Effects of Fe on Oxidation of Ni-20Cr and Ni-30Cr Alloys at 800 °C in Wet CO2 Gas
The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO 2 -20%H 2 O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys develo...
Saved in:
Published in | High temperature corrosion of materials Vol. 94; no. 3-4; pp. 219 - 233 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO
2
-20%H
2
O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO
2
are shown to be explained by changed oxide transport properties. |
---|---|
AbstractList | The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO
2
-20%H
2
O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO
2
are shown to be explained by changed oxide transport properties. The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO2-20%H2O gas. All 20Cr alloys developed a multilayered scale, and the outer scale layers on alloys containing iron were subject to spallation. However, all 30Cr alloys developed a scale which was predominantly chromia scale and resisted spallation. These effects are discussed in terms of Fe alloying effects on oxide scale development in the presence of water vapour. Differences between scaling behaviour in wet and dry CO2 are shown to be explained by changed oxide transport properties. |
Author | Zhang, Jianqiang Young, David J. Xie, Yun |
Author_xml | – sequence: 1 givenname: Yun surname: Xie fullname: Xie, Yun organization: School of Materials Science and Engineering, University of New South Wales – sequence: 2 givenname: Jianqiang orcidid: 0000-0002-9331-4601 surname: Zhang fullname: Zhang, Jianqiang email: j.q.zhang@unsw.edu.au organization: School of Materials Science and Engineering, University of New South Wales – sequence: 3 givenname: David J. surname: Young fullname: Young, David J. organization: School of Materials Science and Engineering, University of New South Wales |
BookMark | eNp9kM9KAzEQh4NUsFZfwFPAc3TyZzfZY1naKhR7sKC3kGazsqXu1mQL9m18BJ-hT2a2Kwgeesovw3wzw3eJBnVTO4RuKNxRAHkfKAWVEGBAIMuUJOwMDWkiORFKZQM0BOBApITXC3QZwhogYiwboudJWTrbBtyUeOpwU-PFZ1WYtooplp4qwiD32NRFl3mXx5tNsw_YtFgBHL4O3zmuavziWpwvGJ6ZcIXOS7MJ7vr3HaHldLLMH8h8MXvMx3NiGReMqNRKR4VVkDBnuTScFqVQXGaqLCjl8W9EKUBa56xyRtpVWsjVSqQZpC7jI3Tbj9365mPnQqvXzc7XcaNmIgFBmeAsdrG-y_omBO9KvfXVu_F7TUF37nTvTkd3-uhOd5D6B9mqPUppvak2p1HeoyHuqd-c_7vqBPUDQniCEw |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2024_03_078 crossref_primary_10_1007_s11085_020_10014_7 crossref_primary_10_1016_j_corsci_2025_112746 crossref_primary_10_1016_j_corsci_2023_111438 crossref_primary_10_1016_j_corsci_2024_112050 crossref_primary_10_1016_j_heliyon_2023_e22169 |
Cites_doi | 10.15302/J-ENG-2015031 10.3184/096034009X438185 10.1002/bbpc.19590630713 10.3184/096034005782744443 10.1007/s11085-010-9215-5 10.1179/mht.2000.17.2.008 10.1016/j.corsci.2020.108777 10.1016/S0010-938X(65)90500-7 10.4028/www.scientific.net/MSF.696.200 10.1016/j.corsci.2006.02.002 10.1016/j.corsci.2019.04.007 10.3139/146.110271 10.1016/S0364-5916(02)00037-8 10.1179/0960340914Z.000000000108 10.1149/1.2779605 10.1016/j.scriptamat.2007.06.050 10.1016/j.msea.2007.05.035 10.4028/www.scientific.net/MSF.595-598.1189 10.1149/1.2425624 10.1007/s11085-018-9873-2 10.1016/j.corsci.2018.02.022 10.1016/j.corsci.2017.08.003 10.1007/BF00665448 10.4028/www.scientific.net/MSF.369-372.231 10.1016/j.corsci.2011.03.015 10.1016/j.corsci.2018.10.029 10.1361/10599490524039 10.1016/j.corsci.2018.03.023 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11085-020-09987-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1573-4889 2731-8400 |
EndPage | 233 |
ExternalDocumentID | 10_1007_s11085_020_09987_2 |
GrantInformation_xml | – fundername: Australian Research Council grantid: DP150100669 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0VY 123 1N0 1SB 2.D 203 28- 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAIKT AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DL5 DNIVK EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~EX AAYXX ACSTC ADHKG AGQPQ AHPBZ AYFIA CITATION 0R~ 406 AACDK AAJBT AAPKM AASML AATNV AAYZH ABAKF ABBRH ABDBE ABFSG ABRTQ ACAOD ACPIV ACZOJ AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AGQEE AHWEU AIGIU AIXLP DDRTE DPUIP EBLON JZLTJ NPVJJ PT4 SJYHP |
ID | FETCH-LOGICAL-c2342-86c7e14c8052ec37a31df483798fd113a31a4f407ceec8ea7cb6d7bb46906e93 |
IEDL.DBID | U2A |
ISSN | 0030-770X 2731-8397 |
IngestDate | Fri Jul 25 00:54:41 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Tue Jul 01 04:06:06 EDT 2025 Fri Feb 21 02:34:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Water vapour Alloy Internal oxidation High temperature oxidation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2342-86c7e14c8052ec37a31df483798fd113a31a4f407ceec8ea7cb6d7bb46906e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9331-4601 |
PQID | 2450412432 |
PQPubID | 2043552 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2450412432 crossref_primary_10_1007_s11085_020_09987_2 crossref_citationtrail_10_1007_s11085_020_09987_2 springer_journals_10_1007_s11085_020_09987_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | High temperature corrosion of materials |
PublicationTitleAbbrev | Oxid Met |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corrosion Science48, 3428–3454 (2006). M.-C. Demizieux, C. Desgranges, L. Martinelli, J. Favergeon and K. Ginestar, Morphology and buckling of the oxide scale after Fe-9Cr steel oxidation in water vapor environment, Oxidation of Metals91, 191–212 (2019). E. A. Polman, T. Fransen and P. J. Gellings, Oxidation kinetics of chromium and morphological phenomena, Oxidation of Metals32, 433–447 (1989). C. T. Fujii and R. A. Meussner, Oxide structures produced on iron-chromium alloys by a dissociative mechanism, Journal of the Electrochemical Society110, 1195–1204 (1963). Y.-X. Xu, W.-Y. Li and X.-W. Yang, Influence of alloyed Fe on corrosion of Ni-Cr alloys in molten silicates and the effects of pre-oxidation treatment, Corrosion Science134, 179–188 (2018). D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels, Corrosion Science53, 2306–2317 (2011). R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance14, 281–292 (2005). C. Wagner, Reaktionstypen bei der oxydation von legierungen, Zeitschrift für Elektrochemie63, 772–782 (1959). J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, CALPHAD26, 273–312 (2002). A. Galerie, J. P. Petit, Y. Wouters, J. Mougin, A. Srisrual and P. Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Materials Science Forum696, 200–205 (2011). J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering, A477, 259–270 (2008). C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society99, 369–380 (1952). F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above, Engineering1, 211–224 (2015). G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. Pirón Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys, Oxidation of Metals74, 319–340 (2010). Y. Xie, T. D. Nguyen, J. Zhang and D. J. Young, Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800°C, Corrosion Science146, 28–43 (2019). A. Rahmel and J. Tobolski, Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen, Corrosion Science5, 333–346 (1965). J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, The oxidation behaviour of the 9%Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments, International Journal of Materials Research101, 287–299 (2010). A. Galerie, Y. Wouters and M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed? Materials Science Forum369–372, 231–238 (2001). Y. Xie, T. Liang, J. Zhang and D. J. Young, Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800°C in dry CO2 gas, Corrosion Science 173, 108777 (2020). Y. Xie, J. Zhang and D. J. Young, Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650°C, Corrosion Science136, 311–325 (2018). G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier, Inverse growth transport in thermal chromia scales on Fe-15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scripta Materialia57, 671–674 (2007). J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments, Materials at High Temperatures26, 63–72 (2009). M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C, Materials at High Temperatures22, 213–221 (2005). Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan and W.-Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000 °C, Corrosion Science127, 10–20 (2017). S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres, Materials at High Temperatures17, 231–234 (2000). Y. Xie, J. Zhang, D. J. Young and W. Zheng, Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700 °C, Corrosion Science154, 129–143 (2019). D. Simon, B. Gorr, M. Hänsel, V. Shemet, H. J. Christ and W. J. Quadakkers, Effect of in situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000°C in atmospheres with and without water vapour, Materials at High Temperatures32, 238–247 (2015). D. J. Young, Effects of water vapour on the oxidation of chromia formers, Materials Science Forum595, 1189–1197 (2008). 9987_CR13 9987_CR12 9987_CR15 9987_CR14 9987_CR17 9987_CR16 9987_CR19 9987_CR18 9987_CR11 9987_CR10 9987_CR7 9987_CR24 9987_CR8 9987_CR23 9987_CR9 9987_CR26 9987_CR25 9987_CR28 9987_CR27 9987_CR1 9987_CR2 9987_CR3 9987_CR4 9987_CR5 9987_CR6 9987_CR20 9987_CR22 9987_CR21 |
References_xml | – reference: C. Wagner, Theoretical analysis of the diffusion processes determining the oxidation rate of alloys, Journal of the Electrochemical Society99, 369–380 (1952). – reference: Y. Xie, T. Liang, J. Zhang and D. J. Young, Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800°C in dry CO2 gas, Corrosion Science 173, 108777 (2020). – reference: J. Zurek, D. J. Young, E. Essuman, M. Hänsel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases, Materials Science and Engineering, A477, 259–270 (2008). – reference: S. Henry, J. Mougin, Y. Wouters, J. P. Petit and A. Galerie, Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres, Materials at High Temperatures17, 231–234 (2000). – reference: E. A. Polman, T. Fransen and P. J. Gellings, Oxidation kinetics of chromium and morphological phenomena, Oxidation of Metals32, 433–447 (1989). – reference: M.-C. Demizieux, C. Desgranges, L. Martinelli, J. Favergeon and K. Ginestar, Morphology and buckling of the oxide scale after Fe-9Cr steel oxidation in water vapor environment, Oxidation of Metals91, 191–212 (2019). – reference: A. Rahmel and J. Tobolski, Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen, Corrosion Science5, 333–346 (1965). – reference: Y.-X. Xu, J.-T. Lu, X.-W. Yang, J.-B. Yan and W.-Y. Li, Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000 °C, Corrosion Science127, 10–20 (2017). – reference: G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Pettit, J. Pirón Abellán, T. Olszewski, L. Nieto Hierro, W. J. Quadakkers and G. R. Holcomb, Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys, Oxidation of Metals74, 319–340 (2010). – reference: D. Simon, B. Gorr, M. Hänsel, V. Shemet, H. J. Christ and W. J. Quadakkers, Effect of in situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000°C in atmospheres with and without water vapour, Materials at High Temperatures32, 238–247 (2015). – reference: R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis and R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance14, 281–292 (2005). – reference: Y. Xie, T. D. Nguyen, J. Zhang and D. J. Young, Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800°C, Corrosion Science146, 28–43 (2019). – reference: A. Galerie, J. P. Petit, Y. Wouters, J. Mougin, A. Srisrual and P. Y. Hou, Water vapour effects on the oxidation of chromia-forming alloys, Materials Science Forum696, 200–205 (2011). – reference: J. Pirón Abellán, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments, Materials at High Temperatures26, 63–72 (2009). – reference: J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser and W. J. Quadakkers, Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments, Corrosion Science48, 3428–3454 (2006). – reference: Y.-X. Xu, W.-Y. Li and X.-W. Yang, Influence of alloyed Fe on corrosion of Ni-Cr alloys in molten silicates and the effects of pre-oxidation treatment, Corrosion Science134, 179–188 (2018). – reference: Y. Xie, J. Zhang and D. J. Young, Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650°C, Corrosion Science136, 311–325 (2018). – reference: C. Wagner, Reaktionstypen bei der oxydation von legierungen, Zeitschrift für Elektrochemie63, 772–782 (1959). – reference: J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman, Thermo-Calc & DICTRA, computational tools for materials science, CALPHAD26, 273–312 (2002). – reference: A. Galerie, Y. Wouters and M. Caillet, The kinetic behaviour of metals in water vapour at high temperatures: can general rules be proposed? Materials Science Forum369–372, 231–238 (2001). – reference: J. P. Abellán, T. Olszewski, G. H. Meier, L. Singheiser and W. J. Quadakkers, The oxidation behaviour of the 9%Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments, International Journal of Materials Research101, 287–299 (2010). – reference: F. Abe, Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above, Engineering1, 211–224 (2015). – reference: Y. Xie, J. Zhang, D. J. Young and W. Zheng, Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700 °C, Corrosion Science154, 129–143 (2019). – reference: D. J. Young, Effects of water vapour on the oxidation of chromia formers, Materials Science Forum595, 1189–1197 (2008). – reference: D. Huenert and A. Kranzmann, Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels, Corrosion Science53, 2306–2317 (2011). – reference: C. T. Fujii and R. A. Meussner, Oxide structures produced on iron-chromium alloys by a dissociative mechanism, Journal of the Electrochemical Society110, 1195–1204 (1963). – reference: M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050°C, Materials at High Temperatures22, 213–221 (2005). – reference: G. Bamba, Y. Wouters, A. Galerie, G. Borchardt, S. Shimada, O. Heintz and S. Chevalier, Inverse growth transport in thermal chromia scales on Fe-15Cr steels in oxygen and in water vapour and its effect on scale adhesion, Scripta Materialia57, 671–674 (2007). – ident: 9987_CR3 doi: 10.15302/J-ENG-2015031 – ident: 9987_CR10 doi: 10.3184/096034009X438185 – ident: 9987_CR18 doi: 10.1002/bbpc.19590630713 – ident: 9987_CR12 doi: 10.3184/096034005782744443 – ident: 9987_CR5 doi: 10.1007/s11085-010-9215-5 – ident: 9987_CR13 doi: 10.1179/mht.2000.17.2.008 – ident: 9987_CR9 doi: 10.1016/j.corsci.2020.108777 – ident: 9987_CR20 doi: 10.1016/S0010-938X(65)90500-7 – ident: 9987_CR27 doi: 10.4028/www.scientific.net/MSF.696.200 – ident: 9987_CR22 doi: 10.1016/j.corsci.2006.02.002 – ident: 9987_CR8 doi: 10.1016/j.corsci.2019.04.007 – ident: 9987_CR7 doi: 10.3139/146.110271 – ident: 9987_CR17 doi: 10.1016/S0364-5916(02)00037-8 – ident: 9987_CR15 doi: 10.1179/0960340914Z.000000000108 – ident: 9987_CR19 doi: 10.1149/1.2779605 – ident: 9987_CR26 doi: 10.1016/j.scriptamat.2007.06.050 – ident: 9987_CR14 doi: 10.1016/j.msea.2007.05.035 – ident: 9987_CR16 doi: 10.4028/www.scientific.net/MSF.595-598.1189 – ident: 9987_CR21 doi: 10.1149/1.2425624 – ident: 9987_CR25 doi: 10.1007/s11085-018-9873-2 – ident: 9987_CR2 doi: 10.1016/j.corsci.2018.02.022 – ident: 9987_CR4 doi: 10.1016/j.corsci.2017.08.003 – ident: 9987_CR28 doi: 10.1007/BF00665448 – ident: 9987_CR23 doi: 10.4028/www.scientific.net/MSF.369-372.231 – ident: 9987_CR6 doi: 10.1016/j.corsci.2011.03.015 – ident: 9987_CR11 doi: 10.1016/j.corsci.2018.10.029 – ident: 9987_CR1 doi: 10.1361/10599490524039 – ident: 9987_CR24 doi: 10.1016/j.corsci.2018.03.023 |
SSID | ssj0010029 ssj0003212242 |
Score | 2.2616293 |
Snippet | The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO
2
-20%H
2
O gas. All 20Cr alloys... The oxidation behaviour of model alloys Ni-(20, 30)Cr (wt.%) with (0, 1, 5, 15%) Fe was investigated at 800 °C in Ar-20%CO2-20%H2O gas. All 20Cr alloys... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 219 |
SubjectTerms | Alloy development Alloying effects Carbon dioxide Chemistry and Materials Science Chromium oxides Corrosion and Coatings Inorganic Chemistry Iron Materials Science Metallic Materials Nickel chromium alloys Original Paper Oxidation Scale (corrosion) Spallation Transport properties Tribology Water vapor |
Title | Effects of Fe on Oxidation of Ni-20Cr and Ni-30Cr Alloys at 800 °C in Wet CO2 Gas |
URI | https://link.springer.com/article/10.1007/s11085-020-09987-2 https://www.proquest.com/docview/2450412432 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELZQOwADggKiUCoPbBCpsd2kGdOoPwKpHWhFmaL4J1KlKkVNkOBteASeoU_G2UlaQIDEFCd2PJztu-905-8QunI9rgj4Phb1lLJY3PIsTgi4KtKlDmUaAxi2z5EznLLbWXtWXApLy2z3MiRpNPX2sptJlNfuDqAaOBqgeKtt8N11IteU-JvYgQ405WSMLcCOrVlxVebnOb6aoy3G_BYWNdamf4gOCpiI_Xxdj9COSmpoNyirs9XQ_iciwWN0n5MQp3gZ477CywSPX-Z5tST9aTSHbRqscJRI3aa67S8Wy9cURxkGMLd-W78HeJ7gB5XhYEzwIEpP0KTfmwRDqyiXYAlCGeg1R7jKZkIXKVCCuhG1ZawJ471OLG2bwnvEYnDgwC6KjopcwR3pcq4dZEd59BRVkmWizhCOiaKyY1NFBGeKxR3O3FgSDsdbKil4Hdml0EJRUInrihaLcEuCrAUdgqBDI-iQ1NH15p-nnEjjz9GNci3C4lClIWFtUyybQvdNuT7b7t9nO__f8Au0R_QWMSl7DVTJVs_qEqBHxpuo6ve73ZF-Dh7vek2z8z4A71fNiA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwELYQDIUBQQFRKOCBDSI1tpufsYooBUo70IpuUfwTqVKVoCZI8DY8As_QJ-PsJC0gQGKzY8fD-c7-Tuf7DqFz1-eKgO9jUV8pi8Ut3-KEgKsiXepQpjGAYfscOL0xu520J2VSWFa9dq9CkuakXiW7mYfy2t0BVAOmAQfvBoABT-vymHSWsQMdaCrIGFuAHVuTMlXm5zW-XkcrjPktLGpum-4O2i5hIu4U-7qL1lRSR7Wgqs5WR1ufiAT30ENBQpzhNMZdhdMED1-mRbUk_WkwBTUN5jhKpG5T3e7MZulrhqMcA5hbvC3eAzxN8KPKcTAk-DrK9tGoezUKelZZLsEShDI41xzhKpsJXaRACepG1JaxJoz3vVjaNoV-xGJw4OBeFJ6KXMEd6XKuHWRH-fQArSdpog4Rjomi0rOpIoIzxWKPMzeWhIN5SyUFbyC7ElooSipxXdFiFq5IkLWgQxB0aAQdkga6WP7zVBBp_Dm7We1FWBpVFhLWNsWyKQxfVvuzGv59taP_TT9Dtd7ovh_2bwZ3x2iTaHUxz_eaaD2fP6sTgCE5PzVa9wHj6c1r |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6i4OMgWhWrVXPwpku7SbrbPZbVWh-0gi32tmxeUCi7pV1B_40_wd_QX-ZkH20VFbwlm2wOk0nyDTPzDULnrscVAdvHop5SFtM1z-KEgKkiXepQZjBAyvbZcdp9djeoD5ay-NNo98IlmeU0GJamKKmOpa4uEt_SoHlj-gDCgWMCl_AaM9nAoNF90pz7EYzTKSNmrAGOrA3ytJmf1_j6NC3w5jcXafrytHbQdg4ZcTPb4120oqIS2vCLSm0ltLVEKriHnjJC4imONW4pHEe4-zrMKieZT50hqKw_wWEkTZuadnM0it-mOEwwALvZ--zDx8MIP6sE-12Cb8LpPuq1rnt-28pLJ1iCUAZ3nCNcZTNhChYoQd2Q2lIb8nivoaVtU-iHTIMxB2-kaKjQFdyRLufGWHaURw_QahRH6hBhTRSVDZsqIjhTTDc4c7UkHI66VFLwMrILoQUipxU31S1GwYIQ2Qg6AEEHqaADUkYX83_GGanGn7MrxV4E-QGbBoTV08LZFIYvi_1ZDP--2tH_pp-h9cerVvBw27k_RpvEaEsayVdBq8nkRZ0AIkn4aap0nx_n0Z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Fe+on+Oxidation+of+Ni-20Cr+and+Ni-30Cr+Alloys+at+800+%C2%B0C+in+Wet+CO2+Gas&rft.jtitle=High+temperature+corrosion+of+materials&rft.au=Xie+Yun&rft.au=Zhang%2C+Jianqiang&rft.au=Young%2C+David+J&rft.date=2020-10-01&rft.pub=Springer+Nature+B.V&rft.issn=2731-8397&rft.eissn=2731-8400&rft.volume=94&rft.issue=3-4&rft.spage=219&rft.epage=233&rft_id=info:doi/10.1007%2Fs11085-020-09987-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-770X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-770X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-770X&client=summon |