Effects of Fe on Oxidation of Ni-20Cr and Ni-30Cr Alloys at 800 °C in Wet CO2 Gas

The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO 2 -20%H 2 O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys develo...

Full description

Saved in:
Bibliographic Details
Published inHigh temperature corrosion of materials Vol. 94; no. 3-4; pp. 219 - 233
Main Authors Xie, Yun, Zhang, Jianqiang, Young, David J.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO 2 -20%H 2 O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO 2 are shown to be explained by changed oxide transport properties.
AbstractList The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO 2 -20%H 2 O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO 2 are shown to be explained by changed oxide transport properties.
The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO2-20%H2O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO2 are shown to be explained by changed oxide transport properties.
Author Zhang, Jianqiang
Young, David J.
Xie, Yun
Author_xml – sequence: 1
  givenname: Yun
  surname: Xie
  fullname: Xie, Yun
  organization: School of Materials Science and Engineering, University of New South Wales
– sequence: 2
  givenname: Jianqiang
  orcidid: 0000-0002-9331-4601
  surname: Zhang
  fullname: Zhang, Jianqiang
  email: j.q.zhang@unsw.edu.au
  organization: School of Materials Science and Engineering, University of New South Wales
– sequence: 3
  givenname: David J.
  surname: Young
  fullname: Young, David J.
  organization: School of Materials Science and Engineering, University of New South Wales
BookMark eNp9kM9KAzEQh4NUsFZfwFPAc3TyZzfZY1naKhR7sKC3kGazsqXu1mQL9m18BJ-hT2a2Kwgeesovw3wzw3eJBnVTO4RuKNxRAHkfKAWVEGBAIMuUJOwMDWkiORFKZQM0BOBApITXC3QZwhogYiwboudJWTrbBtyUeOpwU-PFZ1WYtooplp4qwiD32NRFl3mXx5tNsw_YtFgBHL4O3zmuavziWpwvGJ6ZcIXOS7MJ7vr3HaHldLLMH8h8MXvMx3NiGReMqNRKR4VVkDBnuTScFqVQXGaqLCjl8W9EKUBa56xyRtpVWsjVSqQZpC7jI3Tbj9365mPnQqvXzc7XcaNmIgFBmeAsdrG-y_omBO9KvfXVu_F7TUF37nTvTkd3-uhOd5D6B9mqPUppvak2p1HeoyHuqd-c_7vqBPUDQniCEw
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_03_078
crossref_primary_10_1007_s11085_020_10014_7
crossref_primary_10_1016_j_corsci_2025_112746
crossref_primary_10_1016_j_corsci_2023_111438
crossref_primary_10_1016_j_corsci_2024_112050
crossref_primary_10_1016_j_heliyon_2023_e22169
Cites_doi 10.15302/J-ENG-2015031
10.3184/096034009X438185
10.1002/bbpc.19590630713
10.3184/096034005782744443
10.1007/s11085-010-9215-5
10.1179/mht.2000.17.2.008
10.1016/j.corsci.2020.108777
10.1016/S0010-938X(65)90500-7
10.4028/www.scientific.net/MSF.696.200
10.1016/j.corsci.2006.02.002
10.1016/j.corsci.2019.04.007
10.3139/146.110271
10.1016/S0364-5916(02)00037-8
10.1179/0960340914Z.000000000108
10.1149/1.2779605
10.1016/j.scriptamat.2007.06.050
10.1016/j.msea.2007.05.035
10.4028/www.scientific.net/MSF.595-598.1189
10.1149/1.2425624
10.1007/s11085-018-9873-2
10.1016/j.corsci.2018.02.022
10.1016/j.corsci.2017.08.003
10.1007/BF00665448
10.4028/www.scientific.net/MSF.369-372.231
10.1016/j.corsci.2011.03.015
10.1016/j.corsci.2018.10.029
10.1361/10599490524039
10.1016/j.corsci.2018.03.023
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11085-020-09987-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1573-4889
2731-8400
EndPage 233
ExternalDocumentID 10_1007_s11085_020_09987_2
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP150100669
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0VY
123
1N0
1SB
2.D
203
28-
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DL5
DNIVK
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~EX
AAYXX
ACSTC
ADHKG
AGQPQ
AHPBZ
AYFIA
CITATION
0R~
406
AACDK
AAJBT
AAPKM
AASML
AATNV
AAYZH
ABAKF
ABBRH
ABDBE
ABFSG
ABRTQ
ACAOD
ACPIV
ACZOJ
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AGQEE
AHWEU
AIGIU
AIXLP
DDRTE
DPUIP
EBLON
JZLTJ
NPVJJ
PT4
SJYHP
ID FETCH-LOGICAL-c2342-86c7e14c8052ec37a31df483798fd113a31a4f407ceec8ea7cb6d7bb46906e93
IEDL.DBID U2A
ISSN 0030-770X
2731-8397
IngestDate Fri Jul 25 00:54:41 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 04:06:06 EDT 2025
Fri Feb 21 02:34:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Water vapour
Alloy
Internal oxidation
High temperature oxidation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-86c7e14c8052ec37a31df483798fd113a31a4f407ceec8ea7cb6d7bb46906e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9331-4601
PQID 2450412432
PQPubID 2043552
PageCount 15
ParticipantIDs proquest_journals_2450412432
crossref_primary_10_1007_s11085_020_09987_2
crossref_citationtrail_10_1007_s11085_020_09987_2
springer_journals_10_1007_s11085_020_09987_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle High temperature corrosion of materials
PublicationTitleAbbrev Oxid Met
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corrosion Science48, 3428–3454 (2006).
M.-C. Demizieux, C. Desgranges, L. Martinelli, J. Favergeon and K. Ginestar, Morphology and buckling of the oxide scale after Fe-9Cr steel oxidation in water vapor environment, Oxidation of Metals91, 191–212 (2019).
E. A. Polman, T. Fransen and P. J. Gellings, Oxidation kinetics of chromium and morphological phenomena, Oxidation of Metals32, 433–447 (1989).
C. T. Fujii and R. A. Meussner, Oxide structures produced on iron-chromium alloys by a dissociative mechanism, Journal of the Electrochemical Society110, 1195–1204 (1963).
Y.-X. Xu, W.-Y. Li and X.-W. Yang, Influence of alloyed Fe on corrosion of Ni-Cr alloys in molten silicates and the effects of pre-oxidation treatment, Corrosion Science134, 179–188 (2018).
D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels, Corrosion Science53, 2306–2317 (2011).
R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance14, 281–292 (2005).
C. Wagner, Reaktionstypen bei der oxydation von legierungen, Zeitschrift für Elektrochemie63, 772–782 (1959).
J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, CALPHAD26, 273–312 (2002).
A. Galerie, J. P. Petit, Y. Wouters, J. Mougin, A. Srisrual and P. Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Materials Science Forum696, 200–205 (2011).
J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering, A477, 259–270 (2008).
C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society99, 369–380 (1952).
F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above, Engineering1, 211–224 (2015).
G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. Pirón Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys, Oxidation of Metals74, 319–340 (2010).
Y. Xie, T. D. Nguyen, J. Zhang and D. J. Young, Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800°C, Corrosion Science146, 28–43 (2019).
A. Rahmel and J. Tobolski, Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen, Corrosion Science5, 333–346 (1965).
J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, The oxidation behaviour of the 9%Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments, International Journal of Materials Research101, 287–299 (2010).
A. Galerie, Y. Wouters and M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed? Materials Science Forum369–372, 231–238 (2001).
Y. Xie, T. Liang, J. Zhang and D. J. Young, Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800°C in dry CO2 gas, Corrosion Science 173, 108777 (2020).
Y. Xie, J. Zhang and D. J. Young, Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650°C, Corrosion Science136, 311–325 (2018).
G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier, Inverse growth transport in thermal chromia scales on Fe-15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scripta Materialia57, 671–674 (2007).
J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments, Materials at High Temperatures26, 63–72 (2009).
M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C, Materials at High Temperatures22, 213–221 (2005).
Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan and W.-Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000 °C, Corrosion Science127, 10–20 (2017).
S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres, Materials at High Temperatures17, 231–234 (2000).
Y. Xie, J. Zhang, D. J. Young and W. Zheng, Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700 °C, Corrosion Science154, 129–143 (2019).
D. Simon, B. Gorr, M. Hänsel, V. Shemet, H. J. Christ and W. J. Quadakkers, Effect of in situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000°C in atmospheres with and without water vapour, Materials at High Temperatures32, 238–247 (2015).
D. J. Young, Effects of water vapour on the oxidation of chromia formers, Materials Science Forum595, 1189–1197 (2008).
9987_CR13
9987_CR12
9987_CR15
9987_CR14
9987_CR17
9987_CR16
9987_CR19
9987_CR18
9987_CR11
9987_CR10
9987_CR7
9987_CR24
9987_CR8
9987_CR23
9987_CR9
9987_CR26
9987_CR25
9987_CR28
9987_CR27
9987_CR1
9987_CR2
9987_CR3
9987_CR4
9987_CR5
9987_CR6
9987_CR20
9987_CR22
9987_CR21
References_xml – reference: C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society99, 369–380 (1952).
– reference: Y. Xie, T. Liang, J. Zhang and D. J. Young, Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800°C in dry CO2 gas, Corrosion Science 173, 108777 (2020).
– reference: J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering, A477, 259–270 (2008).
– reference: S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres, Materials at High Temperatures17, 231–234 (2000).
– reference: E. A. Polman, T. Fransen and P. J. Gellings, Oxidation kinetics of chromium and morphological phenomena, Oxidation of Metals32, 433–447 (1989).
– reference: M.-C. Demizieux, C. Desgranges, L. Martinelli, J. Favergeon and K. Ginestar, Morphology and buckling of the oxide scale after Fe-9Cr steel oxidation in water vapor environment, Oxidation of Metals91, 191–212 (2019).
– reference: A. Rahmel and J. Tobolski, Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen, Corrosion Science5, 333–346 (1965).
– reference: Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan and W.-Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000 °C, Corrosion Science127, 10–20 (2017).
– reference: G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. Pirón Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys, Oxidation of Metals74, 319–340 (2010).
– reference: D. Simon, B. Gorr, M. Hänsel, V. Shemet, H. J. Christ and W. J. Quadakkers, Effect of in situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000°C in atmospheres with and without water vapour, Materials at High Temperatures32, 238–247 (2015).
– reference: R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance14, 281–292 (2005).
– reference: Y. Xie, T. D. Nguyen, J. Zhang and D. J. Young, Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800°C, Corrosion Science146, 28–43 (2019).
– reference: A. Galerie, J. P. Petit, Y. Wouters, J. Mougin, A. Srisrual and P. Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Materials Science Forum696, 200–205 (2011).
– reference: J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments, Materials at High Temperatures26, 63–72 (2009).
– reference: J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corrosion Science48, 3428–3454 (2006).
– reference: Y.-X. Xu, W.-Y. Li and X.-W. Yang, Influence of alloyed Fe on corrosion of Ni-Cr alloys in molten silicates and the effects of pre-oxidation treatment, Corrosion Science134, 179–188 (2018).
– reference: Y. Xie, J. Zhang and D. J. Young, Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650°C, Corrosion Science136, 311–325 (2018).
– reference: C. Wagner, Reaktionstypen bei der oxydation von legierungen, Zeitschrift für Elektrochemie63, 772–782 (1959).
– reference: J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, CALPHAD26, 273–312 (2002).
– reference: A. Galerie, Y. Wouters and M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed? Materials Science Forum369–372, 231–238 (2001).
– reference: J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, The oxidation behaviour of the 9%Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments, International Journal of Materials Research101, 287–299 (2010).
– reference: F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above, Engineering1, 211–224 (2015).
– reference: Y. Xie, J. Zhang, D. J. Young and W. Zheng, Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700 °C, Corrosion Science154, 129–143 (2019).
– reference: D. J. Young, Effects of water vapour on the oxidation of chromia formers, Materials Science Forum595, 1189–1197 (2008).
– reference: D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels, Corrosion Science53, 2306–2317 (2011).
– reference: C. T. Fujii and R. A. Meussner, Oxide structures produced on iron-chromium alloys by a dissociative mechanism, Journal of the Electrochemical Society110, 1195–1204 (1963).
– reference: M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C, Materials at High Temperatures22, 213–221 (2005).
– reference: G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier, Inverse growth transport in thermal chromia scales on Fe-15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scripta Materialia57, 671–674 (2007).
– ident: 9987_CR3
  doi: 10.15302/J-ENG-2015031
– ident: 9987_CR10
  doi: 10.3184/096034009X438185
– ident: 9987_CR18
  doi: 10.1002/bbpc.19590630713
– ident: 9987_CR12
  doi: 10.3184/096034005782744443
– ident: 9987_CR5
  doi: 10.1007/s11085-010-9215-5
– ident: 9987_CR13
  doi: 10.1179/mht.2000.17.2.008
– ident: 9987_CR9
  doi: 10.1016/j.corsci.2020.108777
– ident: 9987_CR20
  doi: 10.1016/S0010-938X(65)90500-7
– ident: 9987_CR27
  doi: 10.4028/www.scientific.net/MSF.696.200
– ident: 9987_CR22
  doi: 10.1016/j.corsci.2006.02.002
– ident: 9987_CR8
  doi: 10.1016/j.corsci.2019.04.007
– ident: 9987_CR7
  doi: 10.3139/146.110271
– ident: 9987_CR17
  doi: 10.1016/S0364-5916(02)00037-8
– ident: 9987_CR15
  doi: 10.1179/0960340914Z.000000000108
– ident: 9987_CR19
  doi: 10.1149/1.2779605
– ident: 9987_CR26
  doi: 10.1016/j.scriptamat.2007.06.050
– ident: 9987_CR14
  doi: 10.1016/j.msea.2007.05.035
– ident: 9987_CR16
  doi: 10.4028/www.scientific.net/MSF.595-598.1189
– ident: 9987_CR21
  doi: 10.1149/1.2425624
– ident: 9987_CR25
  doi: 10.1007/s11085-018-9873-2
– ident: 9987_CR2
  doi: 10.1016/j.corsci.2018.02.022
– ident: 9987_CR4
  doi: 10.1016/j.corsci.2017.08.003
– ident: 9987_CR28
  doi: 10.1007/BF00665448
– ident: 9987_CR23
  doi: 10.4028/www.scientific.net/MSF.369-372.231
– ident: 9987_CR6
  doi: 10.1016/j.corsci.2011.03.015
– ident: 9987_CR11
  doi: 10.1016/j.corsci.2018.10.029
– ident: 9987_CR1
  doi: 10.1361/10599490524039
– ident: 9987_CR24
  doi: 10.1016/j.corsci.2018.03.023
SSID ssj0010029
ssj0003212242
Score 2.2616293
Snippet The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO 2 -20%H 2 O gas. All 20Cr alloys...
The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO2-20%H2O gas. All 20Cr alloys...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Alloy development
Alloying effects
Carbon dioxide
Chemistry and Materials Science
Chromium oxides
Corrosion and Coatings
Inorganic Chemistry
Iron
Materials Science
Metallic Materials
Nickel chromium alloys
Original Paper
Oxidation
Scale (corrosion)
Spallation
Transport properties
Tribology
Water vapor
Title Effects of Fe on Oxidation of Ni-20Cr and Ni-30Cr Alloys at 800 °C in Wet CO2 Gas
URI https://link.springer.com/article/10.1007/s11085-020-09987-2
https://www.proquest.com/docview/2450412432
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQOwADggKiUCoPbBCpsd2kGdOoPwKpHWhFmaL4J1KlKkVNkOBteASeoU_G2UlaQIDEFCd2PJztu-905-8QunI9rgj4Phb1lLJY3PIsTgi4KtKlDmUaAxi2z5EznLLbWXtWXApLy2z3MiRpNPX2sptJlNfuDqAaOBqgeKtt8N11IteU-JvYgQ405WSMLcCOrVlxVebnOb6aoy3G_BYWNdamf4gOCpiI_Xxdj9COSmpoNyirs9XQ_iciwWN0n5MQp3gZ477CywSPX-Z5tST9aTSHbRqscJRI3aa67S8Wy9cURxkGMLd-W78HeJ7gB5XhYEzwIEpP0KTfmwRDqyiXYAlCGeg1R7jKZkIXKVCCuhG1ZawJ471OLG2bwnvEYnDgwC6KjopcwR3pcq4dZEd59BRVkmWizhCOiaKyY1NFBGeKxR3O3FgSDsdbKil4Hdml0EJRUInrihaLcEuCrAUdgqBDI-iQ1NH15p-nnEjjz9GNci3C4lClIWFtUyybQvdNuT7b7t9nO__f8Au0R_QWMSl7DVTJVs_qEqBHxpuo6ve73ZF-Dh7vek2z8z4A71fNiA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELYQDIUBQQFRKOCBDSI1tpufsYooBUo70IpuUfwTqVKVoCZI8DY8As_QJ-PsJC0gQGKzY8fD-c7-Tuf7DqFz1-eKgO9jUV8pi8Ut3-KEgKsiXepQpjGAYfscOL0xu520J2VSWFa9dq9CkuakXiW7mYfy2t0BVAOmAQfvBoABT-vymHSWsQMdaCrIGFuAHVuTMlXm5zW-XkcrjPktLGpum-4O2i5hIu4U-7qL1lRSR7Wgqs5WR1ufiAT30ENBQpzhNMZdhdMED1-mRbUk_WkwBTUN5jhKpG5T3e7MZulrhqMcA5hbvC3eAzxN8KPKcTAk-DrK9tGoezUKelZZLsEShDI41xzhKpsJXaRACepG1JaxJoz3vVjaNoV-xGJw4OBeFJ6KXMEd6XKuHWRH-fQArSdpog4Rjomi0rOpIoIzxWKPMzeWhIN5SyUFbyC7ElooSipxXdFiFq5IkLWgQxB0aAQdkga6WP7zVBBp_Dm7We1FWBpVFhLWNsWyKQxfVvuzGv59taP_TT9Dtd7ovh_2bwZ3x2iTaHUxz_eaaD2fP6sTgCE5PzVa9wHj6c1r
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6i4OMgWhWrVXPwpku7SbrbPZbVWh-0gi32tmxeUCi7pV1B_40_wd_QX-ZkH20VFbwlm2wOk0nyDTPzDULnrscVAdvHop5SFtM1z-KEgKkiXepQZjBAyvbZcdp9djeoD5ay-NNo98IlmeU0GJamKKmOpa4uEt_SoHlj-gDCgWMCl_AaM9nAoNF90pz7EYzTKSNmrAGOrA3ytJmf1_j6NC3w5jcXafrytHbQdg4ZcTPb4120oqIS2vCLSm0ltLVEKriHnjJC4imONW4pHEe4-zrMKieZT50hqKw_wWEkTZuadnM0it-mOEwwALvZ--zDx8MIP6sE-12Cb8LpPuq1rnt-28pLJ1iCUAZ3nCNcZTNhChYoQd2Q2lIb8nivoaVtU-iHTIMxB2-kaKjQFdyRLufGWHaURw_QahRH6hBhTRSVDZsqIjhTTDc4c7UkHI66VFLwMrILoQUipxU31S1GwYIQ2Qg6AEEHqaADUkYX83_GGanGn7MrxV4E-QGbBoTV08LZFIYvi_1ZDP--2tH_pp-h9cerVvBw27k_RpvEaEsayVdBq8nkRZ0AIkn4aap0nx_n0Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Fe+on+Oxidation+of+Ni-20Cr+and+Ni-30Cr+Alloys+at+800+%C2%B0C+in+Wet+CO2+Gas&rft.jtitle=High+temperature+corrosion+of+materials&rft.au=Xie+Yun&rft.au=Zhang%2C+Jianqiang&rft.au=Young%2C+David+J&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=2731-8397&rft.eissn=2731-8400&rft.volume=94&rft.issue=3-4&rft.spage=219&rft.epage=233&rft_id=info:doi/10.1007%2Fs11085-020-09987-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-770X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-770X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-770X&client=summon