Attribution rollout: a new way to interpret visual transformer

Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously hamper their application in certain fields. Prior work relies on the raw attention...

Full description

Saved in:
Bibliographic Details
Published inJournal of ambient intelligence and humanized computing Vol. 14; no. 1; pp. 163 - 173
Main Authors Xu, Li, Yan, Xin, Ding, Weiyue, Liu, Zechao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously hamper their application in certain fields. Prior work relies on the raw attention scores or employs heuristic propagation along with the attention graph. In this work, we propose a new way to visualize model. The method computes attention scores based on attribution and then propagates these attention scores through the layers. This propagation involves attention layers and multi-head attention mechanism. Our method extracts salient dependencies in each layer to visualize prediction results. We benchmark our method on recent visual transformer networks and demonstrate its many advantages over the existing interpretability methods. Our code is available at: https://github.com/yxheartipp/attr-rollout .
AbstractList Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously hamper their application in certain fields. Prior work relies on the raw attention scores or employs heuristic propagation along with the attention graph. In this work, we propose a new way to visualize model. The method computes attention scores based on attribution and then propagates these attention scores through the layers. This propagation involves attention layers and multi-head attention mechanism. Our method extracts salient dependencies in each layer to visualize prediction results. We benchmark our method on recent visual transformer networks and demonstrate its many advantages over the existing interpretability methods. Our code is available at: https://github.com/yxheartipp/attr-rollout.
Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision. However, the black box characteristics of transformers seriously hamper their application in certain fields. Prior work relies on the raw attention scores or employs heuristic propagation along with the attention graph. In this work, we propose a new way to visualize model. The method computes attention scores based on attribution and then propagates these attention scores through the layers. This propagation involves attention layers and multi-head attention mechanism. Our method extracts salient dependencies in each layer to visualize prediction results. We benchmark our method on recent visual transformer networks and demonstrate its many advantages over the existing interpretability methods. Our code is available at: https://github.com/yxheartipp/attr-rollout .
Author Xu, Li
Liu, Zechao
Yan, Xin
Ding, Weiyue
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0003-4950-0789
  surname: Xu
  fullname: Xu, Li
  organization: College of Computer Science and Technology, Harbin Engineering University, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 2
  givenname: Xin
  surname: Yan
  fullname: Yan, Xin
  organization: College of Computer Science and Technology, Harbin Engineering University
– sequence: 3
  givenname: Weiyue
  surname: Ding
  fullname: Ding, Weiyue
  organization: Department of Medicine, Harvard Medical School
– sequence: 4
  givenname: Zechao
  surname: Liu
  fullname: Liu, Zechao
  email: liuzechao@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University
BookMark eNp9kEtLAzEQgINUsNb-AU8Bz6t5bXbXg1CKLyh40XNIsxPZsk1qkrX035taUfDQgTADmW8m-c7RyHkHCF1Sck0JqW4iZbJkBWH5CF6Kgp2gMa1lXZRUlKPfmldnaBrjiuTgDaeUjtHdLKXQLYfUeYeD73s_pFussYMt3uodTh53LkHYBEj4s4uD7nEK2kXrwxrCBTq1uo8w_ckT9PZw_zp_KhYvj8_z2aIwjAtWSN3UlabUWLEkkltbcSAGWhAtaQ0Ag4YaIoWkrGaitC3Lt4bYyjBaVbXkE3R1mLsJ_mOAmNTKD8HllYo1tBFNI3mdu9ihywQfYwCrNqFb67BTlKi9KnVQpbIq9a1KsQzV_yDTJb33kf_Z9cdRfkBj3uPeIfy96gj1BXOSfxU
CitedBy_id crossref_primary_10_1007_s11263_024_02034_6
crossref_primary_10_3390_e26110974
Cites_doi 10.32604/csse.2022.022305
10.1007/978-3-030-58452-8_13
10.1109/CVPR.2018.00960
10.32604/cmc.2022.022304
10.1007/s11263-014-0713-9
10.1109/ICCV.2017.371
10.1109/CVPRW50498.2020.00020
10.32604/cmc.2021.017266
10.3390/s20010207
10.1609/aaai.v35i13.17374
10.1609/aaai.v35i14.17533
10.1109/CVPR46437.2021.00084
10.1007/978-3-319-44781-0_8
10.18653/v1/D19-1514
10.1109/ICCV.2019.00304
10.18653/v1/2020.acl-main.385
10.1016/j.future.2020.09.019
10.1109/TPAMI.2018.2858759
10.1007/978-3-319-10590-1_53
10.1007/s11263-015-0816-y
10.1109/CVPR.2016.319
10.1016/j.patcog.2016.11.008
10.1609/aaai.v34i03.5632
10.1007/s11263-017-1059-x
10.18653/v1/P19-1580
10.18653/v1/D16-1053
10.1109/ICCVW.2019.00513
10.1109/ICCV.2017.74
10.1007/s11263-016-0911-8
10.1007/978-3-030-20893-6_8
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-022-04354-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 173
ExternalDocumentID 10_1007_s12652_022_04354_2
GrantInformation_xml – fundername: Ministry of Science and Technology
  grantid: 2021ZD0200406
  funderid: http://dx.doi.org/10.13039/100007225
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 93K172021K04
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 62172122
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2342-6a987a11cf4b063ff73e0cede4d0dcee2e91c0646128245fd20cec0f7c2177863
IEDL.DBID BENPR
ISSN 1868-5137
IngestDate Fri Jul 25 23:29:27 EDT 2025
Tue Jul 01 02:26:01 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Fri Feb 21 02:45:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vision transformer
Integrated gradients
Interpretability
Attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2342-6a987a11cf4b063ff73e0cede4d0dcee2e91c0646128245fd20cec0f7c2177863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4950-0789
PQID 2919499638
PQPubID 2043913
PageCount 11
ParticipantIDs proquest_journals_2919499638
crossref_primary_10_1007_s12652_022_04354_2
crossref_citationtrail_10_1007_s12652_022_04354_2
springer_journals_10_1007_s12652_022_04354_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230100
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: International conference on machine learning, PMLR, pp 3319–3328
RussakovskyODengJSuHImagenet large scale visual recognition challengeInt J Comput Vis20151153211252342248210.1007/s11263-015-0816-y
Singh C, Murdoch WJ, Yu B (2018) Hierarchical interpretations for neural network predictions. arXiv:1806.05337
Abnar S, Zuidema W (2020) Quantifying attention flow in transformers. arXiv:2005.00928
ZhangXRZhangWFSunWA robust 3-d medical watermarking based on wavelet transform for data protectionComput Syst Sci Eng20224131043105610.32604/csse.2022.022305
Carion N, Massa F, Synnaeve G et al (2020) End-to-end object detection with transformers. In: European conference on computer vision. Springer, pp 213–229
Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, PMLR, pp 3145–3153
RenYZhuFSharmaPKData query mechanism based on hash computing power of blockchain in internet of thingsSensors202020120710.3390/s20010207
Wang H, Wang Z, Du M et al (2020) Score-cam: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 24–25
Chen J, Song L, Wainwright MJ et al (2018) L-shapley and c-shapley: Efficient model interpretation for structured data. arXiv:1808.02610
ZhouBBauDOlivaAInterpreting deep visual representations via network dissectionIEEE Trans Pattern Anal Mach Intell20184192131214510.1109/TPAMI.2018.2858759
Yun J, Basak M, Han MM (2021) Bayesian rule modeling for interpretable mortality classification of Covid-19 patients. In: Cmc-Computers Materials & Continua, pp 2827–2843
Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. arXiv:1601.06733
Devlin J, Chang MW, Lee K et al (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805
Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, pp 4768–4777
Chefer H, Gur S, Wolf L (2021) Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 782–791
Tan H, Bansal M (2019) Lxmert: learning cross-modality encoder representations from transformers. arXiv:1908.07490
Adebayo J, Gilmer J, Muelly M et al (2018) Sanity checks for saliency maps. arXiv:1810.03292
Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2950–2958
MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recogn20176521122210.1016/j.patcog.2016.11.008
Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
Fong RC, Vedaldi A (2017) Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE international conference on computer vision, pp 3429–3437
Voita E, Talbot D, Moiseev F et al (2019) Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv:1905.09418
Murdoch WJ, Liu PJ, Yu B (2018) Beyond word importance: Contextual decomposition to extract interactions from lstms. arXiv:1801.05453
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833
Lu J, Batra D, Parikh D et al (2019) Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. arXiv:1908.02265
RenYLengYQiJMultiple cloud storage mechanism based on blockchain in smart homesFuture Gener Comput Syst202111530431310.1016/j.future.2020.09.019
ZhangXRSunXSunXMRobust reversible audio watermarking scheme for telemedicine and privacy protectionComput Mater Continua20227123035305010.32604/cmc.2022.022304
ErhanDBengioYCourvilleAVisualizing higher-layer features of a deep networkUniv Montreal2009134131
Iwana BK, Kuroki R, Uchida S (2019) Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: 2019 IEEE/CVF international conference on computer vision workshop (ICCVW), pp 4176–4185
Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929
Nam WJ, Gur S, Choi J et al (2020) Relative attributing propagation: interpreting the comparative contributions of individual units in deep neural networks. In: Proceedings of the AAAI conference on artificial intelligence, pp 2501–2508
Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
ZhangJBargalSALinZTop-down neural attention by excitation backpropInt J Comput Vis2018126101084110210.1007/s11263-017-1059-x
Li K, Wu Z, Peng KC et al (2018) Tell me where to look: guided attention inference network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9215–9223
Binder A, Montavon G, Lapuschkin S et al (2016) Layer-wise relevance propagation for neural networks with local renormalization layers. In: International conference on artificial neural networks. Springer, pp 63–71
Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929
Gur S, Ali A, Wolf L (2021) Visualization of supervised and self-supervised neural networks via attribution guided factorization. In: Proceedings of the AAAI conference on artificial intelligence, pp 11545–11554
Shrikumar A, Greenside P, Shcherbina A et al (2016) Not just a black box: learning important features through propagating activation differences. arXiv:1605.01713
Xu K, Ba J, Kiros R et al (2015) Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, PMLR, pp 2048–2057
Hao Y, Dong L, Wei F et al (2020) Self-attention attribution: interpreting information interactions inside transformer. arXiv:2004.11207
Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034
GuillauminMKüttelDFerrariVImagenet auto-annotation with segmentation propagationInt J Comput Vis2014110332834810.1007/s11263-014-0713-9
MahendranAVedaldiAVisualizing deep convolutional neural networks using natural pre-imagesInt J Comput Vis20161203233255354409110.1007/s11263-016-0911-8
Chen M, Radford A, Child R et al (2020) Generative pretraining from pixels. In: International conference on machine learning, PMLR, pp 1691–1703
Gu J, Yang Y, Tresp V (2018) Understanding individual decisions of cnns via contrastive backpropagation. In: Asian conference on computer vision. Springer, pp 119–134
Yuan T, Li X, Xiong H et al (2021) Explaining information flow inside vision transformers using Markov chain. In: eXplainable AI approaches for debugging and diagnosis
J Zhang (4354_CR43) 2018; 126
Y Ren (4354_CR27) 2021; 115
4354_CR10
4354_CR32
4354_CR31
B Zhou (4354_CR47) 2018; 41
4354_CR30
4354_CR4
4354_CR14
G Montavon (4354_CR23) 2017; 65
4354_CR36
4354_CR5
4354_CR13
4354_CR35
4354_CR6
4354_CR12
4354_CR34
4354_CR7
4354_CR33
4354_CR18
4354_CR1
4354_CR17
4354_CR39
4354_CR2
4354_CR16
4354_CR38
4354_CR3
4354_CR37
M Guillaumin (4354_CR15) 2014; 110
4354_CR19
4354_CR8
4354_CR9
A Mahendran (4354_CR22) 2016; 120
D Erhan (4354_CR11) 2009; 1341
Y Ren (4354_CR26) 2020; 20
O Russakovsky (4354_CR28) 2015; 115
4354_CR21
4354_CR20
4354_CR42
4354_CR41
4354_CR40
4354_CR25
4354_CR24
XR Zhang (4354_CR44) 2022; 71
4354_CR46
4354_CR29
XR Zhang (4354_CR45) 2022; 41
References_xml – reference: Selvaraju RR, Cogswell M, Das A et al (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
– reference: Zhou B, Khosla A, Lapedriza A et al (2016) Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2921–2929
– reference: ZhouBBauDOlivaAInterpreting deep visual representations via network dissectionIEEE Trans Pattern Anal Mach Intell20184192131214510.1109/TPAMI.2018.2858759
– reference: Wang H, Wang Z, Du M et al (2020) Score-cam: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp 24–25
– reference: Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, pp 4768–4777
– reference: Nam WJ, Gur S, Choi J et al (2020) Relative attributing propagation: interpreting the comparative contributions of individual units in deep neural networks. In: Proceedings of the AAAI conference on artificial intelligence, pp 2501–2508
– reference: MontavonGLapuschkinSBinderAExplaining nonlinear classification decisions with deep Taylor decompositionPattern Recogn20176521122210.1016/j.patcog.2016.11.008
– reference: Devlin J, Chang MW, Lee K et al (2018) Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805
– reference: Xu K, Ba J, Kiros R et al (2015) Show, attend and tell: neural image caption generation with visual attention. In: International conference on machine learning, PMLR, pp 2048–2057
– reference: Tan H, Bansal M (2019) Lxmert: learning cross-modality encoder representations from transformers. arXiv:1908.07490
– reference: ZhangXRZhangWFSunWA robust 3-d medical watermarking based on wavelet transform for data protectionComput Syst Sci Eng20224131043105610.32604/csse.2022.022305
– reference: Voita E, Talbot D, Moiseev F et al (2019) Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv:1905.09418
– reference: Li K, Wu Z, Peng KC et al (2018) Tell me where to look: guided attention inference network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 9215–9223
– reference: Shrikumar A, Greenside P, Kundaje A (2017) Learning important features through propagating activation differences. In: International conference on machine learning, PMLR, pp 3145–3153
– reference: Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision. Springer, pp 818–833
– reference: RenYLengYQiJMultiple cloud storage mechanism based on blockchain in smart homesFuture Gener Comput Syst202111530431310.1016/j.future.2020.09.019
– reference: Singh C, Murdoch WJ, Yu B (2018) Hierarchical interpretations for neural network predictions. arXiv:1806.05337
– reference: GuillauminMKüttelDFerrariVImagenet auto-annotation with segmentation propagationInt J Comput Vis2014110332834810.1007/s11263-014-0713-9
– reference: Adebayo J, Gilmer J, Muelly M et al (2018) Sanity checks for saliency maps. arXiv:1810.03292
– reference: Cheng J, Dong L, Lapata M (2016) Long short-term memory-networks for machine reading. arXiv:1601.06733
– reference: Fong R, Patrick M, Vedaldi A (2019) Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 2950–2958
– reference: RussakovskyODengJSuHImagenet large scale visual recognition challengeInt J Comput Vis20151153211252342248210.1007/s11263-015-0816-y
– reference: Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034
– reference: Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: International conference on machine learning, PMLR, pp 3319–3328
– reference: ZhangJBargalSALinZTop-down neural attention by excitation backpropInt J Comput Vis2018126101084110210.1007/s11263-017-1059-x
– reference: Abnar S, Zuidema W (2020) Quantifying attention flow in transformers. arXiv:2005.00928
– reference: Chefer H, Gur S, Wolf L (2021) Transformer interpretability beyond attention visualization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 782–791
– reference: Yun J, Basak M, Han MM (2021) Bayesian rule modeling for interpretable mortality classification of Covid-19 patients. In: Cmc-Computers Materials & Continua, pp 2827–2843
– reference: Carion N, Massa F, Synnaeve G et al (2020) End-to-end object detection with transformers. In: European conference on computer vision. Springer, pp 213–229
– reference: Hao Y, Dong L, Wei F et al (2020) Self-attention attribution: interpreting information interactions inside transformer. arXiv:2004.11207
– reference: Gur S, Ali A, Wolf L (2021) Visualization of supervised and self-supervised neural networks via attribution guided factorization. In: Proceedings of the AAAI conference on artificial intelligence, pp 11545–11554
– reference: Binder A, Montavon G, Lapuschkin S et al (2016) Layer-wise relevance propagation for neural networks with local renormalization layers. In: International conference on artificial neural networks. Springer, pp 63–71
– reference: Iwana BK, Kuroki R, Uchida S (2019) Explaining convolutional neural networks using softmax gradient layer-wise relevance propagation. In: 2019 IEEE/CVF international conference on computer vision workshop (ICCVW), pp 4176–4185
– reference: Dosovitskiy A, Beyer L, Kolesnikov A et al (2020) An image is worth 16x16 words: transformers for image recognition at scale. arXiv:2010.11929
– reference: RenYZhuFSharmaPKData query mechanism based on hash computing power of blockchain in internet of thingsSensors202020120710.3390/s20010207
– reference: Shrikumar A, Greenside P, Shcherbina A et al (2016) Not just a black box: learning important features through propagating activation differences. arXiv:1605.01713
– reference: Murdoch WJ, Liu PJ, Yu B (2018) Beyond word importance: Contextual decomposition to extract interactions from lstms. arXiv:1801.05453
– reference: Chen J, Song L, Wainwright MJ et al (2018) L-shapley and c-shapley: Efficient model interpretation for structured data. arXiv:1808.02610
– reference: Lu J, Batra D, Parikh D et al (2019) Vilbert: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. arXiv:1908.02265
– reference: Chen M, Radford A, Child R et al (2020) Generative pretraining from pixels. In: International conference on machine learning, PMLR, pp 1691–1703
– reference: ErhanDBengioYCourvilleAVisualizing higher-layer features of a deep networkUniv Montreal2009134131
– reference: MahendranAVedaldiAVisualizing deep convolutional neural networks using natural pre-imagesInt J Comput Vis20161203233255354409110.1007/s11263-016-0911-8
– reference: Gu J, Yang Y, Tresp V (2018) Understanding individual decisions of cnns via contrastive backpropagation. In: Asian conference on computer vision. Springer, pp 119–134
– reference: Fong RC, Vedaldi A (2017) Interpretable explanations of black boxes by meaningful perturbation. In: Proceedings of the IEEE international conference on computer vision, pp 3429–3437
– reference: Yuan T, Li X, Xiong H et al (2021) Explaining information flow inside vision transformers using Markov chain. In: eXplainable AI approaches for debugging and diagnosis
– reference: Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
– reference: ZhangXRSunXSunXMRobust reversible audio watermarking scheme for telemedicine and privacy protectionComput Mater Continua20227123035305010.32604/cmc.2022.022304
– volume: 41
  start-page: 1043
  issue: 3
  year: 2022
  ident: 4354_CR45
  publication-title: Comput Syst Sci Eng
  doi: 10.32604/csse.2022.022305
– ident: 4354_CR4
  doi: 10.1007/978-3-030-58452-8_13
– ident: 4354_CR10
– ident: 4354_CR2
– ident: 4354_CR19
  doi: 10.1109/CVPR.2018.00960
– volume: 71
  start-page: 3035
  issue: 2
  year: 2022
  ident: 4354_CR44
  publication-title: Comput Mater Continua
  doi: 10.32604/cmc.2022.022304
– ident: 4354_CR6
– volume: 110
  start-page: 328
  issue: 3
  year: 2014
  ident: 4354_CR15
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-014-0713-9
– ident: 4354_CR31
– ident: 4354_CR12
  doi: 10.1109/ICCV.2017.371
– ident: 4354_CR33
– ident: 4354_CR38
  doi: 10.1109/CVPRW50498.2020.00020
– ident: 4354_CR41
  doi: 10.32604/cmc.2021.017266
– volume: 20
  start-page: 207
  issue: 1
  year: 2020
  ident: 4354_CR26
  publication-title: Sensors
  doi: 10.3390/s20010207
– ident: 4354_CR16
  doi: 10.1609/aaai.v35i13.17374
– ident: 4354_CR17
  doi: 10.1609/aaai.v35i14.17533
– ident: 4354_CR5
  doi: 10.1109/CVPR46437.2021.00084
– ident: 4354_CR20
– ident: 4354_CR3
  doi: 10.1007/978-3-319-44781-0_8
– ident: 4354_CR24
– ident: 4354_CR30
– ident: 4354_CR35
  doi: 10.18653/v1/D19-1514
– ident: 4354_CR13
  doi: 10.1109/ICCV.2019.00304
– ident: 4354_CR1
  doi: 10.18653/v1/2020.acl-main.385
– volume: 115
  start-page: 304
  year: 2021
  ident: 4354_CR27
  publication-title: Future Gener Comput Syst
  doi: 10.1016/j.future.2020.09.019
– volume: 41
  start-page: 2131
  issue: 9
  year: 2018
  ident: 4354_CR47
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2018.2858759
– ident: 4354_CR42
  doi: 10.1007/978-3-319-10590-1_53
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 4354_CR28
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: 4354_CR46
  doi: 10.1109/CVPR.2016.319
– ident: 4354_CR36
– volume: 1341
  start-page: 1
  issue: 3
  year: 2009
  ident: 4354_CR11
  publication-title: Univ Montreal
– ident: 4354_CR7
– volume: 65
  start-page: 211
  year: 2017
  ident: 4354_CR23
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.11.008
– ident: 4354_CR34
– ident: 4354_CR9
– ident: 4354_CR25
  doi: 10.1609/aaai.v34i03.5632
– ident: 4354_CR32
– volume: 126
  start-page: 1084
  issue: 10
  year: 2018
  ident: 4354_CR43
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-017-1059-x
– ident: 4354_CR37
  doi: 10.18653/v1/P19-1580
– ident: 4354_CR39
– ident: 4354_CR8
  doi: 10.18653/v1/D16-1053
– ident: 4354_CR18
  doi: 10.1109/ICCVW.2019.00513
– ident: 4354_CR29
  doi: 10.1109/ICCV.2017.74
– volume: 120
  start-page: 233
  issue: 3
  year: 2016
  ident: 4354_CR22
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-016-0911-8
– ident: 4354_CR21
– ident: 4354_CR14
  doi: 10.1007/978-3-030-20893-6_8
– ident: 4354_CR40
SSID ssj0000393111
Score 2.2517366
Snippet Transformer-based models are dominating the field of natural language processing and are becoming increasingly popular in the field of computer vision....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Algorithms
Artificial Intelligence
Back propagation
Computational Intelligence
Computer vision
Decision making
Engineering
Methods
Natural language processing
Original Research
Robotics and Automation
Transformers
User Interfaces and Human Computer Interaction
Visualization
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SL3oQn1itkoM3DWwem-x6EIpYiqAnC72FbDaBgrTSbhX_vZPtpquigudk5zCzmfkmmfkGoQvDU-OlL0iIjURYU5AiB4Pw0lKrrHLeh-bkh0c5HIn7cTpumsIWsdo9PknWnrptdmMyZSRUnycQ4wUBx7uZQu4eCrlGrL--WQndprQevBuo4ElKuWq6ZX4W8zUitTDz28toHXAGu2inQYq4vzLtHtpw0320_Yk_8ADd9Kv1wCo8B4vOltU1NhigMn4z77ia4UksKsSvk8US5FURqbr5IRoN7p5uh6QZiEAs44IRafJMGUqtFwVAC-8Vd4l1pRNlUkK0Yy6nFjAGoJaMidSXDFZt4pWFxENlkh-hznQ2dccIlz5kUjIL5xfik8-y0ALLpQt0Mj5PuohGpWjbsIWHoRXPuuU5DorUoEhdK1KzLrpcf_Oy4sr4c3cv6lo352ahWU4DWw44hS66ivpvl3-XdvK_7adoK8yNX92l9FCnmi_dGaCLqjivf6YPziLDSQ
  priority: 102
  providerName: Springer Nature
Title Attribution rollout: a new way to interpret visual transformer
URI https://link.springer.com/article/10.1007/s12652-022-04354-2
https://www.proquest.com/docview/2919499638
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90e_FFFBWnc-TBNw226Vfqg1JlHygOEQfzqbRpAgNZ59Yp_vde2nRDwb02TR7ukrtfLnf3AzhPHC9Rvkqp9o3UFUlK0xAV4mTCFoEIpFK6OPlp6A9G7sPYG5uA28KkVdY2sTTUWS50jPyKhbbuo4Lb5Xb2QTVrlH5dNRQa29BEE8x5A5p33eHzyyrKoitP7ZKEV7eFp57tBKZypqqfY77HqE5otxA2uJT99k5ryPnnlbR0Pr092DWokUSVmvdhS04P4CYqVnRVZI76zJfFNUkIAmXylXyTIieTOqWQfE4WS1yhqHGqnB_CqNd9vR9QQ4dABXNcRv0k5EFi20K5KQILpQJHWkJm0s2sDH0dk6EtEGEgZuHM9VTGcFRYKhB47Qi47xxBY5pP5TGQTOl7lM_16UXvpDjXBbCOL3UzGRVaLbBrMcTC9ArXlBXv8brLsRZdjKKLS9HFrAUXqzmzqlPGxr_btXRjc2oW8VrHLbisJb4e_n-1k82rncKOZomvIidtaBTzpTxDLFGkHdjmvX4HmlH_7bHbMdsHv45Y9ANSuMbQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcoALAgGirD7ACSwSZ0cCVAGlLO2pSNxC4thSJdRAm1L1p_hGZrK0AglunJPMYfzi97y8GYDDyHIi7eqYEzdyW0YxjwMcECuRpvSkp7Qmc3Kn67af7Ptn57kGn5UXhq5VVnNiPlEnqaQ98lMRmFRHBeFy-fbOqWsUna5WLTQKWDyo6QSXbKPzu2sc3yMhWje9qzYvuwpwKSxbcDfCZXZkmlLbMfKz1p6lDKkSZSdGgpQhVGBKJGqkfl_Yjk4EPpWG9iSqd893LYy7AIu2hUxOzvTW7WxPh3yuZt7yl4rQc8e0vNKnU7j1hOsITtfnDRQpNhffuXAucH-cyeZU11qFlVKjsmYBqjWoqcE6XDSzWXMsNkT0pOPsjEUMZTmbRFOWpaxfXWBkH_3RGCNklSpWww14-pc0bUJ9kA7UFrBE06rN9WmuQC7Uvk92W8tVVLpGB0YDzCoNoSwrk1ODjNdwXlOZUhdi6sI8daFowPHsm7eiLsefb-9W2Q3Lf3QUzhHVgJMq4_PHv0fb_jvaASy1e53H8PGu-7ADy9Sfvtiz2YV6NhyrPVQxWbyfQ4fBy39j9QvvvP7d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SQfQgPrFaNQdvGrrJZje7HoSilvoqHiz0FnazCRRkW9qt4r93so9uFRU8J5nDTJL58vi-Qegscr3I-CYmNjcSrqKYxCEExE0UVUIJbYwlJz_1_d6A3w-94RKLP__tXj1JFpwGq9KUZu1JYto18Y35HiP2J7oD-Z4T2IRXuWUDw4wesM7ilsUyT2lehNfKwhOPuqJkzvxs5mt2qiHnt1fSPPl0t9BmiRpxpwjzNlrR6Q7aWNIS3EVXnWxRvApPIbrjeXaJIwywGb9HHzgb41H1wRC_jWZzsJdVqFVP99Cge_ty3SNlcQSimMsZ8aMwEBGlyvAYYIYxwtWO0onmiZNA5mM6pArwBiCYgHHPJAxalWOEgkOICHx3HzXScaoPEE6MPVX5gV3LkKtMEFg6rOtrKy1jQqeJaOUUqUrlcFvA4lXWmsfWkRIcKXNHStZE54sxk0I348_ercrXslxDM8lCapVzYINooovK_3Xz79YO_9f9FK0933Tl413_4Qit23LyxRVLCzWy6VwfA-jI4pN8Xn0CAyjKbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribution+rollout%3A+a+new+way+to+interpret+visual+transformer&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Xu%2C+Li&rft.au=Yan%2C+Xin&rft.au=Ding%2C+Weiyue&rft.au=Liu%2C+Zechao&rft.date=2023-01-01&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=14&rft.issue=1&rft.spage=163&rft.epage=173&rft_id=info:doi/10.1007%2Fs12652-022-04354-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12652_022_04354_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon