End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis

Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 51; no. 2; pp. 736 - 751
Main Authors Khorram, Amin, Khalooei, Mohammad, Rezghi, Mansoor
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and efficiently processing collected signals and providing accurate diagnosis results. Although many studies have developed machine leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing the result with the other intelligent fault diagnosis methods.
AbstractList Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and efficiently processing collected signals and providing accurate diagnosis results. Although many studies have developed machine leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing the result with the other intelligent fault diagnosis methods.
Author Rezghi, Mansoor
Khorram, Amin
Khalooei, Mohammad
Author_xml – sequence: 1
  givenname: Amin
  orcidid: 0000-0003-3006-0680
  surname: Khorram
  fullname: Khorram, Amin
  email: amin.khorram@rockets.utoledo.edu
  organization: Department of Mechanical Engineering of WSE Co
– sequence: 2
  givenname: Mohammad
  surname: Khalooei
  fullname: Khalooei, Mohammad
  organization: Department of IT and Computer Engineering, Amirkabir University of Technology
– sequence: 3
  givenname: Mansoor
  surname: Rezghi
  fullname: Rezghi, Mansoor
  organization: Department of Computer Science, Tarbiat Modares University
BookMark eNp9kM9KAzEQh4NUsK2-gKcFjxKdbLLJ5iil_oG1HqzgLaSbbN2yZtdke_Dm1df0SUxdQfDQwzDwY76Z4ZugkWudReiUwAUBEJeBAMslhhQwkDyTmBygMckExYJJMUJjkCnDnMvnIzQJYQMAlAIZo2LuDO5bbJ1JZovF18fneazicXmfGGu7pLHau9qtE911vtXlS1K1PlnFdBdWetv0ian12rWhDsfosNJNsCe_fYqerufL2S0uHm7uZlcFLlPKCGbUCM4zXtkcmLSVyS3V3FoOkseEAmRG0FwLSiivtClBSitImWtergSkdIrOhr3xpbetDb3atFvv4kmVMsEFA5HxOJUPU6VvQ_C2UmXd675uXe913SgCaudODe5UdKd-3CkS0fQf2vn6Vfv3_RAdoNDt5Fj_99Ue6htKY4L1
CitedBy_id crossref_primary_10_1016_j_knosys_2021_107488
crossref_primary_10_1007_s00521_021_06661_9
crossref_primary_10_1109_TNSRE_2022_3174821
crossref_primary_10_3390_app12104831
crossref_primary_10_1007_s11071_022_07341_6
crossref_primary_10_1007_s00521_024_10756_4
crossref_primary_10_1007_s40430_023_04139_4
crossref_primary_10_3390_aerospace11050393
crossref_primary_10_1177_09544089231191042
crossref_primary_10_1088_1361_6501_ace3e7
crossref_primary_10_3390_wevj15120544
crossref_primary_10_1088_1361_6501_ace7e5
crossref_primary_10_1177_14759217241242032
crossref_primary_10_32604_cmes_2024_054257
crossref_primary_10_1109_JSEN_2023_3233957
crossref_primary_10_1109_TIM_2024_3522663
crossref_primary_10_1177_09544089241228943
crossref_primary_10_1155_2022_8378187
crossref_primary_10_31466_kfbd_1434595
crossref_primary_10_1177_14759217221113323
crossref_primary_10_1016_j_asoc_2022_108590
crossref_primary_10_1007_s12206_023_0306_z
crossref_primary_10_1016_j_asej_2022_101945
crossref_primary_10_3390_s22114118
crossref_primary_10_1007_s11063_022_11013_2
crossref_primary_10_3390_aerospace10010055
crossref_primary_10_1007_s00202_024_02420_w
crossref_primary_10_1016_j_imu_2023_101370
crossref_primary_10_1177_14759217241270883
crossref_primary_10_3390_pr10081443
crossref_primary_10_3389_frai_2025_1504281
crossref_primary_10_3390_software3010003
crossref_primary_10_3390_act11100275
crossref_primary_10_1049_ipr2_70033
crossref_primary_10_3390_su152416722
crossref_primary_10_1155_2023_1225536
crossref_primary_10_1016_j_isatra_2025_03_004
crossref_primary_10_1088_1361_6501_ad4f01
crossref_primary_10_1007_s10489_021_02924_z
crossref_primary_10_1038_s41598_024_55620_6
crossref_primary_10_1088_1361_6501_abe163
crossref_primary_10_1007_s11042_023_15571_y
crossref_primary_10_1155_2021_7346352
crossref_primary_10_21595_jve_2022_22366
crossref_primary_10_1155_2022_4756480
crossref_primary_10_1109_TIM_2023_3298653
crossref_primary_10_1088_1361_6501_ad214b
crossref_primary_10_1007_s10489_024_06161_y
crossref_primary_10_32604_cmc_2023_038758
crossref_primary_10_3390_app14073129
crossref_primary_10_1007_s40430_023_04491_5
crossref_primary_10_3390_app13031809
crossref_primary_10_1109_ACCESS_2021_3128669
crossref_primary_10_1109_ACCESS_2024_3390234
crossref_primary_10_21595_jve_2023_23391
crossref_primary_10_1007_s10489_024_05643_3
crossref_primary_10_3390_s22010123
crossref_primary_10_1088_1361_6501_ad704b
crossref_primary_10_1007_s00500_022_07509_7
crossref_primary_10_1088_1755_1315_1453_1_012035
crossref_primary_10_1007_s11042_023_15638_w
crossref_primary_10_1177_01423312241292756
crossref_primary_10_3390_vibration6010002
crossref_primary_10_1007_s42417_022_00498_9
crossref_primary_10_1088_1361_6501_ad30bc
crossref_primary_10_1155_2024_1547428
crossref_primary_10_1007_s11042_023_15325_w
crossref_primary_10_3390_electronics13193946
crossref_primary_10_1016_j_egyr_2023_04_266
crossref_primary_10_1021_acsomega_4c03757
crossref_primary_10_1007_s11042_021_11617_1
crossref_primary_10_1007_s10489_024_05429_7
crossref_primary_10_1016_j_engappai_2023_106852
crossref_primary_10_3390_app14135556
crossref_primary_10_3390_vibration6010014
crossref_primary_10_1109_ACCESS_2021_3125733
crossref_primary_10_3390_app14052182
crossref_primary_10_35377_saucis_04_02_912154
crossref_primary_10_1016_j_bspc_2024_106422
crossref_primary_10_1016_j_measen_2023_100701
crossref_primary_10_1002_adts_202301090
crossref_primary_10_1080_08982112_2024_2385920
crossref_primary_10_1109_JSEN_2022_3188310
crossref_primary_10_1109_JSEN_2023_3267427
crossref_primary_10_3390_machines11121080
crossref_primary_10_17714_gumusfenbil_1120895
crossref_primary_10_3934_mbe_2024216
crossref_primary_10_1007_s42417_023_01228_5
crossref_primary_10_1515_mt_2023_0334
crossref_primary_10_3390_aerospace10050480
crossref_primary_10_3390_s23198060
crossref_primary_10_1016_j_ymssp_2023_111037
crossref_primary_10_3934_mbe_2024338
crossref_primary_10_1007_s10489_021_02733_4
crossref_primary_10_1007_s10489_022_03615_z
crossref_primary_10_1016_j_engappai_2023_107126
crossref_primary_10_1109_TIM_2023_3318690
crossref_primary_10_3390_s23125607
crossref_primary_10_1155_2022_3987480
crossref_primary_10_1016_j_asoc_2025_112889
crossref_primary_10_1109_ACCESS_2021_3078709
crossref_primary_10_1115_1_4067382
crossref_primary_10_1016_j_neucom_2024_127284
crossref_primary_10_1177_09544089211064464
Cites_doi 10.3390/s18124484
10.1109/28.475697
10.1016/j.ymssp.2018.07.034
10.1109/TSG.2016.2629450
10.1109/TIM.2004.823323
10.1016/j.jsv.2005.03.007
10.1016/j.engappai.2008.07.006
10.1299/jsmesed.2018.17.109
10.1088/1742-6596/1213/4/042039
10.1016/j.procs.2018.04.221
10.1162/neco.1997.9.8.1735
10.1016/j.knosys.2019.07.008
10.1109/MIA.2007.909802
10.1007/s11265-018-1378-3
10.1109/TIE.2008.2005018
10.1109/TIP.2016.2548241
10.3390/s17030549
10.1609/aaai.v32i1.11836
10.5545/sv-jme.2017.5249
10.1109/TIM.2011.2172112
10.3390/s18072220
10.36001/phme.2016.v3i1.1577
10.1109/TGRS.2016.2584107
10.3390/s19092097
10.1016/j.ymssp.2006.01.007
10.1109/08IAS.2008.26
10.1109/ICASSP.2019.8682194
10.1109/ICASSP.2015.7178838
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-020-01859-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7497
EndPage 751
ExternalDocumentID 10_1007_s10489_020_01859_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c2341-43d76656fe8049efd8e3a6ee60968043005d738a73136fadc099e71c8a6cb7023
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Jul 25 12:24:28 EDT 2025
Thu Apr 24 23:05:52 EDT 2025
Tue Jul 01 03:31:41 EDT 2025
Fri Feb 21 02:26:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
IMS bearing dataset
CWRU bearing dataset
Intelligent fault diagnosis
Bearing fault
CNN + LSTM
Intelligent controller
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2341-43d76656fe8049efd8e3a6ee60968043005d738a73136fadc099e71c8a6cb7023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3006-0680
PQID 2476740756
PQPubID 326365
PageCount 16
ParticipantIDs proquest_journals_2476740756
crossref_citationtrail_10_1007_s10489_020_01859_1
crossref_primary_10_1007_s10489_020_01859_1
springer_journals_10_1007_s10489_020_01859_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Boston
PublicationSubtitle The International Journal of Research on Intelligent Systems for Real Life Complex Problems
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2021
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Zhang, Chen, Huang (CR28) 2018; 131
Mao, Feng, Liang (CR2) 2019; 117
Zhang, Hao, Liu (CR22) 2019; 1213
CR19
CR18
CR17
CR16
CR15
CR13
Zhen Zuo, Wang, Liu, Wang, Wang, Chen (CR20) 2016; 25
CR35
CR34
Zhang, Peng, Wu, Yao, Guan (CR11) 2017; 17
Bilgera, Yamamoto, Sawano, Matsukura, Ishida (CR23) 2018; 18
CR10
CR31
CR30
Yoshimatsu, Satou, Shibasaki (CR14) 2018; 2018
Eren, Devaney (CR7) 2004; 53
CR4
CR3
CR29
CR9
CR27
CR26
Bonnett, Yung (CR1) 2008; 14
Schoen, Habetler, Kamran, Bartfield (CR6) 1995; 31
CR25
Eren, Ince, Kiranyaz (CR12) 2018; 91
CR24
Claessens, Vrancx, Ruelens (CR33) 2018; 9
Zhou, Habetler, Harley (CR5) 2008; 55
Qiu, Lee, Lin, Yu (CR32) 2006; 289
Samanta, Nataraj (CR8) 2009; 22
Zhou, Yang, Fujita, Chen, Wen (CR36) 2020; 187
Hochreiter, Schmidhuber (CR21) 1997; 9
L Eren (1859_CR7) 2004; 53
1859_CR9
1859_CR26
1859_CR25
1859_CR3
1859_CR24
1859_CR4
1859_CR29
1859_CR27
Y Zhang (1859_CR22) 2019; 1213
AH Bonnett (1859_CR1) 2008; 14
BJ Claessens (1859_CR33) 2018; 9
C Bilgera (1859_CR23) 2018; 18
B Samanta (1859_CR8) 2009; 22
RR Schoen (1859_CR6) 1995; 31
1859_CR10
1859_CR31
X Zhang (1859_CR28) 2018; 131
1859_CR30
F Zhou (1859_CR36) 2020; 187
1859_CR15
O Yoshimatsu (1859_CR14) 2018; 2018
H Qiu (1859_CR32) 2006; 289
L Eren (1859_CR12) 2018; 91
1859_CR13
1859_CR35
1859_CR34
1859_CR19
1859_CR18
1859_CR17
1859_CR16
S Hochreiter (1859_CR21) 1997; 9
W Mao (1859_CR2) 2019; 117
R Zhang (1859_CR11) 2017; 17
W Zhou (1859_CR5) 2008; 55
BS Zhen Zuo (1859_CR20) 2016; 25
References_xml – volume: 18
  start-page: 4484
  issue: 12
  year: 2018
  ident: CR23
  article-title: Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments
  publication-title: Sensors
  doi: 10.3390/s18124484
– ident: CR18
– volume: 31
  start-page: 1274
  issue: 6
  year: 1995
  end-page: 1279
  ident: CR6
  article-title: Motor bearing damage detection using stator current monitoring
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/28.475697
– volume: 117
  start-page: 293
  year: 2019
  end-page: 318
  ident: CR2
  article-title: A novel deep output kernel learning method for bearing fault structural diagnosis
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.034
– volume: 9
  start-page: 3259
  issue: 4
  year: 2018
  end-page: 3269
  ident: CR33
  article-title: Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2629450
– ident: CR4
– ident: CR16
– ident: CR30
– ident: CR10
– ident: CR35
– volume: 53
  start-page: 431
  issue: 2
  year: 2004
  end-page: 436
  ident: CR7
  article-title: Bearing damage detection via wavelet packet decomposition of the stator current
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2004.823323
– ident: CR29
– volume: 289
  start-page: 1066
  issue: 4
  year: 2006
  end-page: 1090
  ident: CR32
  article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.03.007
– volume: 22
  start-page: 308
  issue: 2
  year: 2009
  end-page: 316
  ident: CR8
  article-title: Use of particle swarm optimization for machinery fault detection
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.07.006
– volume: 2018
  start-page: 109
  issue: 17
  year: 2018
  ident: CR14
  article-title: Rolling bearing diagnosis based on deep learning enhanced by various dataset Training多様データセットを用いた深層学習による転がり軸受の損傷診断
  publication-title: The Proceedings of the Symposium on Evaluation and Diagnosis
  doi: 10.1299/jsmesed.2018.17.109
– ident: CR25
– ident: CR27
– volume: 1213
  start-page: 042039
  year: 2019
  ident: CR22
  article-title: Simplifying long short-term memory for fast training and time series prediction
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1213/4/042039
– ident: CR19
– volume: 131
  start-page: 911
  year: 2018
  end-page: 917
  ident: CR28
  article-title: A combination of RNN and CNN for attention-based relation classification
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.04.221
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR21
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR3
– ident: CR15
– volume: 187
  start-page: 104837
  year: 2020
  ident: CR36
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.07.008
– volume: 14
  start-page: 29
  issue: 1
  year: 2008
  end-page: 36
  ident: CR1
  article-title: Increased efficiency versus increased reliability
  publication-title: IEEE Ind Appl Mag
  doi: 10.1109/MIA.2007.909802
– ident: CR17
– ident: CR31
– ident: CR13
– ident: CR9
– volume: 91
  start-page: 179
  year: 2018
  end-page: 189
  ident: CR12
  article-title: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier
  publication-title: Journal of Signal Processing Systems
  doi: 10.1007/s11265-018-1378-3
– volume: 55
  start-page: 4260
  issue: 12
  year: 2008
  end-page: 4269
  ident: CR5
  article-title: Bearing fault detection via Stator current noise cancellation and statistical control
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2008.2005018
– ident: CR34
– volume: 25
  start-page: 2983
  year: 2016
  end-page: 2996
  ident: CR20
  article-title: Learning contextual dependencies with convolutional hierarchical recurrent neural networks
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2548241
– ident: CR26
– ident: CR24
– volume: 17
  start-page: 549
  year: 2017
  ident: CR11
  article-title: Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence
  publication-title: Sensors
  doi: 10.3390/s17030549
– volume: 31
  start-page: 1274
  issue: 6
  year: 1995
  ident: 1859_CR6
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/28.475697
– volume: 1213
  start-page: 042039
  year: 2019
  ident: 1859_CR22
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1213/4/042039
– ident: 1859_CR17
– ident: 1859_CR24
  doi: 10.1609/aaai.v32i1.11836
– ident: 1859_CR13
  doi: 10.5545/sv-jme.2017.5249
– volume: 53
  start-page: 431
  issue: 2
  year: 2004
  ident: 1859_CR7
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2004.823323
– ident: 1859_CR15
– ident: 1859_CR9
  doi: 10.1109/TIM.2011.2172112
– ident: 1859_CR25
  doi: 10.3390/s18072220
– volume: 17
  start-page: 549
  year: 2017
  ident: 1859_CR11
  publication-title: Sensors
  doi: 10.3390/s17030549
– ident: 1859_CR30
– ident: 1859_CR27
– ident: 1859_CR3
  doi: 10.36001/phme.2016.v3i1.1577
– ident: 1859_CR19
  doi: 10.1109/TGRS.2016.2584107
– volume: 25
  start-page: 2983
  year: 2016
  ident: 1859_CR20
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2548241
– volume: 187
  start-page: 104837
  year: 2020
  ident: 1859_CR36
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.07.008
– volume: 91
  start-page: 179
  year: 2018
  ident: 1859_CR12
  publication-title: Journal of Signal Processing Systems
  doi: 10.1007/s11265-018-1378-3
– volume: 55
  start-page: 4260
  issue: 12
  year: 2008
  ident: 1859_CR5
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2008.2005018
– ident: 1859_CR16
– volume: 289
  start-page: 1066
  issue: 4
  year: 2006
  ident: 1859_CR32
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2005.03.007
– ident: 1859_CR34
  doi: 10.3390/s19092097
– volume: 14
  start-page: 29
  issue: 1
  year: 2008
  ident: 1859_CR1
  publication-title: IEEE Ind Appl Mag
  doi: 10.1109/MIA.2007.909802
– ident: 1859_CR10
  doi: 10.1016/j.ymssp.2006.01.007
– volume: 22
  start-page: 308
  issue: 2
  year: 2009
  ident: 1859_CR8
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2008.07.006
– volume: 9
  start-page: 3259
  issue: 4
  year: 2018
  ident: 1859_CR33
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2016.2629450
– ident: 1859_CR4
  doi: 10.1109/08IAS.2008.26
– volume: 131
  start-page: 911
  year: 2018
  ident: 1859_CR28
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.04.221
– ident: 1859_CR18
  doi: 10.1109/ICASSP.2019.8682194
– ident: 1859_CR31
– volume: 2018
  start-page: 109
  issue: 17
  year: 2018
  ident: 1859_CR14
  publication-title: The Proceedings of the Symposium on Evaluation and Diagnosis
  doi: 10.1299/jsmesed.2018.17.109
– volume: 18
  start-page: 4484
  issue: 12
  year: 2018
  ident: 1859_CR23
  publication-title: Sensors
  doi: 10.3390/s18124484
– ident: 1859_CR26
– ident: 1859_CR35
  doi: 10.3390/s17030549
– volume: 117
  start-page: 293
  year: 2019
  ident: 1859_CR2
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.07.034
– ident: 1859_CR29
  doi: 10.1109/ICASSP.2015.7178838
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 1859_CR21
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0003301
Score 2.5972493
Snippet Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 736
SubjectTerms Accelerometers
Accuracy
Algorithms
Artificial Intelligence
Computer Science
Datasets
Deep learning
Downtime
Fault detection
Fault diagnosis
Industrial plants
Machine learning
Machines
Manufacturing
Mechanical Engineering
Performance degradation
Processes
Recurrent neural networks
Signal processing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQWVj4RhQK8sBWLDWJY7tjVbWqUNuFVuoWOfYZIVVpRdOdlb_JL-GcJi0gQGLI4tge7vzxTr57j5C7gGtjwMbMRpFm3Blg2sqQgSokaqTUhRbBaCwGU_4wi2dlUdiqynavniSLk_pTsRv36T2hT6RScZthzLMf-9gdV_E07GzPX4zQC508jCyYEO1ZWSrz8xxfr6Mdxvz2LFrcNv1jcljCRNrZ-PWE7EF2So4qCQZa7sgzMuxlluULBpml3fH4_fWtid_wcTKiFmBJS1GIJ1pxh1MEqTTFVt_o9HqeU7vJtntenZNpvzfpDlgpkMBMiLcP45GVAgGZA4VAH5xVEGkBIDAuUZ7MqxVbGSktoyASTluDcBBkYJQWJpXoigtSyxYZXBJqIGy1tWsBjx13qVSah-jCFNEjdzZSdRJUdkpMyR7uRSzmyY732Ns2QdsmhW2ToE6a2zHLDXfGn70blfmTch-tkpB7siGENaJO7iuX7H7_PtvV_7pfk4PQJ6sU6dgNUstf1nCDaCNPb4vF9QFivcn0
  priority: 102
  providerName: Springer Nature
Title End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis
URI https://link.springer.com/article/10.1007/s10489-020-01859-1
https://www.proquest.com/docview/2476740756
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BThsxEB0BufTSAm3VtBD5wI1aze56bedUJSgBtbBCQKT0tPLaY1QJbdIm3Hvtb_ZLGG-8REWCw2ole9eHGXvmjT2eB3CUCGMtupy7LDNceIvcOJVy1A1FjVKm4SK4KOTZVHyb5bO44baMaZWtTWwMtZvbsEf-JRWh7Aw5OPl18YsH1qhwuhopNLahQyZYU_DVGY2Ly6tHW0zResOZR1EGl3Iwi9dm4uU5EdKF0pCYpfMBT_53TRu8-eSItPE8k114HSEjG651vAdbWO_Dm5aOgcXV-RbOx7XjqznH2rGTovj35-8xPefXNxfMIS5YJIi4ZW0dcUaAlVXUGhq9ub9bMbfOvPu5fAfTyfjm5IxHsgRuU_JEXGROSQJnHjWBfvROY2YkoqQYRYfCXv3cqUwblSWZ9MZZgoaoEquNtJUitbyHnXpe4wdgFtP-wPg-itwLXyltRErqrAhJCu8y3YWklVNpYyXxQGhxV25qIAfZliTbspFtmXTh-PGfxbqOxotfH7TiL-OaWpabGdCFz61KNt3Pj_bx5dE-was0JKo0qdgHsLP6fY-HhDRWVQ-29eS0B53hZDQqwvv0x_dxL04y6p2mwwe-7dNU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1V5QAXvhGBAj7AqVhkba_tHBBCpSGlSS6kUm6L1x5XSNUmkFSIG1f-DD-KX8LY2W0EEr31sBev14fxePy8nnkP4HmhnPcYSh6kdFxFj9wFIzjaLFFjjMtaBJOpHp2oD_NyvgO_ulqYlFbZxcQcqMPCp3_kr4RKtDO0wek3yy88qUal29VOQmPjFsf4_Rsd2Vavj97R_L4QYng4OxjxVlWAe0EhmysZjCYUE9ESOsYYLEqnETWBeZsYsPplMNI6IwupowueMBSawlunfW0y0QGF_GtKykFaUXb4_iLyS5nllvt0puFaD-ZtkU5bqqdScpJIaWC2HPDi741wi27_uZDN-9zwNtxsASp7u_GoO7CDzV241Yk_sDYW3IPxYRP4esGxCexgOv394-c-PeOPswkLiEvWylGcso61nBE8ZjW1psbozs_WLGzy_D6v7sPJlRjxAew2iwYfAvMo-gMX-6jKqGJtrFOCnKcm3KpikLYHRWenyre85Uk-46zaMi4n21Zk2yrbtip6sH_xzXLD2nFp773O_FW7glfV1t968LKbku3r_4_26PLRnsH10WwyrsZH0-PHcEOkFJmcBL4Hu-uv5_iEMM66fpodi8Gnq_bkP0qRCEg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwlxgfIlFlrwAU7FamI7tveAKmh31dJtVEEr7S04_qiQquzCblVx48pf4ufwSxhnna5AorcecnESKxpPZp7t8XsAr3JhrPWuoI5zQ0WwnhqnGPW6lahRyrRaBMelPDgTHybFZA1-dWdhYlllFxPbQO2mNq6R7zARaWcwwcmdkMoiTvZHu7OvNCpIxZ3WTk5j6SJH_vsVTt_mbw_3caxfMzYanu4d0KQwQC3D8E0Fd0oiogleI1L2wWnPjfReIrDXkQ0rK5zi2iiecxmMs4invMqtNtLWqiU9wPC_Hr8r68H6-2F58vE6D3Deii9nOMOhUg4m6chOOrgnYqkSi0VhuhjQ_O-0uMK6_2zPtllvtAH3Elwl75b-9QDWfPMQ7ndSECRFhkcwHjaOLqbUN47sleXvHz-38Rp_Oj0mzvsZSeIU56TjMCcIlkmNrbExmMuLBXHLqr8v88dwditmfAK9Ztr4p0CsZ9nAhMyLIohQK20EQ1eqEcWK4LjuQ97ZqbKJxTyKaVxUK_7laNsKbVu1tq3yPmxfvzNbcnjc-PRmZ_4q_c_zauV9fXjTDcnq9v97e3Zzby_hDnpxNT4sj57DXRbrZdqK8E3oLb5d-i0EPIv6RfIsAp9v25n_AEBHDdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+CNN%E2%80%89%2B%E2%80%89LSTM+deep+learning+approach+for+bearing+fault+diagnosis&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Khorram+Amin&rft.au=Khalooei+Mohammad&rft.au=Rezghi+Mansoor&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=2&rft.spage=736&rft.epage=751&rft_id=info:doi/10.1007%2Fs10489-020-01859-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon