Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms

Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchar...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 5; no. 6; p. 700
Main Authors Ahmed, Imtiaz, Yadav, Pramod Kumar
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchards. By leveraging advanced computational techniques, the research aims to enhance early detection and diagnosis of diseases, thereby enabling proactive disease management. The study utilizes a dataset comprising diverse environmental and plant health factors to train and validate the models. Key highlights include the comparative analysis of machine learning and deep learning approaches, the identification of optimal feature sets, and the assessment of model performance. The findings contribute to the development of efficient and accurate tools for precision agriculture, facilitating timely intervention and sustainable orchard management. The apple industry in Kashmir faces a significant challenge due to the prevalence of various diseases affecting apple trees. One prominent disease that adversely impacts apple yields in the region is the Apple Scab, caused by the fungus Venturia inadequacies. Apple Scab is characterized by dark, scaly lesions on leaves, fruit, and twigs, leading to defoliation and reduced fruit quality. The disease thrives in cool and humid conditions, which are prevalent in the Kashmir Valley. This study addresses the limitations of traditional, labor-intensive, and time-consuming laboratory methods for diagnosing apple plant diseases. The goal is to provide an accurate and efficient deep learning-based system for the prompt identification and prediction of foliar diseases in Kashmiri apple plants. Our study begins involves the creation of a dataset annotated by experts containing approximately 10,000 high-quality RGB images that illustrate key symptoms associated with foliar diseases. In the next step, an approach to deep learning that utilizes convolutional neural networks (CNNs) was developed. Comparative analysis five different deep learning algorithms, including Faster R-CNN, showed that the method was effective in detecting apple diseases in real time. The proposed framework, when tested, achieves state-of-the-art results with a remarkable 92% accuracy in identifying apple plant diseases. A new dataset is presented that includes samples of leaves from Kashmiri apple plants that have three different illnesses. The findings hold promise for revolutionizing orchard management practices, ultimately benefiting apple growers and sustaining the thriving apple industry in the Kashmir Valley.
AbstractList Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual apple exports. This study explores the application of machine learning and deep learning algorithms for predicting apple plant diseases in orchards. By leveraging advanced computational techniques, the research aims to enhance early detection and diagnosis of diseases, thereby enabling proactive disease management. The study utilizes a dataset comprising diverse environmental and plant health factors to train and validate the models. Key highlights include the comparative analysis of machine learning and deep learning approaches, the identification of optimal feature sets, and the assessment of model performance. The findings contribute to the development of efficient and accurate tools for precision agriculture, facilitating timely intervention and sustainable orchard management. The apple industry in Kashmir faces a significant challenge due to the prevalence of various diseases affecting apple trees. One prominent disease that adversely impacts apple yields in the region is the Apple Scab, caused by the fungus Venturia inadequacies. Apple Scab is characterized by dark, scaly lesions on leaves, fruit, and twigs, leading to defoliation and reduced fruit quality. The disease thrives in cool and humid conditions, which are prevalent in the Kashmir Valley. This study addresses the limitations of traditional, labor-intensive, and time-consuming laboratory methods for diagnosing apple plant diseases. The goal is to provide an accurate and efficient deep learning-based system for the prompt identification and prediction of foliar diseases in Kashmiri apple plants. Our study begins involves the creation of a dataset annotated by experts containing approximately 10,000 high-quality RGB images that illustrate key symptoms associated with foliar diseases. In the next step, an approach to deep learning that utilizes convolutional neural networks (CNNs) was developed. Comparative analysis five different deep learning algorithms, including Faster R-CNN, showed that the method was effective in detecting apple diseases in real time. The proposed framework, when tested, achieves state-of-the-art results with a remarkable 92% accuracy in identifying apple plant diseases. A new dataset is presented that includes samples of leaves from Kashmiri apple plants that have three different illnesses. The findings hold promise for revolutionizing orchard management practices, ultimately benefiting apple growers and sustaining the thriving apple industry in the Kashmir Valley.
ArticleNumber 700
Author Ahmed, Imtiaz
Yadav, Pramod Kumar
Author_xml – sequence: 1
  givenname: Imtiaz
  orcidid: 0000-0002-2590-6357
  surname: Ahmed
  fullname: Ahmed, Imtiaz
  email: imtiaz_02phd19@nitsri.ac.in
  organization: Department of Computer Science and Engineering, NIT Srinagar
– sequence: 2
  givenname: Pramod Kumar
  surname: Yadav
  fullname: Yadav, Pramod Kumar
  organization: Department of Computer Science and Engineering, NIT Srinagar
BookMark eNp9kD1PwzAQhi1UJErpH2CyxBxw7NiJx6rlSypqBzpbtnNpXaVOsNOBf09KkEAMHU53Or3PfbzXaOQbDwjdpuQ-JSR_iBmVuUwIzfqQXCb0Ao2pEGlSSJKP_tRXaBrjnhBCOckywcdIrQOUznbOb_GsbWvA61r7Di9cBB0hYufxKtidDmXEm3iSvWm7cx7wEnTwp4b2JV4AtL-dWb1tgut2h3iDLitdR5j-5AnaPD2-z1-S5er5dT5bJpayjCalhJzLwhRGFpqDlYwJawSIikgKJjWiEv1nWpeZMJKZtLDGFjmlVhaCS2ATdDfMbUPzcYTYqX1zDL5fqRjJeSYl42mvKgaVDU2MASplXac71_guaFerlKiTo2pwVPWOqm9HFe1R-g9tgzvo8HkeYgMUe7HfQvi96gz1BW_Qil8
CitedBy_id crossref_primary_10_3390_agriculture14101755
crossref_primary_10_1007_s41976_025_00192_w
crossref_primary_10_3390_math13050840
Cites_doi 10.1007/s11042-022-12687-5
10.1016/j.eswa.2020.113594
10.3390/drones6090230
10.1016/j.biosystemseng.2022.05.004
10.1016/j.biosystemseng.2022.09.006
10.1016/j.jfoodeng.2022.111213
10.1007/s00521-022-07744-x
10.1007/s11042-022-12868-2
10.1016/j.eswa.2022.118117
10.3389/fpls.2022.1064854
10.2139/ssrn.4250238
10.1111/exsy.13136
10.3389/fpls.2021.684328
10.1016/j.ifacol.2022.11.118
10.3390/agriculture12010009
10.1007/s00371-021-02164-9
10.1016/j.eswa.2022.118573
10.1016/j.iot.2022.100658
10.3390/agronomy12102363
10.1007/978-981-19-0707-4_72
10.1016/j.atech.2022.100166
10.1016/j.inpa.2021.01.005
10.1016/j.aac.2022.10.001
10.1016/j.compeleceng.2023.108582
10.1016/j.jksuci.2022.01.005
10.3389/fpls.2020.01086
10.1016/j.atech.2022.100146
10.1016/j.ailsci.2023.100057
10.3389/fpls.2022.946154
10.1016/j.agwat.2022.108064
10.1155/2022/8457173
10.3390/agriculture12060856
10.1007/s00521-021-06651-x
10.1016/j.atech.2022.100099
10.1007/s11119-021-09846-3
10.1016/j.patrec.2021.04.022
10.1016/j.aiia.2020.04.003
10.1007/s40030-022-00668-8
10.3390/fi14110341
10.1007/s11831-022-09761-4
10.1016/j.micpro.2021.104321
10.1016/j.jhazmat.2022.130568
10.1016/j.aiia.2022.09.007
10.3389/fpls.2022.802761
10.1016/j.atech.2023.100186
10.1016/j.inpa.2022.12.001
10.1007/s11119-021-09806-x
10.1186/s13007-021-00722-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s42979-024-02959-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Agriculture
EISSN 2661-8907
ExternalDocumentID 10_1007_s42979_024_02959_2
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAPOH
BSONS
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABRTQ
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2342-d9e7598b8b98a5ec9336cb6e6f092eb1b6f6959aad46b93b18cbc8722c98659e3
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Wed Aug 13 07:13:33 EDT 2025
Tue Jul 01 00:17:55 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
Fri Feb 21 02:40:05 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Deep learning
Convolutional neural network
Apple disease classification
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-d9e7598b8b98a5ec9336cb6e6f092eb1b6f6959aad46b93b18cbc8722c98659e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2590-6357
PQID 3075499351
PQPubID 6623307
ParticipantIDs proquest_journals_3075499351
crossref_citationtrail_10_1007_s42979_024_02959_2
crossref_primary_10_1007_s42979_024_02959_2
springer_journals_10_1007_s42979_024_02959_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References Ahmed, Yadav (CR48) 2022
Chu, Li, Lammers, Lu, Liu (CR40) 2021; 147
Zhang (CR13) 2022; 221
Maheswari, Raja, Apolo-Apolo, Pérez-Ruiz (CR41) 2021; 12
Liu, Qiao, Li, Zhang, Zhang, Wang (CR24) 2022; 12
Gajjar, Gajjar, Thakor, Patel, Ruparelia (CR30) 2022; 38
Yang, Hu, Yao, Gao, Liu (CR21) 2022; 2022
Habib, Sharma, Ibrahim, Ahmad, Qureshi, Ishfaq (CR46) 2022; 14
Ai, Chen, Yue, Wang (CR3) 2023; 445
Ji, Pan, Xu, Wang (CR23) 2022; 12
Jiang, Li, Safara (CR39) 2021
Tang, Zhou, Wang, Zhang (CR6) 2023; 211
Gill, Murugesan, Khehra, Sajja, Gupta, Bhatt (CR34) 2022; 81
Jia, Zhang, Shao, Ji, Hou (CR35) 2022; 23
Chen, Lu, Liu, Chen, Li, Qian (CR33) 2022; 81
Liu, Liang, Wang, Hu, Wan, Zheng (CR1) 2023; 106
Das, Esau, Zaman, Farooque, Schumann, Hennessy (CR10) 2023; 4
Zhang, Xun, Chen (CR14) 2022; 223
Georgantopoulos, Papadimitriou, Constantinopoulos, Manios (CR11) 2023; 4
da Silva Andrea, Nascimento, Mota, Oliveira (CR28) 2022
Zhang, Liang, Wang, Wang, Huang, Luo (CR18) 2022
Liu, Wang (CR43) 2021; 17
Wakchaure, Patle, Mahindrakar (CR8) 2023; 3
Akbar (CR27) 2022; 13
Saedi, Khosravi (CR5) 2020; 159
Orchi, Sadik, Khaldoun (CR22) 2022; 12
Sharma, Dharavath, Edla (CR7) 2023; 21
Ismail, Malik (CR17) 2022; 9
Fang, Zhao, Wang, Li, Zhu, Yu (CR25) 2022; 13
Chakraborty, Chandel, Jat, Tiwari, Rajwade, Subeesh (CR32) 2022; 34
Thakur, Khanna, Sheorey, Ojha (CR15) 2022; 208
Parmar, Patel, Tiwari (CR12) 2023; 4
Jia, Wang, Zhang, Yang, Hou, Zheng (CR16) 2022; 34
Lu (CR26) 2022; 13
Javaid, Haleem, Khan, Suman (CR38) 2022
Roy, Bose, Bhaduri (CR31) 2022; 34
Apolo-Apolo, Pérez-Ruiz, Martínez-Guanter, Valente (CR45) 2020; 11
Narmilan, Gonzalez, Salgadoe, Powell (CR29) 2022
Saleem, Potgieter, Arif (CR42) 2021; 22
Ding (CR19) 2022; 55
Dhanya (CR20) 2022; 6
Yang, Liu, Huang, Zhu, Zhao (CR2) 2023; 336
MacEachern, Esau, Schumann, Hennessy, Zaman (CR9) 2023; 3
Mahato, Pundir, Saxena (CR37) 2022; 103
Shao, Han, Zhang, Zhang, Wang, Zhang (CR4) 2023; 276
Gao, Shao, Xuan, Wang, Liu, Han (CR44) 2020; 4
Shaikh, Mir, Rasool, Sofi (CR36) 2022; 29
Ahmed, Yadav (CR47) 2022; 40
G Shao (2959_CR4) 2023; 276
W Jia (2959_CR35) 2022; 23
X Zhang (2959_CR14) 2022; 223
HS Gill (2959_CR34) 2022; 81
A Narmilan (2959_CR29) 2022
M Wakchaure (2959_CR8) 2023; 3
SH Parmar (2959_CR12) 2023; 4
J Lu (2959_CR26) 2022; 13
R Gajjar (2959_CR30) 2022; 38
P Chu (2959_CR40) 2021; 147
PS Thakur (2959_CR15) 2022; 208
M Akbar (2959_CR27) 2022; 13
AM Roy (2959_CR31) 2022; 34
M Javaid (2959_CR38) 2022
RP Sharma (2959_CR7) 2023; 21
J Liu (2959_CR43) 2021; 17
G Habib (2959_CR46) 2022; 14
S Fang (2959_CR25) 2022; 13
S Liu (2959_CR24) 2022; 12
M Zhang (2959_CR18) 2022
Y Tang (2959_CR6) 2023; 211
W Ji (2959_CR23) 2022; 12
CB MacEachern (2959_CR9) 2023; 3
W Jia (2959_CR16) 2022; 34
N Ismail (2959_CR17) 2022; 9
MH Saleem (2959_CR42) 2021; 22
Y Yang (2959_CR2) 2023; 336
SK Chakraborty (2959_CR32) 2022; 34
Z Gao (2959_CR44) 2020; 4
I Ahmed (2959_CR47) 2022; 40
SI Saedi (2959_CR5) 2020; 159
P Maheswari (2959_CR41) 2021; 12
W Chen (2959_CR33) 2022; 81
DK Mahato (2959_CR37) 2022; 103
L Liu (2959_CR1) 2023; 106
OE Apolo-Apolo (2959_CR45) 2020; 11
AK Das (2959_CR10) 2023; 4
VG Dhanya (2959_CR20) 2022; 6
H Jiang (2959_CR39) 2021
W Ai (2959_CR3) 2023; 445
H Orchi (2959_CR22) 2022; 12
C Zhang (2959_CR13) 2022; 221
PS Georgantopoulos (2959_CR11) 2023; 4
R Ding (2959_CR19) 2022; 55
TA Shaikh (2959_CR36) 2022; 29
R Yang (2959_CR21) 2022; 2022
MC da Silva Andrea (2959_CR28) 2022
I Ahmed (2959_CR48) 2022
References_xml – volume: 81
  start-page: 31363
  issue: 22
  year: 2022
  end-page: 31389
  ident: CR33
  article-title: CitrusYOLO: a algorithm for citrus detection under orchard environment based on YOLOv4
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12687-5
– volume: 159
  year: 2020
  ident: CR5
  article-title: A deep neural network approach towards real-time on-branch fruit recognition for precision horticulture
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113594
– year: 2022
  ident: CR29
  article-title: Detection of white leaf disease in sugarcane using machine learning techniques over UAV multispectral images
  publication-title: Drones
  doi: 10.3390/drones6090230
– volume: 221
  start-page: 164
  year: 2022
  end-page: 180
  ident: CR13
  article-title: Automatic flower cluster estimation in apple orchards using aerial and ground based point clouds
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2022.05.004
– volume: 223
  start-page: 249
  year: 2022
  end-page: 258
  ident: CR14
  article-title: Automated identification of citrus diseases in orchards using deep learning
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2022.09.006
– volume: 336
  start-page: 111213
  issue: April 2022
  year: 2023
  ident: CR2
  article-title: Automatic detection of multi-type defects on potatoes using multispectral imaging combined with a deep learning model
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2022.111213
– volume: 34
  start-page: 20539
  issue: 23
  year: 2022
  end-page: 20573
  ident: CR32
  article-title: Deep learning approaches and interventions for futuristic engineering in agriculture
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07744-x
– volume: 81
  start-page: 33269
  issue: 23
  year: 2022
  end-page: 33290
  ident: CR34
  article-title: Fruit recognition from images using deep learning applications
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-12868-2
– volume: 208
  start-page: 118117
  issue: February
  year: 2022
  ident: CR15
  article-title: Trends in vision-based machine learning techniques for plant disease identification: a systematic review
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118117
– volume: 13
  start-page: 1
  issue: November
  year: 2022
  end-page: 18
  ident: CR27
  article-title: An effective deep learning approach for the classification of Bacteriosis in peach leave
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1064854
– year: 2022
  ident: CR28
  article-title: Predictive framework of plant height in commercial cotton fields using a remote sensing and machine learning approach
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.4250238
– volume: 40
  year: 2022
  ident: CR47
  article-title: Plant disease detection using machine learning approaches
  publication-title: Expert Syst
  doi: 10.1111/exsy.13136
– volume: 12
  start-page: 1
  issue: June
  year: 2021
  end-page: 18
  ident: CR41
  article-title: Intelligent fruit yield estimation for orchards using deep learning based semantic segmentation techniques—a review
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.684328
– volume: 55
  start-page: 78
  issue: 32
  year: 2022
  end-page: 82
  ident: CR19
  article-title: Improved ResNet based apple leaf diseases identification
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2022.11.118
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 9
  ident: CR22
  article-title: On using artificial intelligence and the internet of things for crop disease detection: a contemporary survey
  publication-title: Agriculture
  doi: 10.3390/agriculture12010009
– volume: 38
  start-page: 2923
  issue: 8
  year: 2022
  end-page: 2938
  ident: CR30
  article-title: Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform
  publication-title: Vis Comput
  doi: 10.1007/s00371-021-02164-9
– volume: 211
  start-page: 118573
  issue: August 2022
  year: 2023
  ident: CR6
  article-title: Fruit detection and positioning technology for a C. Abel orchard based on improved YOLOv4-tiny model and binocular stereo vision
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118573
– volume: 21
  start-page: 100658
  issue: December 2022
  year: 2023
  ident: CR7
  article-title: IoFT-FIS: Internet of farm things based prediction for crop pest infestation using optimized fuzzy inference system
  publication-title: Internet of Things (Netherlands)
  doi: 10.1016/j.iot.2022.100658
– volume: 12
  start-page: 1
  issue: 10
  year: 2022
  end-page: 17
  ident: CR24
  article-title: An improved lightweight network for real-time detection of apple leaf diseases in natural scenes
  publication-title: Agronomy
  doi: 10.3390/agronomy12102363
– start-page: 803
  year: 2022
  end-page: 814
  ident: CR48
  article-title: An automated system for early identification of diseases in plant through machine learning
  publication-title: Soft computing: theories and applications
  doi: 10.1007/978-981-19-0707-4_72
– volume: 4
  start-page: 100166
  issue: November 2022
  year: 2023
  ident: CR10
  article-title: Machine vision system for real-time debris detection on mechanical wild blueberry harvesters
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100166
– volume: 9
  start-page: 24
  issue: 1
  year: 2022
  end-page: 37
  ident: CR17
  article-title: Real-time visual inspection system for grading fruits using computer vision and deep learning techniques
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2021.01.005
– year: 2022
  ident: CR38
  article-title: Understanding the potential applications of artificial intelligence in agriculture sector
  publication-title: Adv Agrochem
  doi: 10.1016/j.aac.2022.10.001
– volume: 106
  start-page: 108582
  issue: January
  year: 2023
  ident: CR1
  article-title: An improved YOLOv5-based approach to soybean phenotype information perception
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2023.108582
– volume: 34
  start-page: 5156
  issue: 8
  year: 2022
  end-page: 5169
  ident: CR16
  article-title: A fast and efficient green apple object detection model based on Foveabox
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2022.01.005
– volume: 11
  start-page: 1
  issue: July
  year: 2020
  end-page: 15
  ident: CR45
  article-title: A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.01086
– volume: 4
  start-page: 100146
  issue: November 2022
  year: 2023
  ident: CR11
  article-title: Smart agricultural technology a multispectral dataset for the detection of and in tomato plants
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100146
– volume: 3
  start-page: 100057
  issue: November 2022
  year: 2023
  ident: CR8
  article-title: Artificial intelligence in the life sciences application of ai techniques and robotics in agriculture: a review
  publication-title: Artif Intell Life Sci
  doi: 10.1016/j.ailsci.2023.100057
– volume: 13
  start-page: 1
  issue: November
  year: 2022
  end-page: 17
  ident: CR26
  article-title: Citrus green fruit detection via improved feature network extraction
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.946154
– volume: 276
  start-page: 108064
  issue: November 2022
  year: 2023
  ident: CR4
  article-title: Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.108064
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR21
  article-title: Fruit target detection based on BCo-YOLOv5 model
  publication-title: Mob Inf Syst
  doi: 10.1155/2022/8457173
– volume: 12
  start-page: 856
  issue: 6
  year: 2022
  ident: CR23
  article-title: A real-time apple targets detection method for picking robot based on ShufflenetV2-YOLOX
  publication-title: Agriculture
  doi: 10.3390/agriculture12060856
– volume: 34
  start-page: 3895
  issue: 5
  year: 2022
  end-page: 3921
  ident: CR31
  article-title: A fast accurate fine-grain object detection model based on YOLOv4 deep neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06651-x
– volume: 3
  start-page: 100099
  issue: February 2022
  year: 2023
  ident: CR9
  article-title: Detection of fruit maturity stage and yield estimation in wild blueberry using deep learning convolutional neural networks
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100099
– volume: 23
  start-page: 492
  issue: 2
  year: 2022
  end-page: 513
  ident: CR35
  article-title: RS-Net: robust segmentation of green overlapped apples
  publication-title: Precis Agric
  doi: 10.1007/s11119-021-09846-3
– volume: 147
  start-page: 206
  year: 2021
  end-page: 211
  ident: CR40
  article-title: Deep learning-based apple detection using a suppression mask R-CNN
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2021.04.022
– volume: 4
  start-page: 31
  year: 2020
  end-page: 38
  ident: CR44
  article-title: Real-time hyperspectral imaging for the in-field estimation of strawberry ripeness with deep learning
  publication-title: Artif Intell Agric
  doi: 10.1016/j.aiia.2020.04.003
– volume: 103
  start-page: 975
  issue: 4
  year: 2022
  end-page: 987
  ident: CR37
  article-title: An improved deep convolutional neural network for image-based apple plant leaf disease detection and identification
  publication-title: J Inst Eng Ser A
  doi: 10.1007/s40030-022-00668-8
– volume: 14
  start-page: 341
  issue: 11
  year: 2022
  ident: CR46
  article-title: Blockchain technology: benefits, challenges, applications, and integration of blockchain technology with cloud computing
  publication-title: Future Internet
  doi: 10.3390/fi14110341
– volume: 29
  start-page: 4557
  issue: 7
  year: 2022
  end-page: 4597
  ident: CR36
  article-title: Machine learning for smart agriculture and precision farming: towards making the fields talk
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09761-4
– year: 2021
  ident: CR39
  article-title: IoT-based agriculture: deep learning in detecting apple fruit diseases
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2021.104321
– volume: 445
  start-page: 130568
  issue: November 2022
  year: 2023
  ident: CR3
  article-title: Application of hyperspectral and deep learning in farmland soil microplastic detection
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.130568
– volume: 6
  start-page: 211
  year: 2022
  end-page: 229
  ident: CR20
  article-title: Deep learning based computer vision approaches for smart agricultural applications
  publication-title: Artif Intell Agric
  doi: 10.1016/j.aiia.2022.09.007
– volume: 13
  start-page: 1
  issue: March
  year: 2022
  end-page: 12
  ident: CR25
  article-title: Surface-enhanced raman scattering spectroscopy combined with chemical imaging analysis for detecting apple valsa canker at an early stage
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.802761
– volume: 4
  start-page: 100186
  issue: November 2022
  year: 2023
  ident: CR12
  article-title: Smart Agricultural Technology Assessment of crop water requirement of maize using remote sensing and GIS
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2023.100186
– year: 2022
  ident: CR18
  article-title: Damaged apple detection with a hybrid YOLOv3 algorithm
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2022.12.001
– volume: 22
  start-page: 2053
  issue: 6
  year: 2021
  end-page: 2091
  ident: CR42
  article-title: Automation in agriculture by machine and deep learning techniques: a review of recent developments
  publication-title: Precis Agric
  doi: 10.1007/s11119-021-09806-x
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  end-page: 18
  ident: CR43
  article-title: Plant diseases and pests detection based on deep learning: a review
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00722-9
– volume: 13
  start-page: 1
  issue: November
  year: 2022
  ident: 2959_CR26
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.946154
– volume: 34
  start-page: 3895
  issue: 5
  year: 2022
  ident: 2959_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-021-06651-x
– volume: 14
  start-page: 341
  issue: 11
  year: 2022
  ident: 2959_CR46
  publication-title: Future Internet
  doi: 10.3390/fi14110341
– volume: 3
  start-page: 100057
  issue: November 2022
  year: 2023
  ident: 2959_CR8
  publication-title: Artif Intell Life Sci
  doi: 10.1016/j.ailsci.2023.100057
– year: 2021
  ident: 2959_CR39
  publication-title: Microprocess Microsyst
  doi: 10.1016/j.micpro.2021.104321
– volume: 211
  start-page: 118573
  issue: August 2022
  year: 2023
  ident: 2959_CR6
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118573
– volume: 4
  start-page: 100146
  issue: November 2022
  year: 2023
  ident: 2959_CR11
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100146
– volume: 38
  start-page: 2923
  issue: 8
  year: 2022
  ident: 2959_CR30
  publication-title: Vis Comput
  doi: 10.1007/s00371-021-02164-9
– volume: 13
  start-page: 1
  issue: November
  year: 2022
  ident: 2959_CR27
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.1064854
– volume: 12
  start-page: 1
  issue: 10
  year: 2022
  ident: 2959_CR24
  publication-title: Agronomy
  doi: 10.3390/agronomy12102363
– volume: 29
  start-page: 4557
  issue: 7
  year: 2022
  ident: 2959_CR36
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09761-4
– volume: 106
  start-page: 108582
  issue: January
  year: 2023
  ident: 2959_CR1
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2023.108582
– volume: 21
  start-page: 100658
  issue: December 2022
  year: 2023
  ident: 2959_CR7
  publication-title: Internet of Things (Netherlands)
  doi: 10.1016/j.iot.2022.100658
– start-page: 803
  volume-title: Soft computing: theories and applications
  year: 2022
  ident: 2959_CR48
  doi: 10.1007/978-981-19-0707-4_72
– volume: 23
  start-page: 492
  issue: 2
  year: 2022
  ident: 2959_CR35
  publication-title: Precis Agric
  doi: 10.1007/s11119-021-09846-3
– volume: 55
  start-page: 78
  issue: 32
  year: 2022
  ident: 2959_CR19
  publication-title: IFAC PapersOnLine
  doi: 10.1016/j.ifacol.2022.11.118
– volume: 9
  start-page: 24
  issue: 1
  year: 2022
  ident: 2959_CR17
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2021.01.005
– volume: 147
  start-page: 206
  year: 2021
  ident: 2959_CR40
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2021.04.022
– volume: 223
  start-page: 249
  year: 2022
  ident: 2959_CR14
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2022.09.006
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 2959_CR22
  publication-title: Agriculture
  doi: 10.3390/agriculture12010009
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 2959_CR43
  publication-title: Plant Methods
  doi: 10.1186/s13007-021-00722-9
– year: 2022
  ident: 2959_CR29
  publication-title: Drones
  doi: 10.3390/drones6090230
– volume: 221
  start-page: 164
  year: 2022
  ident: 2959_CR13
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2022.05.004
– volume: 4
  start-page: 31
  year: 2020
  ident: 2959_CR44
  publication-title: Artif Intell Agric
  doi: 10.1016/j.aiia.2020.04.003
– volume: 159
  year: 2020
  ident: 2959_CR5
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113594
– volume: 103
  start-page: 975
  issue: 4
  year: 2022
  ident: 2959_CR37
  publication-title: J Inst Eng Ser A
  doi: 10.1007/s40030-022-00668-8
– volume: 4
  start-page: 100186
  issue: November 2022
  year: 2023
  ident: 2959_CR12
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2023.100186
– volume: 4
  start-page: 100166
  issue: November 2022
  year: 2023
  ident: 2959_CR10
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100166
– year: 2022
  ident: 2959_CR28
  publication-title: SSRN Electron J
  doi: 10.2139/ssrn.4250238
– volume: 22
  start-page: 2053
  issue: 6
  year: 2021
  ident: 2959_CR42
  publication-title: Precis Agric
  doi: 10.1007/s11119-021-09806-x
– volume: 3
  start-page: 100099
  issue: February 2022
  year: 2023
  ident: 2959_CR9
  publication-title: Smart Agric Technol
  doi: 10.1016/j.atech.2022.100099
– volume: 13
  start-page: 1
  issue: March
  year: 2022
  ident: 2959_CR25
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.802761
– volume: 11
  start-page: 1
  issue: July
  year: 2020
  ident: 2959_CR45
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.01086
– year: 2022
  ident: 2959_CR18
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2022.12.001
– volume: 12
  start-page: 856
  issue: 6
  year: 2022
  ident: 2959_CR23
  publication-title: Agriculture
  doi: 10.3390/agriculture12060856
– volume: 6
  start-page: 211
  year: 2022
  ident: 2959_CR20
  publication-title: Artif Intell Agric
  doi: 10.1016/j.aiia.2022.09.007
– volume: 40
  year: 2022
  ident: 2959_CR47
  publication-title: Expert Syst
  doi: 10.1111/exsy.13136
– volume: 34
  start-page: 5156
  issue: 8
  year: 2022
  ident: 2959_CR16
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2022.01.005
– volume: 12
  start-page: 1
  issue: June
  year: 2021
  ident: 2959_CR41
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2021.684328
– volume: 445
  start-page: 130568
  issue: November 2022
  year: 2023
  ident: 2959_CR3
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.130568
– volume: 2022
  start-page: 1
  year: 2022
  ident: 2959_CR21
  publication-title: Mob Inf Syst
  doi: 10.1155/2022/8457173
– volume: 81
  start-page: 33269
  issue: 23
  year: 2022
  ident: 2959_CR34
  publication-title: Multimedia Tools Appl
  doi: 10.1007/s11042-022-12868-2
– volume: 276
  start-page: 108064
  issue: November 2022
  year: 2023
  ident: 2959_CR4
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2022.108064
– year: 2022
  ident: 2959_CR38
  publication-title: Adv Agrochem
  doi: 10.1016/j.aac.2022.10.001
– volume: 81
  start-page: 31363
  issue: 22
  year: 2022
  ident: 2959_CR33
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12687-5
– volume: 208
  start-page: 118117
  issue: February
  year: 2022
  ident: 2959_CR15
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118117
– volume: 34
  start-page: 20539
  issue: 23
  year: 2022
  ident: 2959_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07744-x
– volume: 336
  start-page: 111213
  issue: April 2022
  year: 2023
  ident: 2959_CR2
  publication-title: J Food Eng
  doi: 10.1016/j.jfoodeng.2022.111213
SSID ssj0002504465
Score 2.303572
Snippet Apple cultivation in the Kashmir Valley is a cornerstone of the region’s agriculture, contributing significantly to the economy through substantial annual...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 700
SubjectTerms Agribusiness
Agricultural production
Agriculture
Algorithms
Apples
Artificial neural networks
Automation
Color imagery
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Crop diseases
Crops
Data Structures and Information Theory
Datasets
Deep learning
Defoliation
Disease prevention
Effectiveness
Illnesses
Image quality
Infections
Information Systems and Communication Service
Machine learning
Neural networks
Original Research
Pattern Recognition and Graphics
Plant diseases
Remote sensing
Security for Communication and Computing Application
Signs and symptoms
Software Engineering/Programming and Operating Systems
Vision
Title Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms
URI https://link.springer.com/article/10.1007/s42979-024-02959-2
https://www.proquest.com/docview/3075499351
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RTjpRy4QQRN2yw5ocEYExIwIZB2q5LUHUijjK38f5ws2wQSO_TSppFqu7bj10fIqSsOT7RyAMQ5sEQqzrTgOVNg80KjvUki1-_88Ci6r8l9P-2HgNsklFXOdKJX1PmndTHyC5RFd5TBva9GX8yhRrnsaoDQWCV1VMESD1_169vH3vM8yuIGdCUeTxINEWdKpf3QOeP751AZNxVDM4WXi4fx39Zp4XL-yZJ649PZJBvBa6StKZu3yAqU22S9NRiHyRmwQ7Le2OVcXBUzda4lUIdHVNH2NAMzoe8lfRpPm6yoLxSgD76QEmiYsTqgusxpG2C0uNMaDpAI1dvHZJe8dm5fbrosoCcwy-OEs1xBM1XSSKOkTsGqOBbWCBDFpeKooY0oBH6z1nkijIpNJK2xssm5VVKkCuI9Uis_S9gnNI51FKdQRBpQsVpAHipII6SoLIxI8waJZlTLbBgt7hAuhtl8KLKndIaUzjylM94gZ_N3RtPBGktXH82YkYWfbJItRKJBzmcMWjz-f7eD5bsdkjXuZcKV-R2RWjX-hmN0PSpzQlZl5-4kSNkPwcrUVg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcaaMEHOIEF61079gFVESGktCkcWik3Y3tnA1LZhiQI8af6Gzv27iYCid562Ms-5vD525mx5wXwIiaHF87EAcQl8kIbwZ0SJTcYysqRvSmyWO88OVbj0-LTVE634KKrhYlplZ1OTIq6PA_xjPwNcTFuZUj2_vwnj1OjYnS1G6HR0OIQ__ymLdvy3cGQ1velEKMPJ-_HvJ0qwIPIC8FLg31ptNfeaCcx0I5eBa9QVW-NIM3lVaWMNM6VhfIm95kOPui-EMFoJQ3mJPcG3Czy3MQ_So8-rs90YjuwIk2vJLMnuDFy2tbppGo9Uv19w8ko0hVP38TftnDj4P4Tk02mbnQP7rY-Khs0pLoPW1g_gDuD2aLt04EPwX5ZxAhPzJlm0ZFFFqcfrdiwifcs2feafV40JV0spSWwSUrbRNZ2dJ0xV5dsiDjf3BmczQjy1bcfy0dwei2oPobt-rzGHWB57rJcYpU5JDUekBhjUGaEqK68kmUPsg41G9pG5nGexpldt2BOSFtC2iakrejBq_U386aNx5Vv73aLYdtfemk3BOzB626BNo__L-3J1dKew63xyeTIHh0cHz6F2yLxIyYY7sL2avEL98jpWflniWkMvl43tS8B7EgPBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Apple+Plant+Diseases+in+Orchards+Using+Machine+Learning+and+Deep+Learning+Algorithms&rft.jtitle=SN+computer+science&rft.au=Ahmed%2C+Imtiaz&rft.au=Yadav%2C+Pramod+Kumar&rft.date=2024-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2662-995X&rft.eissn=2661-8907&rft.volume=5&rft.issue=6&rft.spage=700&rft_id=info:doi/10.1007%2Fs42979-024-02959-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon