2 publication-title: J Food Eng doi: 10.1016/j.jfoodeng.2022.111213 |
SSID | ssj0002504465 |
Score | 2.303572 |
Snippet | Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 700 |
SubjectTerms | Agribusiness Agricultural production Agriculture Algorithms Apples Artificial neural networks Automation Color imagery Computer Imaging Computer Science Computer Systems Organization and Communication Networks Crop diseases Crops Data Structures and Information Theory Datasets Deep learning Defoliation Disease prevention Effectiveness Illnesses Image quality Infections Information Systems and Communication Service Machine learning Neural networks Original Research Pattern Recognition and Graphics Plant diseases Remote sensing Security for Communication and Computing Application Signs and symptoms Software Engineering/Programming and Operating Systems Vision |
Title | Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms |
URI | https://link.springer.com/article/10.1007/s42979-024-02959-2 https://www.proquest.com/docview/3075499351 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RTjpRy4QQRN2yw5ocEYExIwIZB2q5LUHUijjK38f5ws2wQSO_TSppFqu7bj10fIqSsOT7RyAMQ5sEQqzrTgOVNg80KjvUki1-_88Ci6r8l9P-2HgNsklFXOdKJX1PmndTHyC5RFd5TBva9GX8yhRrnsaoDQWCV1VMESD1_169vH3vM8yuIGdCUeTxINEWdKpf3QOeP751AZNxVDM4WXi4fx39Zp4XL-yZJ649PZJBvBa6StKZu3yAqU22S9NRiHyRmwQ7Le2OVcXBUzda4lUIdHVNH2NAMzoe8lfRpPm6yoLxSgD76QEmiYsTqgusxpG2C0uNMaDpAI1dvHZJe8dm5fbrosoCcwy-OEs1xBM1XSSKOkTsGqOBbWCBDFpeKooY0oBH6z1nkijIpNJK2xssm5VVKkCuI9Uis_S9gnNI51FKdQRBpQsVpAHipII6SoLIxI8waJZlTLbBgt7hAuhtl8KLKndIaUzjylM94gZ_N3RtPBGktXH82YkYWfbJItRKJBzmcMWjz-f7eD5bsdkjXuZcKV-R2RWjX-hmN0PSpzQlZl5-4kSNkPwcrUVg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaaMEHOIEF61079gFVESGktCkcWik3Y3tnA1LZhiQI8af6Gzv27iYCid562Ms-5vD525mx5wXwIiaHF87EAcQl8kIbwZ0SJTcYysqRvSmyWO88OVbj0-LTVE634KKrhYlplZ1OTIq6PA_xjPwNcTFuZUj2_vwnj1OjYnS1G6HR0OIQ__ymLdvy3cGQ1velEKMPJ-_HvJ0qwIPIC8FLg31ptNfeaCcx0I5eBa9QVW-NIM3lVaWMNM6VhfIm95kOPui-EMFoJQ3mJPcG3Czy3MQ_So8-rs90YjuwIk2vJLMnuDFy2tbppGo9Uv19w8ko0hVP38TftnDj4P4Tk02mbnQP7rY-Khs0pLoPW1g_gDuD2aLt04EPwX5ZxAhPzJlm0ZFFFqcfrdiwifcs2feafV40JV0spSWwSUrbRNZ2dJ0xV5dsiDjf3BmczQjy1bcfy0dwei2oPobt-rzGHWB57rJcYpU5JDUekBhjUGaEqK68kmUPsg41G9pG5nGexpldt2BOSFtC2iakrejBq_U386aNx5Vv73aLYdtfemk3BOzB626BNo__L-3J1dKew63xyeTIHh0cHz6F2yLxIyYY7sL2avEL98jpWflniWkMvl43tS8B7EgPBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Apple+Plant+Diseases+in+Orchards+Using+Machine+Learning+and+Deep+Learning+Algorithms&rft.jtitle=SN+computer+science&rft.au=Ahmed%2C+Imtiaz&rft.au=Yadav%2C+Pramod+Kumar&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=6&rft.spage=700&rft_id=info:doi/10.1007%2Fs42979-024-02959-2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |