End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis
Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages...
Saved in:
Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 51; no. 2; pp. 736 - 751 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and efficiently processing collected signals and providing accurate diagnosis results. Although many studies have developed machine leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing the result with the other intelligent fault diagnosis methods. |
---|---|
AbstractList | Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and efficiently processing collected signals and providing accurate diagnosis results. Although many studies have developed machine leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing the result with the other intelligent fault diagnosis methods. |
Author | Rezghi, Mansoor Khorram, Amin Khalooei, Mohammad |
Author_xml | – sequence: 1 givenname: Amin orcidid: 0000-0003-3006-0680 surname: Khorram fullname: Khorram, Amin email: amin.khorram@rockets.utoledo.edu organization: Department of Mechanical Engineering of WSE Co – sequence: 2 givenname: Mohammad surname: Khalooei fullname: Khalooei, Mohammad organization: Department of IT and Computer Engineering, Amirkabir University of Technology – sequence: 3 givenname: Mansoor surname: Rezghi fullname: Rezghi, Mansoor organization: Department of Computer Science, Tarbiat Modares University |
BookMark | eNp9kM9KAzEQh4NUsK2-gKcFjxKdbLLJ5iil_oG1HqzgLaSbbN2yZtdke_Dm1df0SUxdQfDQwzDwY76Z4ZugkWudReiUwAUBEJeBAMslhhQwkDyTmBygMckExYJJMUJjkCnDnMvnIzQJYQMAlAIZo2LuDO5bbJ1JZovF18fneazicXmfGGu7pLHau9qtE911vtXlS1K1PlnFdBdWetv0ian12rWhDsfosNJNsCe_fYqerufL2S0uHm7uZlcFLlPKCGbUCM4zXtkcmLSVyS3V3FoOkseEAmRG0FwLSiivtClBSitImWtergSkdIrOhr3xpbetDb3atFvv4kmVMsEFA5HxOJUPU6VvQ_C2UmXd675uXe913SgCaudODe5UdKd-3CkS0fQf2vn6Vfv3_RAdoNDt5Fj_99Ue6htKY4L1 |
CitedBy_id | crossref_primary_10_1016_j_knosys_2021_107488 crossref_primary_10_1007_s00521_021_06661_9 crossref_primary_10_1109_TNSRE_2022_3174821 crossref_primary_10_3390_app12104831 crossref_primary_10_1007_s11071_022_07341_6 crossref_primary_10_1007_s00521_024_10756_4 crossref_primary_10_1007_s40430_023_04139_4 crossref_primary_10_3390_aerospace11050393 crossref_primary_10_1177_09544089231191042 crossref_primary_10_1088_1361_6501_ace3e7 crossref_primary_10_3390_wevj15120544 crossref_primary_10_1088_1361_6501_ace7e5 crossref_primary_10_1177_14759217241242032 crossref_primary_10_32604_cmes_2024_054257 crossref_primary_10_1109_JSEN_2023_3233957 crossref_primary_10_1109_TIM_2024_3522663 crossref_primary_10_1177_09544089241228943 crossref_primary_10_1155_2022_8378187 crossref_primary_10_31466_kfbd_1434595 crossref_primary_10_1177_14759217221113323 crossref_primary_10_1016_j_asoc_2022_108590 crossref_primary_10_1007_s12206_023_0306_z crossref_primary_10_1016_j_asej_2022_101945 crossref_primary_10_3390_s22114118 crossref_primary_10_1007_s11063_022_11013_2 crossref_primary_10_3390_aerospace10010055 crossref_primary_10_1007_s00202_024_02420_w crossref_primary_10_1016_j_imu_2023_101370 crossref_primary_10_1177_14759217241270883 crossref_primary_10_3390_pr10081443 crossref_primary_10_3389_frai_2025_1504281 crossref_primary_10_3390_software3010003 crossref_primary_10_3390_act11100275 crossref_primary_10_1049_ipr2_70033 crossref_primary_10_3390_su152416722 crossref_primary_10_1155_2023_1225536 crossref_primary_10_1016_j_isatra_2025_03_004 crossref_primary_10_1088_1361_6501_ad4f01 crossref_primary_10_1007_s10489_021_02924_z crossref_primary_10_1038_s41598_024_55620_6 crossref_primary_10_1088_1361_6501_abe163 crossref_primary_10_1007_s11042_023_15571_y crossref_primary_10_1155_2021_7346352 crossref_primary_10_21595_jve_2022_22366 crossref_primary_10_1155_2022_4756480 crossref_primary_10_1109_TIM_2023_3298653 crossref_primary_10_1088_1361_6501_ad214b crossref_primary_10_1007_s10489_024_06161_y crossref_primary_10_32604_cmc_2023_038758 crossref_primary_10_3390_app14073129 crossref_primary_10_1007_s40430_023_04491_5 crossref_primary_10_3390_app13031809 crossref_primary_10_1109_ACCESS_2021_3128669 crossref_primary_10_1109_ACCESS_2024_3390234 crossref_primary_10_21595_jve_2023_23391 crossref_primary_10_1007_s10489_024_05643_3 crossref_primary_10_3390_s22010123 crossref_primary_10_1088_1361_6501_ad704b crossref_primary_10_1007_s00500_022_07509_7 crossref_primary_10_1088_1755_1315_1453_1_012035 crossref_primary_10_1007_s11042_023_15638_w crossref_primary_10_1177_01423312241292756 crossref_primary_10_3390_vibration6010002 crossref_primary_10_1007_s42417_022_00498_9 crossref_primary_10_1088_1361_6501_ad30bc crossref_primary_10_1155_2024_1547428 crossref_primary_10_1007_s11042_023_15325_w crossref_primary_10_3390_electronics13193946 crossref_primary_10_1016_j_egyr_2023_04_266 crossref_primary_10_1021_acsomega_4c03757 crossref_primary_10_1007_s11042_021_11617_1 crossref_primary_10_1007_s10489_024_05429_7 crossref_primary_10_1016_j_engappai_2023_106852 crossref_primary_10_3390_app14135556 crossref_primary_10_3390_vibration6010014 crossref_primary_10_1109_ACCESS_2021_3125733 crossref_primary_10_3390_app14052182 crossref_primary_10_35377_saucis_04_02_912154 crossref_primary_10_1016_j_bspc_2024_106422 crossref_primary_10_1016_j_measen_2023_100701 crossref_primary_10_1002_adts_202301090 crossref_primary_10_1080_08982112_2024_2385920 crossref_primary_10_1109_JSEN_2022_3188310 crossref_primary_10_1109_JSEN_2023_3267427 crossref_primary_10_3390_machines11121080 crossref_primary_10_17714_gumusfenbil_1120895 crossref_primary_10_3934_mbe_2024216 crossref_primary_10_1007_s42417_023_01228_5 crossref_primary_10_1515_mt_2023_0334 crossref_primary_10_3390_aerospace10050480 crossref_primary_10_3390_s23198060 crossref_primary_10_1016_j_ymssp_2023_111037 crossref_primary_10_3934_mbe_2024338 crossref_primary_10_1007_s10489_021_02733_4 crossref_primary_10_1007_s10489_022_03615_z crossref_primary_10_1016_j_engappai_2023_107126 crossref_primary_10_1109_TIM_2023_3318690 crossref_primary_10_3390_s23125607 crossref_primary_10_1155_2022_3987480 crossref_primary_10_1016_j_asoc_2025_112889 crossref_primary_10_1109_ACCESS_2021_3078709 crossref_primary_10_1115_1_4067382 crossref_primary_10_1016_j_neucom_2024_127284 crossref_primary_10_1177_09544089211064464 |
Cites_doi | 10.3390/s18124484 10.1109/28.475697 10.1016/j.ymssp.2018.07.034 10.1109/TSG.2016.2629450 10.1109/TIM.2004.823323 10.1016/j.jsv.2005.03.007 10.1016/j.engappai.2008.07.006 10.1299/jsmesed.2018.17.109 10.1088/1742-6596/1213/4/042039 10.1016/j.procs.2018.04.221 10.1162/neco.1997.9.8.1735 10.1016/j.knosys.2019.07.008 10.1109/MIA.2007.909802 10.1007/s11265-018-1378-3 10.1109/TIE.2008.2005018 10.1109/TIP.2016.2548241 10.3390/s17030549 10.1609/aaai.v32i1.11836 10.5545/sv-jme.2017.5249 10.1109/TIM.2011.2172112 10.3390/s18072220 10.36001/phme.2016.v3i1.1577 10.1109/TGRS.2016.2584107 10.3390/s19092097 10.1016/j.ymssp.2006.01.007 10.1109/08IAS.2008.26 10.1109/ICASSP.2019.8682194 10.1109/ICASSP.2015.7178838 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
DOI | 10.1007/s10489-020-01859-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7497 |
EndPage | 751 |
ExternalDocumentID | 10_1007_s10489_020_01859_1 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c2341-43d76656fe8049efd8e3a6ee60968043005d738a73136fadc099e71c8a6cb7023 |
IEDL.DBID | BENPR |
ISSN | 0924-669X |
IngestDate | Fri Jul 25 12:24:28 EDT 2025 Thu Apr 24 23:05:52 EDT 2025 Tue Jul 01 03:31:41 EDT 2025 Fri Feb 21 02:26:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning IMS bearing dataset CWRU bearing dataset Intelligent fault diagnosis Bearing fault CNN + LSTM Intelligent controller |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2341-43d76656fe8049efd8e3a6ee60968043005d738a73136fadc099e71c8a6cb7023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3006-0680 |
PQID | 2476740756 |
PQPubID | 326365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2476740756 crossref_citationtrail_10_1007_s10489_020_01859_1 crossref_primary_10_1007_s10489_020_01859_1 springer_journals_10_1007_s10489_020_01859_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Boston |
PublicationSubtitle | The International Journal of Research on Intelligent Systems for Real Life Complex Problems |
PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
PublicationTitleAbbrev | Appl Intell |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Zhang, Chen, Huang (CR28) 2018; 131 Mao, Feng, Liang (CR2) 2019; 117 Zhang, Hao, Liu (CR22) 2019; 1213 CR19 CR18 CR17 CR16 CR15 CR13 Zhen Zuo, Wang, Liu, Wang, Wang, Chen (CR20) 2016; 25 CR35 CR34 Zhang, Peng, Wu, Yao, Guan (CR11) 2017; 17 Bilgera, Yamamoto, Sawano, Matsukura, Ishida (CR23) 2018; 18 CR10 CR31 CR30 Yoshimatsu, Satou, Shibasaki (CR14) 2018; 2018 Eren, Devaney (CR7) 2004; 53 CR4 CR3 CR29 CR9 CR27 CR26 Bonnett, Yung (CR1) 2008; 14 Schoen, Habetler, Kamran, Bartfield (CR6) 1995; 31 CR25 Eren, Ince, Kiranyaz (CR12) 2018; 91 CR24 Claessens, Vrancx, Ruelens (CR33) 2018; 9 Zhou, Habetler, Harley (CR5) 2008; 55 Qiu, Lee, Lin, Yu (CR32) 2006; 289 Samanta, Nataraj (CR8) 2009; 22 Zhou, Yang, Fujita, Chen, Wen (CR36) 2020; 187 Hochreiter, Schmidhuber (CR21) 1997; 9 L Eren (1859_CR7) 2004; 53 1859_CR9 1859_CR26 1859_CR25 1859_CR3 1859_CR24 1859_CR4 1859_CR29 1859_CR27 Y Zhang (1859_CR22) 2019; 1213 AH Bonnett (1859_CR1) 2008; 14 BJ Claessens (1859_CR33) 2018; 9 C Bilgera (1859_CR23) 2018; 18 B Samanta (1859_CR8) 2009; 22 RR Schoen (1859_CR6) 1995; 31 1859_CR10 1859_CR31 X Zhang (1859_CR28) 2018; 131 1859_CR30 F Zhou (1859_CR36) 2020; 187 1859_CR15 O Yoshimatsu (1859_CR14) 2018; 2018 H Qiu (1859_CR32) 2006; 289 L Eren (1859_CR12) 2018; 91 1859_CR13 1859_CR35 1859_CR34 1859_CR19 1859_CR18 1859_CR17 1859_CR16 S Hochreiter (1859_CR21) 1997; 9 W Mao (1859_CR2) 2019; 117 R Zhang (1859_CR11) 2017; 17 W Zhou (1859_CR5) 2008; 55 BS Zhen Zuo (1859_CR20) 2016; 25 |
References_xml | – volume: 18 start-page: 4484 issue: 12 year: 2018 ident: CR23 article-title: Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments publication-title: Sensors doi: 10.3390/s18124484 – ident: CR18 – volume: 31 start-page: 1274 issue: 6 year: 1995 end-page: 1279 ident: CR6 article-title: Motor bearing damage detection using stator current monitoring publication-title: IEEE Trans Ind Appl doi: 10.1109/28.475697 – volume: 117 start-page: 293 year: 2019 end-page: 318 ident: CR2 article-title: A novel deep output kernel learning method for bearing fault structural diagnosis publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.07.034 – volume: 9 start-page: 3259 issue: 4 year: 2018 end-page: 3269 ident: CR33 article-title: Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2629450 – ident: CR4 – ident: CR16 – ident: CR30 – ident: CR10 – ident: CR35 – volume: 53 start-page: 431 issue: 2 year: 2004 end-page: 436 ident: CR7 article-title: Bearing damage detection via wavelet packet decomposition of the stator current publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2004.823323 – ident: CR29 – volume: 289 start-page: 1066 issue: 4 year: 2006 end-page: 1090 ident: CR32 article-title: Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.03.007 – volume: 22 start-page: 308 issue: 2 year: 2009 end-page: 316 ident: CR8 article-title: Use of particle swarm optimization for machinery fault detection publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.07.006 – volume: 2018 start-page: 109 issue: 17 year: 2018 ident: CR14 article-title: Rolling bearing diagnosis based on deep learning enhanced by various dataset Training多様データセットを用いた深層学習による転がり軸受の損傷診断 publication-title: The Proceedings of the Symposium on Evaluation and Diagnosis doi: 10.1299/jsmesed.2018.17.109 – ident: CR25 – ident: CR27 – volume: 1213 start-page: 042039 year: 2019 ident: CR22 article-title: Simplifying long short-term memory for fast training and time series prediction publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1213/4/042039 – ident: CR19 – volume: 131 start-page: 911 year: 2018 end-page: 917 ident: CR28 article-title: A combination of RNN and CNN for attention-based relation classification publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.04.221 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR21 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – ident: CR3 – ident: CR15 – volume: 187 start-page: 104837 year: 2020 ident: CR36 article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.07.008 – volume: 14 start-page: 29 issue: 1 year: 2008 end-page: 36 ident: CR1 article-title: Increased efficiency versus increased reliability publication-title: IEEE Ind Appl Mag doi: 10.1109/MIA.2007.909802 – ident: CR17 – ident: CR31 – ident: CR13 – ident: CR9 – volume: 91 start-page: 179 year: 2018 end-page: 189 ident: CR12 article-title: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier publication-title: Journal of Signal Processing Systems doi: 10.1007/s11265-018-1378-3 – volume: 55 start-page: 4260 issue: 12 year: 2008 end-page: 4269 ident: CR5 article-title: Bearing fault detection via Stator current noise cancellation and statistical control publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2008.2005018 – ident: CR34 – volume: 25 start-page: 2983 year: 2016 end-page: 2996 ident: CR20 article-title: Learning contextual dependencies with convolutional hierarchical recurrent neural networks publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2548241 – ident: CR26 – ident: CR24 – volume: 17 start-page: 549 year: 2017 ident: CR11 article-title: Fault diagnosis from raw sensor data using deep neural networks considering temporal coherence publication-title: Sensors doi: 10.3390/s17030549 – volume: 31 start-page: 1274 issue: 6 year: 1995 ident: 1859_CR6 publication-title: IEEE Trans Ind Appl doi: 10.1109/28.475697 – volume: 1213 start-page: 042039 year: 2019 ident: 1859_CR22 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1213/4/042039 – ident: 1859_CR17 – ident: 1859_CR24 doi: 10.1609/aaai.v32i1.11836 – ident: 1859_CR13 doi: 10.5545/sv-jme.2017.5249 – volume: 53 start-page: 431 issue: 2 year: 2004 ident: 1859_CR7 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2004.823323 – ident: 1859_CR15 – ident: 1859_CR9 doi: 10.1109/TIM.2011.2172112 – ident: 1859_CR25 doi: 10.3390/s18072220 – volume: 17 start-page: 549 year: 2017 ident: 1859_CR11 publication-title: Sensors doi: 10.3390/s17030549 – ident: 1859_CR30 – ident: 1859_CR27 – ident: 1859_CR3 doi: 10.36001/phme.2016.v3i1.1577 – ident: 1859_CR19 doi: 10.1109/TGRS.2016.2584107 – volume: 25 start-page: 2983 year: 2016 ident: 1859_CR20 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2016.2548241 – volume: 187 start-page: 104837 year: 2020 ident: 1859_CR36 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.07.008 – volume: 91 start-page: 179 year: 2018 ident: 1859_CR12 publication-title: Journal of Signal Processing Systems doi: 10.1007/s11265-018-1378-3 – volume: 55 start-page: 4260 issue: 12 year: 2008 ident: 1859_CR5 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2008.2005018 – ident: 1859_CR16 – volume: 289 start-page: 1066 issue: 4 year: 2006 ident: 1859_CR32 publication-title: J Sound Vib doi: 10.1016/j.jsv.2005.03.007 – ident: 1859_CR34 doi: 10.3390/s19092097 – volume: 14 start-page: 29 issue: 1 year: 2008 ident: 1859_CR1 publication-title: IEEE Ind Appl Mag doi: 10.1109/MIA.2007.909802 – ident: 1859_CR10 doi: 10.1016/j.ymssp.2006.01.007 – volume: 22 start-page: 308 issue: 2 year: 2009 ident: 1859_CR8 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2008.07.006 – volume: 9 start-page: 3259 issue: 4 year: 2018 ident: 1859_CR33 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2016.2629450 – ident: 1859_CR4 doi: 10.1109/08IAS.2008.26 – volume: 131 start-page: 911 year: 2018 ident: 1859_CR28 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.04.221 – ident: 1859_CR18 doi: 10.1109/ICASSP.2019.8682194 – ident: 1859_CR31 – volume: 2018 start-page: 109 issue: 17 year: 2018 ident: 1859_CR14 publication-title: The Proceedings of the Symposium on Evaluation and Diagnosis doi: 10.1299/jsmesed.2018.17.109 – volume: 18 start-page: 4484 issue: 12 year: 2018 ident: 1859_CR23 publication-title: Sensors doi: 10.3390/s18124484 – ident: 1859_CR26 – ident: 1859_CR35 doi: 10.3390/s17030549 – volume: 117 start-page: 293 year: 2019 ident: 1859_CR2 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.07.034 – ident: 1859_CR29 doi: 10.1109/ICASSP.2015.7178838 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 1859_CR21 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 |
SSID | ssj0003301 |
Score | 2.5972493 |
Snippet | Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 736 |
SubjectTerms | Accelerometers Accuracy Algorithms Artificial Intelligence Computer Science Datasets Deep learning Downtime Fault detection Fault diagnosis Industrial plants Machine learning Machines Manufacturing Mechanical Engineering Performance degradation Processes Recurrent neural networks Signal processing |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQWVj4RhQK8sBWLDWJY7tjVbWqUNuFVuoWOfYZIVVpRdOdlb_JL-GcJi0gQGLI4tge7vzxTr57j5C7gGtjwMbMRpFm3Blg2sqQgSokaqTUhRbBaCwGU_4wi2dlUdiqynavniSLk_pTsRv36T2hT6RScZthzLMf-9gdV_E07GzPX4zQC508jCyYEO1ZWSrz8xxfr6Mdxvz2LFrcNv1jcljCRNrZ-PWE7EF2So4qCQZa7sgzMuxlluULBpml3fH4_fWtid_wcTKiFmBJS1GIJ1pxh1MEqTTFVt_o9HqeU7vJtntenZNpvzfpDlgpkMBMiLcP45GVAgGZA4VAH5xVEGkBIDAuUZ7MqxVbGSktoyASTluDcBBkYJQWJpXoigtSyxYZXBJqIGy1tWsBjx13qVSah-jCFNEjdzZSdRJUdkpMyR7uRSzmyY732Ns2QdsmhW2ToE6a2zHLDXfGn70blfmTch-tkpB7siGENaJO7iuX7H7_PtvV_7pfk4PQJ6sU6dgNUstf1nCDaCNPb4vF9QFivcn0 priority: 102 providerName: Springer Nature |
Title | End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis |
URI | https://link.springer.com/article/10.1007/s10489-020-01859-1 https://www.proquest.com/docview/2476740756 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BThsxEB0BufTSAm3VtBD5wI1aze56bedUJSgBtbBCQKT0tPLaY1QJbdIm3Hvtb_ZLGG-8REWCw2ole9eHGXvmjT2eB3CUCGMtupy7LDNceIvcOJVy1A1FjVKm4SK4KOTZVHyb5bO44baMaZWtTWwMtZvbsEf-JRWh7Aw5OPl18YsH1qhwuhopNLahQyZYU_DVGY2Ly6tHW0zResOZR1EGl3Iwi9dm4uU5EdKF0pCYpfMBT_53TRu8-eSItPE8k114HSEjG651vAdbWO_Dm5aOgcXV-RbOx7XjqznH2rGTovj35-8xPefXNxfMIS5YJIi4ZW0dcUaAlVXUGhq9ub9bMbfOvPu5fAfTyfjm5IxHsgRuU_JEXGROSQJnHjWBfvROY2YkoqQYRYfCXv3cqUwblSWZ9MZZgoaoEquNtJUitbyHnXpe4wdgFtP-wPg-itwLXyltRErqrAhJCu8y3YWklVNpYyXxQGhxV25qIAfZliTbspFtmXTh-PGfxbqOxotfH7TiL-OaWpabGdCFz61KNt3Pj_bx5dE-was0JKo0qdgHsLP6fY-HhDRWVQ-29eS0B53hZDQqwvv0x_dxL04y6p2mwwe-7dNU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1V5QAXvhGBAj7AqVhkba_tHBBCpSGlSS6kUm6L1x5XSNUmkFSIG1f-DD-KX8LY2W0EEr31sBev14fxePy8nnkP4HmhnPcYSh6kdFxFj9wFIzjaLFFjjMtaBJOpHp2oD_NyvgO_ulqYlFbZxcQcqMPCp3_kr4RKtDO0wek3yy88qUal29VOQmPjFsf4_Rsd2Vavj97R_L4QYng4OxjxVlWAe0EhmysZjCYUE9ESOsYYLEqnETWBeZsYsPplMNI6IwupowueMBSawlunfW0y0QGF_GtKykFaUXb4_iLyS5nllvt0puFaD-ZtkU5bqqdScpJIaWC2HPDi741wi27_uZDN-9zwNtxsASp7u_GoO7CDzV241Yk_sDYW3IPxYRP4esGxCexgOv394-c-PeOPswkLiEvWylGcso61nBE8ZjW1psbozs_WLGzy_D6v7sPJlRjxAew2iwYfAvMo-gMX-6jKqGJtrFOCnKcm3KpikLYHRWenyre85Uk-46zaMi4n21Zk2yrbtip6sH_xzXLD2nFp773O_FW7glfV1t968LKbku3r_4_26PLRnsH10WwyrsZH0-PHcEOkFJmcBL4Hu-uv5_iEMM66fpodi8Gnq_bkP0qRCEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VWwlxgfIlFlrwAU7FamI7tveAKmh31dJtVEEr7S04_qiQquzCblVx48pf4ufwSxhnna5AorcecnESKxpPZp7t8XsAr3JhrPWuoI5zQ0WwnhqnGPW6lahRyrRaBMelPDgTHybFZA1-dWdhYlllFxPbQO2mNq6R7zARaWcwwcmdkMoiTvZHu7OvNCpIxZ3WTk5j6SJH_vsVTt_mbw_3caxfMzYanu4d0KQwQC3D8E0Fd0oiogleI1L2wWnPjfReIrDXkQ0rK5zi2iiecxmMs4invMqtNtLWqiU9wPC_Hr8r68H6-2F58vE6D3Deii9nOMOhUg4m6chOOrgnYqkSi0VhuhjQ_O-0uMK6_2zPtllvtAH3Elwl75b-9QDWfPMQ7ndSECRFhkcwHjaOLqbUN47sleXvHz-38Rp_Oj0mzvsZSeIU56TjMCcIlkmNrbExmMuLBXHLqr8v88dwditmfAK9Ztr4p0CsZ9nAhMyLIohQK20EQ1eqEcWK4LjuQ97ZqbKJxTyKaVxUK_7laNsKbVu1tq3yPmxfvzNbcnjc-PRmZ_4q_c_zauV9fXjTDcnq9v97e3Zzby_hDnpxNT4sj57DXRbrZdqK8E3oLb5d-i0EPIv6RfIsAp9v25n_AEBHDdo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+CNN%E2%80%89%2B%E2%80%89LSTM+deep+learning+approach+for+bearing+fault+diagnosis&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=Khorram+Amin&rft.au=Khalooei+Mohammad&rft.au=Rezghi+Mansoor&rft.date=2021-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0924-669X&rft.eissn=1573-7497&rft.volume=51&rft.issue=2&rft.spage=736&rft.epage=751&rft_id=info:doi/10.1007%2Fs10489-020-01859-1&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |