Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands
CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to...
Saved in:
Published in | Journal of controlled release Vol. 338; pp. 680 - 693 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.
[Display omitted]
•CD33 is a genetic risk factors for Alzheimer's disease susceptibility.•CD33 is an immunoinhibitory receptor expressed in brain microglia.•Liposomes displaying carbohydrate ligands were optimized for targeting CD33.•Liposomes targeting CD33 increase phagocytosis in microglial cells.•Liposomes delivered to transgenic mice expressing human CD33 are immunomodulatory. |
---|---|
AbstractList | CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.
[Display omitted]
•CD33 is a genetic risk factors for Alzheimer's disease susceptibility.•CD33 is an immunoinhibitory receptor expressed in brain microglia.•Liposomes displaying carbohydrate ligands were optimized for targeting CD33.•Liposomes targeting CD33 increase phagocytosis in microglial cells.•Liposomes delivered to transgenic mice expressing human CD33 are immunomodulatory. |
Author | Watson, Adrianne E.S. Eskandari-Sedighi, Ghazaleh Bains, Arjun St. Laurent, Chris D. Daskhan, Gour C. Macauley, Matthew S. Voronova, Anastassia Bhattacherjee, Abhishek |
Author_xml | – sequence: 1 givenname: Abhishek surname: Bhattacherjee fullname: Bhattacherjee, Abhishek email: abhattac@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada – sequence: 2 givenname: Gour C. surname: Daskhan fullname: Daskhan, Gour C. email: daskhan@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada – sequence: 3 givenname: Arjun surname: Bains fullname: Bains, Arjun email: asbains@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada – sequence: 4 givenname: Adrianne E.S. surname: Watson fullname: Watson, Adrianne E.S. email: aew1@ualberta.ca organization: Department of Medical Genetics, University of Alberta. Edmonton, Alberta, Canada – sequence: 5 givenname: Ghazaleh surname: Eskandari-Sedighi fullname: Eskandari-Sedighi, Ghazaleh email: ghazaleh@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada – sequence: 6 givenname: Chris D. surname: St. Laurent fullname: St. Laurent, Chris D. email: cds@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada – sequence: 7 givenname: Anastassia surname: Voronova fullname: Voronova, Anastassia email: voronova@ualberta.ca organization: Department of Medical Genetics, University of Alberta. Edmonton, Alberta, Canada – sequence: 8 givenname: Matthew S. surname: Macauley fullname: Macauley, Matthew S. email: macauley@ualberta.ca organization: Department of Chemistry, University of Alberta. Edmonton, Alberta, Canada |
BookMark | eNqFkD1PwzAURS1UJErhJyBlZEl4tuO4mRAqX5UqscBsOc5L6iq1g52C8u9J1e5Mb3jnXumeazJz3iEhdxQyCrR42GU7413ALmPAaAZlBhQuyJwuJU_zshQzMp-4ZcoLUV6R6xh3ACB4LudErZ0JqKN1bdJvdevNOPhoY-KbZG9N8G1ndVKNyaBDi8MRWz1znvzaYZt0tvfR7zEmtY19p8fju-1Go930a7Wr4w25bHQX8fZ8F-Tr9eVz9Z5uPt7Wq6dNahjPIcVcFszIoqANNRVDXtQ810wCq5kohOFUQj1NgQqXICsm6lIYQ1nTVBJx2fAFuT_19sF_HzAOam-jwa7TDv0hKiYkExygLCZUnNBpXYwBG9UHu9dhVBTUUajaqbNQdRSqoFST0Cn3eMrhtOPHYlDRWHQGaxvQDKr29p-GPwj3hCE |
CitedBy_id | crossref_primary_10_1016_j_mtbio_2022_100525 crossref_primary_10_1016_j_cbpa_2024_102454 crossref_primary_10_1016_j_jbc_2024_107482 crossref_primary_10_1186_s12974_024_03015_9 crossref_primary_10_3389_fneur_2024_1330874 crossref_primary_10_1038_s41467_023_38030_6 crossref_primary_10_1007_s11095_022_03301_2 crossref_primary_10_3389_fnagi_2023_1201982 crossref_primary_10_1042_BST20211203 crossref_primary_10_3390_pharmaceutics16030350 crossref_primary_10_3390_cells11213414 crossref_primary_10_1038_s41598_023_34787_4 crossref_primary_10_1016_j_mam_2022_101110 crossref_primary_10_1016_j_mam_2022_101111 crossref_primary_10_1002_mas_21873 crossref_primary_10_1016_j_xinn_2023_100548 |
Cites_doi | 10.1016/j.jconrel.2014.01.005 10.3389/fnagi.2014.00114 10.1093/hmg/ddv092 10.1016/j.leukres.2006.05.026 10.1146/annurev-immunol-102419-035900 10.1182/blood-2004-07-2784 10.1186/s13024-017-0184-x 10.1002/glia.23968 10.1073/pnas.2026102118 10.1182/blood.V96.2.483.014k40_483_490 10.3390/cells9122691 10.1016/j.neuron.2019.06.010 10.1073/pnas.2107424118 10.1186/s13195-017-0318-y 10.2147/IJN.S274289 10.1128/MCB.00383-07 10.1038/s42003-019-0698-6 10.1080/14712598.2020.1788540 10.1111/jnc.15349 10.1038/ng.803 10.1038/nn.3435 10.1016/j.isci.2019.07.023 10.1038/s41586-019-1088-4 10.1523/JNEUROSCI.1224-13.2013 10.1016/j.tips.2015.06.008 10.1172/JCI69187 10.1039/c4sc00451e 10.1016/j.cell.2018.05.013 10.1038/ng.801 10.1189/jlb.0607388 10.2147/IJN.S117210 10.1093/glycob/cwq220 10.1172/JCI125456 10.1038/nn.4126 10.1182/blood-2011-11-325050 10.1172/JCI90606 10.1186/s13024-021-00443-6 10.1038/s41598-020-71129-0 10.1038/s41467-020-18907-6 10.1016/S1474-4422(16)30395-7 10.1016/j.ijpharm.2009.05.013 10.1007/s00401-019-02000-4 10.3389/fnagi.2019.00373 10.1186/s13195-018-0424-5 10.1073/pnas.2012408118 10.2147/IJN.S596 10.1038/nrd1033 10.1039/D0NR02133D 10.1016/j.biopsych.2017.08.010 10.1039/D0OB01116A 10.3389/fnsyn.2020.00020 10.15252/emmm.201911227 10.1002/bit.21301 10.1002/anie.200902672 10.1021/bi962148u 10.2147/IJN.S183117 10.1186/s12974-020-01980-5 10.1021/mp900261m |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.jconrel.2021.09.010 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 693 |
ExternalDocumentID | 10_1016_j_jconrel_2021_09_010 S0168365921004892 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AAXKI AAYOK AAYXX ABXDB ACNNM ADMUD AFJKZ AHHHB AKRWK ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT WUQ 7X8 |
ID | FETCH-LOGICAL-c2340-e4762c7661f1cb2e36d34a2702d2565c3170d4990be807b25d95cc12ffb7ee8f3 |
IEDL.DBID | AIKHN |
ISSN | 0168-3659 |
IngestDate | Fri Oct 25 06:19:26 EDT 2024 Thu Sep 26 19:15:46 EDT 2024 Fri Feb 23 02:39:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanoparticles Carbohydrates Siglec CD33 Immune cell Phagocytosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2340-e4762c7661f1cb2e36d34a2702d2565c3170d4990be807b25d95cc12ffb7ee8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1101/2021.05.08.443135 |
PQID | 2572530096 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2572530096 crossref_primary_10_1016_j_jconrel_2021_09_010 elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_09_010 |
PublicationCentury | 2000 |
PublicationDate | 20211010 |
PublicationDateYYYYMMDD | 2021-10-10 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211010 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of controlled release |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Price (bb0055) 2019 Walter, Raden, Zeng, Hausermann, Bernstein, Cooper (bb0100) 2008; 83 Pluvinage, Haney, Smith, Sun, Iram, Bonanno, Li, Lee, Morgens, Yang, Shuken, Gate, Scott, Khatri, Luo, Bertozzi, Bassik, Wyss-Coray (bb0180) 2019; 568 Duan, Paulson (bb0125) 2020; 38 Angata, Nycholat, Macauley (bb0120) 2015; 36 Estus, Shaw, Devanney, Katsumata, Press, Fardo (bb0015) 2019; 138 Paul, Taylor, Stansbury, McVicar (bb0200) 2000; 96 Tateno, Li, Schur, Bovin, Crocker, Wakarchuk, Paulson (bb0230) 2007; 27 Naj, Jun, Beecham, Wang, Vardarajan, Buros, Gallins, Buxbaum, Jarvik, Crane, Larson, Bird, Boeve, Graff-Radford, De Jager, Evans, Schneider, Carrasquillo, Ertekin-Taner, Younkin, Cruchaga, Kauwe, Nowotny, Kramer, Hardy, Huentelman, Myers, Barmada, Demirci, Baldwin, Green, Rogaeva, George-Hyslop, Arnold, Barber, Beach, Bigio, Bowen, Boxer, Burke, Cairns, Carlson, Carney, Carroll, Chui, Clark, Corneveaux, Cotman, Cummings, DeCarli, DeKosky, Diaz-Arrastia, Dick, Dickson, Ellis, Faber, Fallon, Farlow, Ferris, Frosch, Galasko, Ganguli, Gearing, Geschwind, Ghetti, Gilbert, Gilman, Giordani, Glass, Growdon, Hamilton, Harrell, Head, Honig, Hulette, Hyman, Jicha, Jin, Johnson, Karlawish, Karydas, Kaye, Kim, Koo, Kowall, Lah, Levey, Lieberman, Lopez, Mack, Marson, Martiniuk, Mash, Masliah, McCormick, McCurry, McDavid, McKee, Mesulam, Miller, Miller, Miller, Parisi, Perl, Peskind, Petersen, Poon, Quinn, Rajbhandary, Raskind, Reisberg, Ringman, Roberson, Rosenberg, Sano, Schneider, Seeley, Shelanski, Slifer, Smith, Sonnen, Spina, Stern, Tanzi, Trojanowski, Troncoso, Van Deerlin, Vinters, Vonsattel, Weintraub, Welsh-Bohmer, Williamson, Woltjer, Cantwell, Dombroski, Beekly, Lunetta, Martin, Kamboh, Saykin, Reiman, Bennett, Morris, Montine, Goate, Blacker, Tsuang, Hakonarson, Kukull, Foroud, Haines, Mayeux, Pericak-Vance, Farrer, Schellenberg (bb0020) 2011; 43 Bull, Nason, Sun, Van Coillie, Madriz Sorensen, Moons, Yang, Arbitman, Fernandes, Furukawa, McBride, Nycholat, Adema, Paulson, Schnaar, Boltje, Clausen, Narimatsu (bb0115) 2021; 118 Ann Butler, Thornton, Charles Brown (bb0045) 2021; 158 Biedermann, Gil, Bowen, Crocker (bb0185) 2007; 31 Ordonez-Gutierrez, Wandosell (bb0260) 2020; 12 Simard, Leroux (bb0155) 2010; 7 Bhattacherjee, Rodrigues, Jung, Luzentales-Simpson, Enterina, Galleguillos, Laurent, Nakhaei-Nejad, Fuchsberger, Streith, Wang, Kawasaki, Duan, Bains, Paulson, Rademacher, Giuliani, Sipione, Macauley (bb0035) 2019; 2 Ibarlucea-Benitez, Weitzenfeld, Smith, Ravetch (bb0140) 2021; 118 Vieira, Gamarra (bb0240) 2016; 11 Jusu, Obayemi, Salifu, Nwazojie, Uzonwanne, Odusanya, Soboyejo (bb0170) 2020; 10 Chan, White, Winn, Cimpean, Replogle, Glick, Cuerdon, Ryan, Johnson, Schneider, Bennett, Chibnik, Sperling, Bradshaw, De Jager (bb0195) 2015; 18 Salloway, Honigberg, Cho, Ward, Friesenhahn, Brunstein, Quartino, Clayton, Mortensen, Bittner, Ho, Rabe, Schauer, Wildsmith, Fuji, Suliman, Reiman, Chen, Paul (bb0290) 2018; 10 Harris, Chess (bb0175) 2003; 2 Macauley, Pfrengle, Rademacher, Nycholat, Gale, von Drygalski, Paulson (bb0225) 2013; 123 Movsisyan, Macauley (bb0135) 2020; 18 Malik, Chiles, Xi, Medway, Simpson, Potluri, Howard, Liang, Paumi, Mukherjee, Crane, Younkin, Fardo, Estus (bb0085) 2015; 24 Rodrigues, Jung, Park, Loo, Soukhtehzari, Kitova, Mozaneh, Daskhan, Schmidt, Aghanya, Sarkar, Streith, Laurent, Nguyen, Julien, West, Williams, Klassen, Macauley (bb0110) 2020; 11 Simard, Leroux (bb0150) 2009; 381 Walter (bb0080) 2020; 20 Duan, Koziol-White, Jester, Smith, Nycholat, Macauley, Panettieri, Paulson (bb0160) 2019; 129 van Dyck (bb0280) 2018; 83 Malik, Simpson, Parikh, Wilfred, Fardo, Nelson, Estus (bb0030) 2013; 33 Sarlus, Heneka (bb0010) 2017; 127 Wang, Qiu, Wang, Zhang, Zhang, Zhou, Zhao, Zhao, Xia, Shao (bb0215) 2020; 15 De Jong, Borm (bb0250) 2008; 3 Delaveris, Chiu, Riley, Bertozzi (bb0235) 2021; 118 Walter, Appelbaum, Estey, Bernstein (bb0090) 2012; 119 Kohane (bb0245) 2007; 96 Walter, Raden, Kamikura, Cooper, Bernstein (bb0095) 2005; 105 Lenza, Atxabal, Oyenarte, Jimenez-Barbero, Ereno-Orbea (bb0130) 2020; 9 Kirpotin, Park, Hong, Zalipsky, Li, Carter, Benz, Papahadjopoulos (bb0205) 1997; 36 Griciuc, Patel, Federico, Choi, Innes, Oram, Cereghetti, McGinty, Anselmo, Sadreyev, Hickman, El Khoury, Colonna, Tanzi (bb0070) 2019; 103 Kim, Shin, Kiziltepe, Bilgicer (bb0220) 2020; 12 Schlepckow, Monroe, Kleinberger, Cantuti-Castelvetri, Parhizkar, Xia, Willem, Werner, Pettkus, Brunner, Sulzen, Nuscher, Hampel, Xiang, Feederle, Tahirovic, Park, Prorok, Mahon, Liang, Shi, Kim, Sabelstrom, Huang, Di Paolo, Simons, Lewcock, Haass (bb0060) 2020; 12 Bradshaw, Chibnik, Keenan, Ottoboni, Raj, Tang, Rosenkrantz, Imboywa, Lee, Von Korff, I. Alzheimer Disease Neuroimaging, Morris, Evans, Johnson, Sperling, Schneider, Bennett, De Jager (bb0075) 2013; 16 Miles, Hermans, Crespi, Gooi, Doughty, Nero, Markulic, Ebneth, Wroblowski, Oehlrich, Trabanco, Rives, Royaux, Hancock, Parker (bb0145) 2019; 19 Fassler, Rappaport, Cuno, George (bb0065) 2021; 18 Spencer, Masliah (bb0265) 2014; 6 Knop, Hoogenboom, Fischer, Schubert (bb0165) 2010; 49 Ross, Taylor, Fullwood, Allsop (bb0255) 2018; 13 Kim, Yu, Kenderian, Ruella, Chen, Shin, Aljanahi, Schreeder, Klichinsky, Shestova, Kozlowski, Cummins, Shan, Shestov, Bagg, Morrissette, Sekhri, Lazzarotto, Calvo, Kuhns, Donahue, Behbehani, Tsai, Dunbar, Gill (bb0295) 2018; 173 Ostrowitzki, Lasser, Dorflinger, Scheltens, Barkhof, Nikolcheva, Ashford, Retout, Hofmann, Delmar, Klein, Andjelkovic, Dubois, Boada, Blennow, Santarelli, Fontoura, Investigators (bb0275) 2017; 9 Hollingworth, Harold, Sims, Gerrish, Lambert, Carrasquillo, Abraham, Hamshere, Pahwa, Moskvina, Dowzell, Jones, Stretton, Thomas, Richards, Ivanov, Widdowson, Chapman, Lovestone, Powell, Proitsi, Lupton, Brayne, Rubinsztein, Gill, Lawlor, Lynch, Brown, Passmore, Craig, McGuinness, Todd, Holmes, Mann, Smith, Beaumont, Warden, Wilcock, Love, Kehoe, Hooper, Vardy, Hardy, Mead, Fox, Rossor, Collinge, Maier, Jessen, Ruther, Schurmann, Heun, Kolsch, van den Bussche, Heuser, Kornhuber, Wiltfang, Dichgans, Frolich, Hampel, Gallacher, Hull, Rujescu, Giegling, Goate, Kauwe, Cruchaga, Nowotny, Morris, Mayo, Sleegers, Bettens, Engelborghs, De Deyn, Van Broeckhoven, Livingston, Bass, Gurling, McQuillin, Gwilliam, Deloukas, Al-Chalabi, Shaw, Tsolaki, Singleton, Guerreiro, Muhleisen, Nothen, Moebus, Jockel, Klopp, Wichmann, Pankratz, Sando, Aasly, Barcikowska, Wszolek, Dickson, Graff-Radford, Petersen, I. Alzheimer's Disease Neuroimaging, van Duijn, Breteler, Ikram, De Stefano, Fitzpatrick, Lopez, Launer, Seshadri, Consortium, Berr, Campion, Epelbaum, Dartigues, Tzourio, Alperovitch, Lathrop, Consortium, Feulner, Friedrich, Riehle, Krawczak, Schreiber, Mayhaus, Nicolhaus, Wagenpfeil, Steinberg, Stefansson, Stefansson, Snaedal, Bjornsson, Jonsson, Chouraki, Genier-Boley, Hiltunen, Soininen, Combarros, Zelenika, Delepine, Bullido, Pasquier, Mateo, Frank-Garcia, Porcellini, Hanon, Coto, Alvarez, Bosco, Siciliano, Mancuso, Panza, Solfrizzi, Nacmias, Sorbi, Bossu, Piccardi, Arosio, Annoni, Seripa, Pilotto, Scarpini, Galimberti, Brice, Hannequin, Licastro, Jones, Holmans, Jonsson, Riemenschneider, Morgan, Younkin, Owen, O'Donovan, Amouyel, Williams (bb0025) 2011; 43 Paoli, Ingham, Zhang, Mahakian, Fite, Gagnon, Tam, Kheirolomoom, Cardiff, Ferrara (bb0210) 2014; 178 Bhattacherjee, Jung, Zia, Ho, Eskandari-Sedighi, Laurent, McCord, Bains, Sidhu, Sarkar, Plemel, Macauley (bb0040) 2021; 16 Rillahan, Macauley, Schwartz, He, McBride, Arlian, Rangarajan, Fokin, Paulson (bb0105) 2014; 5 Wissfeld, Nozaki, Mathews, Raschka, Ebeling, Hornung, Brustle, Neumann (bb0050) 2021; 69 Pardridge (bb0270) 2019; 11 Efthymiou, Goate (bb0005) 2017; 12 The Lancet (bb0285) 2017; 16 Perez-Oliva, Martinez-Esparza, Vicente-Fernandez, Corral-San Miguel, Garcia-Penarrubia, Hernandez-Caselles (bb0190) 2011; 21 van Dyck (10.1016/j.jconrel.2021.09.010_bb0280) 2018; 83 Kim (10.1016/j.jconrel.2021.09.010_bb0220) 2020; 12 Ostrowitzki (10.1016/j.jconrel.2021.09.010_bb0275) 2017; 9 Vieira (10.1016/j.jconrel.2021.09.010_bb0240) 2016; 11 Miles (10.1016/j.jconrel.2021.09.010_bb0145) 2019; 19 Tateno (10.1016/j.jconrel.2021.09.010_bb0230) 2007; 27 Pluvinage (10.1016/j.jconrel.2021.09.010_bb0180) 2019; 568 Naj (10.1016/j.jconrel.2021.09.010_bb0020) 2011; 43 Bhattacherjee (10.1016/j.jconrel.2021.09.010_bb0035) 2019; 2 Ross (10.1016/j.jconrel.2021.09.010_bb0255) 2018; 13 Sarlus (10.1016/j.jconrel.2021.09.010_bb0010) 2017; 127 Malik (10.1016/j.jconrel.2021.09.010_bb0030) 2013; 33 Bhattacherjee (10.1016/j.jconrel.2021.09.010_bb0040) 2021; 16 Spencer (10.1016/j.jconrel.2021.09.010_bb0265) 2014; 6 Hollingworth (10.1016/j.jconrel.2021.09.010_bb0025) 2011; 43 Kim (10.1016/j.jconrel.2021.09.010_bb0295) 2018; 173 Paoli (10.1016/j.jconrel.2021.09.010_bb0210) 2014; 178 Chan (10.1016/j.jconrel.2021.09.010_bb0195) 2015; 18 Salloway (10.1016/j.jconrel.2021.09.010_bb0290) 2018; 10 Price (10.1016/j.jconrel.2021.09.010_bb0055) 2019 Knop (10.1016/j.jconrel.2021.09.010_bb0165) 2010; 49 Perez-Oliva (10.1016/j.jconrel.2021.09.010_bb0190) 2011; 21 Jusu (10.1016/j.jconrel.2021.09.010_bb0170) 2020; 10 Walter (10.1016/j.jconrel.2021.09.010_bb0095) 2005; 105 Ann Butler (10.1016/j.jconrel.2021.09.010_bb0045) 2021; 158 Delaveris (10.1016/j.jconrel.2021.09.010_bb0235) 2021; 118 Duan (10.1016/j.jconrel.2021.09.010_bb0160) 2019; 129 Simard (10.1016/j.jconrel.2021.09.010_bb0155) 2010; 7 Malik (10.1016/j.jconrel.2021.09.010_bb0085) 2015; 24 Duan (10.1016/j.jconrel.2021.09.010_bb0125) 2020; 38 Griciuc (10.1016/j.jconrel.2021.09.010_bb0070) 2019; 103 Ibarlucea-Benitez (10.1016/j.jconrel.2021.09.010_bb0140) 2021; 118 Paul (10.1016/j.jconrel.2021.09.010_bb0200) 2000; 96 The Lancet (10.1016/j.jconrel.2021.09.010_bb0285) 2017; 16 Kohane (10.1016/j.jconrel.2021.09.010_bb0245) 2007; 96 Pardridge (10.1016/j.jconrel.2021.09.010_bb0270) 2019; 11 Estus (10.1016/j.jconrel.2021.09.010_bb0015) 2019; 138 Rillahan (10.1016/j.jconrel.2021.09.010_bb0105) 2014; 5 Biedermann (10.1016/j.jconrel.2021.09.010_bb0185) 2007; 31 Movsisyan (10.1016/j.jconrel.2021.09.010_bb0135) 2020; 18 Efthymiou (10.1016/j.jconrel.2021.09.010_bb0005) 2017; 12 Lenza (10.1016/j.jconrel.2021.09.010_bb0130) 2020; 9 Walter (10.1016/j.jconrel.2021.09.010_bb0090) 2012; 119 Ordonez-Gutierrez (10.1016/j.jconrel.2021.09.010_bb0260) 2020; 12 De Jong (10.1016/j.jconrel.2021.09.010_bb0250) 2008; 3 Bradshaw (10.1016/j.jconrel.2021.09.010_bb0075) 2013; 16 Wissfeld (10.1016/j.jconrel.2021.09.010_bb0050) 2021; 69 Kirpotin (10.1016/j.jconrel.2021.09.010_bb0205) 1997; 36 Harris (10.1016/j.jconrel.2021.09.010_bb0175) 2003; 2 Walter (10.1016/j.jconrel.2021.09.010_bb0080) 2020; 20 Wang (10.1016/j.jconrel.2021.09.010_bb0215) 2020; 15 Fassler (10.1016/j.jconrel.2021.09.010_bb0065) 2021; 18 Macauley (10.1016/j.jconrel.2021.09.010_bb0225) 2013; 123 Bull (10.1016/j.jconrel.2021.09.010_bb0115) 2021; 118 Schlepckow (10.1016/j.jconrel.2021.09.010_bb0060) 2020; 12 Simard (10.1016/j.jconrel.2021.09.010_bb0150) 2009; 381 Angata (10.1016/j.jconrel.2021.09.010_bb0120) 2015; 36 Walter (10.1016/j.jconrel.2021.09.010_bb0100) 2008; 83 Rodrigues (10.1016/j.jconrel.2021.09.010_bb0110) 2020; 11 |
References_xml | – volume: 12 start-page: 43 year: 2017 ident: bb0005 article-title: Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk publication-title: Mol. Neurodegener. contributor: fullname: Goate – volume: 43 start-page: 429 year: 2011 end-page: 435 ident: bb0025 article-title: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease publication-title: Nat. Genet. contributor: fullname: Williams – volume: 6 start-page: 114 year: 2014 ident: bb0265 article-title: Immunotherapy for Alzheimer’s disease: past, present and future publication-title: Front. Aging Neurosci. contributor: fullname: Masliah – volume: 173 start-page: 1439 year: 2018 end-page: 1453 ident: bb0295 article-title: Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia publication-title: Cell contributor: fullname: Gill – volume: 20 start-page: 955 year: 2020 end-page: 958 ident: bb0080 article-title: Expanding use of CD33-directed immunotherapy publication-title: Expert. Opin. Biol. Ther. contributor: fullname: Walter – volume: 118 year: 2021 ident: bb0235 article-title: Modulation of immune cell reactivity with cis-binding Siglec agonists publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Bertozzi – volume: 10 start-page: 96 year: 2018 ident: bb0290 article-title: Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE) publication-title: Alzheimers Res. Ther. contributor: fullname: Paul – volume: 16 start-page: 19 year: 2021 ident: bb0040 article-title: The CD33 short isoform is a gain-of-function variant that enhances Abeta1-42 phagocytosis in microglia publication-title: Mol. Neurodegener. contributor: fullname: Macauley – volume: 43 start-page: 436 year: 2011 end-page: 441 ident: bb0020 article-title: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease publication-title: Nat. Genet. contributor: fullname: Schellenberg – volume: 11 start-page: 5381 year: 2016 end-page: 5414 ident: bb0240 article-title: Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier publication-title: Int. J. Nanomedicine contributor: fullname: Gamarra – volume: 127 start-page: 3240 year: 2017 end-page: 3249 ident: bb0010 article-title: Microglia in Alzheimer’s disease publication-title: J. Clin. Invest. contributor: fullname: Heneka – volume: 138 start-page: 187 year: 2019 end-page: 199 ident: bb0015 article-title: Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease publication-title: Acta Neuropathol. contributor: fullname: Fardo – volume: 83 start-page: 200 year: 2008 end-page: 211 ident: bb0100 article-title: ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2 publication-title: J. Leukoc. Biol. contributor: fullname: Cooper – volume: 10 start-page: 14188 year: 2020 ident: bb0170 article-title: Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer publication-title: Sci. Rep. contributor: fullname: Soboyejo – volume: 36 start-page: 66 year: 1997 end-page: 75 ident: bb0205 article-title: Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro publication-title: Biochemistry contributor: fullname: Papahadjopoulos – volume: 31 start-page: 211 year: 2007 end-page: 220 ident: bb0185 article-title: Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors publication-title: Leuk. Res. contributor: fullname: Crocker – volume: 568 start-page: 187 year: 2019 end-page: 192 ident: bb0180 article-title: CD22 blockade restores homeostatic microglial phagocytosis in ageing brains publication-title: Nature contributor: fullname: Wyss-Coray – volume: 12 start-page: 11672 year: 2020 end-page: 11683 ident: bb0220 article-title: Identification of a moderate affinity CD22 binding peptide and in vitro optimization of peptide-targeted nanoparticles for selective uptake by CD22+ B-cell malignancies publication-title: Nanoscale contributor: fullname: Bilgicer – volume: 158 start-page: 297 year: 2021 end-page: 310 ident: bb0045 article-title: CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer’s disease-protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion publication-title: J. Neurochem. contributor: fullname: Charles Brown – volume: 381 start-page: 86 year: 2009 end-page: 96 ident: bb0150 article-title: pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells publication-title: Int. J. Pharm. contributor: fullname: Leroux – volume: 96 start-page: 203 year: 2007 end-page: 209 ident: bb0245 article-title: Microparticles and nanoparticles for drug delivery publication-title: Biotechnol. Bioeng. contributor: fullname: Kohane – volume: 103 start-page: 820 year: 2019 end-page: 835 ident: bb0070 article-title: TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease publication-title: Neuron contributor: fullname: Tanzi – volume: 2 start-page: 450 year: 2019 ident: bb0035 article-title: Repression of phagocytosis by human CD33 is not conserved with mouse CD33 publication-title: Commun. Biol. contributor: fullname: Macauley – volume: 12 year: 2020 ident: bb0060 article-title: Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region publication-title: EMBO Mol. Med. contributor: fullname: Haass – volume: 69 start-page: 1393 year: 2021 end-page: 1412 ident: bb0050 article-title: Deletion of Alzheimer's disease-associated CD33 results in an inflammatory human microglia phenotype publication-title: Glia contributor: fullname: Neumann – volume: 13 start-page: 8507 year: 2018 end-page: 8522 ident: bb0255 article-title: Liposome delivery systems for the treatment of Alzheimer’s disease publication-title: Int. J. Nanomedicine contributor: fullname: Allsop – volume: 49 start-page: 6288 year: 2010 end-page: 6308 ident: bb0165 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. Eng. contributor: fullname: Schubert – volume: 33 start-page: 13320 year: 2013 end-page: 13325 ident: bb0030 article-title: CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing publication-title: J. Neurosci. contributor: fullname: Estus – volume: 38 start-page: 365 year: 2020 end-page: 395 ident: bb0125 article-title: Siglecs as immune cell checkpoints in disease publication-title: Annu. Rev. Immunol. contributor: fullname: Paulson – volume: 18 start-page: 5784 year: 2020 end-page: 5797 ident: bb0135 article-title: Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation publication-title: Org. Biomol. Chem. contributor: fullname: Macauley – volume: 19 start-page: 110 year: 2019 end-page: 118 ident: bb0145 article-title: Small molecule binding to alzheimer risk factor CD33 promotes abeta phagocytosis publication-title: iScience contributor: fullname: Parker – volume: 118 year: 2021 ident: bb0115 article-title: Probing the binding specificities of human Siglecs by cell-based glycan arrays publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Narimatsu – volume: 12 start-page: 20 year: 2020 ident: bb0260 article-title: Nanoliposomes as a therapeutic tool for Alzheimer’s disease publication-title: Front. Synaptic Neurosci. contributor: fullname: Wandosell – volume: 105 start-page: 1295 year: 2005 end-page: 1302 ident: bb0095 article-title: Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity publication-title: Blood contributor: fullname: Bernstein – volume: 129 start-page: 1387 year: 2019 end-page: 1401 ident: bb0160 article-title: CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen publication-title: J. Clin. Invest. contributor: fullname: Paulson – volume: 3 start-page: 133 year: 2008 end-page: 149 ident: bb0250 article-title: Drug delivery and nanoparticles:applications and hazards publication-title: Int. J. Nanomedicine contributor: fullname: Borm – volume: 15 start-page: 9447 year: 2020 end-page: 9467 ident: bb0215 article-title: Endocytosis and organelle targeting of Nanomedicines in Cancer therapy publication-title: Int. J. Nanomedicine contributor: fullname: Shao – volume: 118 year: 2021 ident: bb0140 article-title: Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Ravetch – volume: 9 start-page: 95 year: 2017 ident: bb0275 article-title: A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease publication-title: Alzheimers Res. Ther. contributor: fullname: Investigators – volume: 18 start-page: 1556 year: 2015 end-page: 1558 ident: bb0195 article-title: CD33 modulates TREM2: convergence of Alzheimer loci publication-title: Nat. Neurosci. contributor: fullname: De Jager – volume: 7 start-page: 1098 year: 2010 end-page: 1107 ident: bb0155 article-title: In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen publication-title: Mol. Pharm. contributor: fullname: Leroux – volume: 123 start-page: 3074 year: 2013 end-page: 3083 ident: bb0225 article-title: Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis publication-title: J. Clin. Invest. contributor: fullname: Paulson – volume: 83 start-page: 311 year: 2018 end-page: 319 ident: bb0280 article-title: Anti-amyloid-beta monoclonal antibodies for Alzheimer’s disease: pitfalls and promise publication-title: Biol. Psychiatry contributor: fullname: van Dyck – volume: 21 start-page: 757 year: 2011 end-page: 770 ident: bb0190 article-title: Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells publication-title: Glycobiology contributor: fullname: Hernandez-Caselles – year: 2019 ident: bb0055 article-title: Preclinical Targeting of TREM2 for the Treatment of Alzheimer’s Disease-Type Pathology in a Transgenic Mouse Model contributor: fullname: Price – volume: 96 start-page: 483 year: 2000 end-page: 490 ident: bb0200 article-title: Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2 publication-title: Blood contributor: fullname: McVicar – volume: 36 start-page: 645 year: 2015 end-page: 660 ident: bb0120 article-title: Therapeutic targeting of Siglecs using antibody- and glycan-based approaches publication-title: Trends Pharmacol. Sci. contributor: fullname: Macauley – volume: 9 year: 2020 ident: bb0130 article-title: Current status on therapeutic molecules targeting siglec receptors publication-title: Cells contributor: fullname: Ereno-Orbea – volume: 27 start-page: 5699 year: 2007 end-page: 5710 ident: bb0230 article-title: Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity publication-title: Mol. Cell. Biol. contributor: fullname: Paulson – volume: 5 start-page: 2398 year: 2014 end-page: 2406 ident: bb0105 article-title: Disubstituted Sialic acid ligands targeting Siglecs CD33 and CD22 associated with myeloid Leukaemias and B cell lymphomas publication-title: Chem. Sci. contributor: fullname: Paulson – volume: 18 start-page: 19 year: 2021 ident: bb0065 article-title: Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer’s disease models publication-title: J. Neuroinflammation contributor: fullname: George – volume: 2 start-page: 214 year: 2003 end-page: 221 ident: bb0175 article-title: Effect of pegylation on pharmaceuticals publication-title: Nat. Rev. Drug Discov. contributor: fullname: Chess – volume: 119 start-page: 6198 year: 2012 end-page: 6208 ident: bb0090 article-title: Acute myeloid leukemia stem cells and CD33-targeted immunotherapy publication-title: Blood contributor: fullname: Bernstein – volume: 178 start-page: 108 year: 2014 end-page: 117 ident: bb0210 article-title: Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes publication-title: J. Control. Release contributor: fullname: Ferrara – volume: 16 start-page: 97 year: 2017 ident: bb0285 article-title: Solanezumab: too late in mild Alzheimer’s disease? publication-title: Lancet Neurol. contributor: fullname: The Lancet – volume: 11 start-page: 5091 year: 2020 ident: bb0110 article-title: A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands publication-title: Nat. Commun. contributor: fullname: Macauley – volume: 24 start-page: 3557 year: 2015 end-page: 3570 ident: bb0085 article-title: Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia publication-title: Hum. Mol. Genet. contributor: fullname: Estus – volume: 11 start-page: 373 year: 2019 ident: bb0270 article-title: Blood-brain barrier and delivery of protein and gene therapeutics to brain publication-title: Front. Aging Neurosci. contributor: fullname: Pardridge – volume: 16 start-page: 848 year: 2013 end-page: 850 ident: bb0075 article-title: CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology publication-title: Nat. Neurosci. contributor: fullname: De Jager – volume: 178 start-page: 108 year: 2014 ident: 10.1016/j.jconrel.2021.09.010_bb0210 article-title: Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes publication-title: J. Control. Release doi: 10.1016/j.jconrel.2014.01.005 contributor: fullname: Paoli – volume: 6 start-page: 114 year: 2014 ident: 10.1016/j.jconrel.2021.09.010_bb0265 article-title: Immunotherapy for Alzheimer’s disease: past, present and future publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2014.00114 contributor: fullname: Spencer – year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0055 contributor: fullname: Price – volume: 24 start-page: 3557 year: 2015 ident: 10.1016/j.jconrel.2021.09.010_bb0085 article-title: Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv092 contributor: fullname: Malik – volume: 31 start-page: 211 year: 2007 ident: 10.1016/j.jconrel.2021.09.010_bb0185 article-title: Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors publication-title: Leuk. Res. doi: 10.1016/j.leukres.2006.05.026 contributor: fullname: Biedermann – volume: 38 start-page: 365 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0125 article-title: Siglecs as immune cell checkpoints in disease publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-102419-035900 contributor: fullname: Duan – volume: 105 start-page: 1295 year: 2005 ident: 10.1016/j.jconrel.2021.09.010_bb0095 article-title: Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity publication-title: Blood doi: 10.1182/blood-2004-07-2784 contributor: fullname: Walter – volume: 12 start-page: 43 year: 2017 ident: 10.1016/j.jconrel.2021.09.010_bb0005 article-title: Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0184-x contributor: fullname: Efthymiou – volume: 69 start-page: 1393 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0050 article-title: Deletion of Alzheimer's disease-associated CD33 results in an inflammatory human microglia phenotype publication-title: Glia doi: 10.1002/glia.23968 contributor: fullname: Wissfeld – volume: 118 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0115 article-title: Probing the binding specificities of human Siglecs by cell-based glycan arrays publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2026102118 contributor: fullname: Bull – volume: 96 start-page: 483 year: 2000 ident: 10.1016/j.jconrel.2021.09.010_bb0200 article-title: Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2 publication-title: Blood doi: 10.1182/blood.V96.2.483.014k40_483_490 contributor: fullname: Paul – volume: 9 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0130 article-title: Current status on therapeutic molecules targeting siglec receptors publication-title: Cells doi: 10.3390/cells9122691 contributor: fullname: Lenza – volume: 103 start-page: 820 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0070 article-title: TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease publication-title: Neuron doi: 10.1016/j.neuron.2019.06.010 contributor: fullname: Griciuc – volume: 118 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0140 article-title: Siglecs-7/9 function as inhibitory immune checkpoints in vivo and can be targeted to enhance therapeutic antitumor immunity publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2107424118 contributor: fullname: Ibarlucea-Benitez – volume: 9 start-page: 95 year: 2017 ident: 10.1016/j.jconrel.2021.09.010_bb0275 article-title: A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-017-0318-y contributor: fullname: Ostrowitzki – volume: 15 start-page: 9447 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0215 article-title: Endocytosis and organelle targeting of Nanomedicines in Cancer therapy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S274289 contributor: fullname: Wang – volume: 27 start-page: 5699 year: 2007 ident: 10.1016/j.jconrel.2021.09.010_bb0230 article-title: Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00383-07 contributor: fullname: Tateno – volume: 2 start-page: 450 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0035 article-title: Repression of phagocytosis by human CD33 is not conserved with mouse CD33 publication-title: Commun. Biol. doi: 10.1038/s42003-019-0698-6 contributor: fullname: Bhattacherjee – volume: 20 start-page: 955 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0080 article-title: Expanding use of CD33-directed immunotherapy publication-title: Expert. Opin. Biol. Ther. doi: 10.1080/14712598.2020.1788540 contributor: fullname: Walter – volume: 158 start-page: 297 issue: 2 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0045 article-title: CD33M inhibits microglial phagocytosis, migration and proliferation, but the Alzheimer’s disease-protective variant CD33m stimulates phagocytosis and proliferation, and inhibits adhesion publication-title: J. Neurochem. doi: 10.1111/jnc.15349 contributor: fullname: Ann Butler – volume: 43 start-page: 429 year: 2011 ident: 10.1016/j.jconrel.2021.09.010_bb0025 article-title: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease publication-title: Nat. Genet. doi: 10.1038/ng.803 contributor: fullname: Hollingworth – volume: 16 start-page: 848 year: 2013 ident: 10.1016/j.jconrel.2021.09.010_bb0075 article-title: CD33 Alzheimer's disease locus: altered monocyte function and amyloid biology publication-title: Nat. Neurosci. doi: 10.1038/nn.3435 contributor: fullname: Bradshaw – volume: 19 start-page: 110 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0145 article-title: Small molecule binding to alzheimer risk factor CD33 promotes abeta phagocytosis publication-title: iScience doi: 10.1016/j.isci.2019.07.023 contributor: fullname: Miles – volume: 568 start-page: 187 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0180 article-title: CD22 blockade restores homeostatic microglial phagocytosis in ageing brains publication-title: Nature doi: 10.1038/s41586-019-1088-4 contributor: fullname: Pluvinage – volume: 33 start-page: 13320 year: 2013 ident: 10.1016/j.jconrel.2021.09.010_bb0030 article-title: CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1224-13.2013 contributor: fullname: Malik – volume: 36 start-page: 645 year: 2015 ident: 10.1016/j.jconrel.2021.09.010_bb0120 article-title: Therapeutic targeting of Siglecs using antibody- and glycan-based approaches publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2015.06.008 contributor: fullname: Angata – volume: 123 start-page: 3074 year: 2013 ident: 10.1016/j.jconrel.2021.09.010_bb0225 article-title: Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis publication-title: J. Clin. Invest. doi: 10.1172/JCI69187 contributor: fullname: Macauley – volume: 5 start-page: 2398 year: 2014 ident: 10.1016/j.jconrel.2021.09.010_bb0105 article-title: Disubstituted Sialic acid ligands targeting Siglecs CD33 and CD22 associated with myeloid Leukaemias and B cell lymphomas publication-title: Chem. Sci. doi: 10.1039/c4sc00451e contributor: fullname: Rillahan – volume: 173 start-page: 1439 year: 2018 ident: 10.1016/j.jconrel.2021.09.010_bb0295 article-title: Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia publication-title: Cell doi: 10.1016/j.cell.2018.05.013 contributor: fullname: Kim – volume: 43 start-page: 436 year: 2011 ident: 10.1016/j.jconrel.2021.09.010_bb0020 article-title: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease publication-title: Nat. Genet. doi: 10.1038/ng.801 contributor: fullname: Naj – volume: 83 start-page: 200 year: 2008 ident: 10.1016/j.jconrel.2021.09.010_bb0100 article-title: ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0607388 contributor: fullname: Walter – volume: 11 start-page: 5381 year: 2016 ident: 10.1016/j.jconrel.2021.09.010_bb0240 article-title: Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S117210 contributor: fullname: Vieira – volume: 21 start-page: 757 year: 2011 ident: 10.1016/j.jconrel.2021.09.010_bb0190 article-title: Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells publication-title: Glycobiology doi: 10.1093/glycob/cwq220 contributor: fullname: Perez-Oliva – volume: 129 start-page: 1387 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0160 article-title: CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen publication-title: J. Clin. Invest. doi: 10.1172/JCI125456 contributor: fullname: Duan – volume: 18 start-page: 1556 year: 2015 ident: 10.1016/j.jconrel.2021.09.010_bb0195 article-title: CD33 modulates TREM2: convergence of Alzheimer loci publication-title: Nat. Neurosci. doi: 10.1038/nn.4126 contributor: fullname: Chan – volume: 119 start-page: 6198 year: 2012 ident: 10.1016/j.jconrel.2021.09.010_bb0090 article-title: Acute myeloid leukemia stem cells and CD33-targeted immunotherapy publication-title: Blood doi: 10.1182/blood-2011-11-325050 contributor: fullname: Walter – volume: 127 start-page: 3240 year: 2017 ident: 10.1016/j.jconrel.2021.09.010_bb0010 article-title: Microglia in Alzheimer’s disease publication-title: J. Clin. Invest. doi: 10.1172/JCI90606 contributor: fullname: Sarlus – volume: 16 start-page: 19 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0040 article-title: The CD33 short isoform is a gain-of-function variant that enhances Abeta1-42 phagocytosis in microglia publication-title: Mol. Neurodegener. doi: 10.1186/s13024-021-00443-6 contributor: fullname: Bhattacherjee – volume: 10 start-page: 14188 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0170 article-title: Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer publication-title: Sci. Rep. doi: 10.1038/s41598-020-71129-0 contributor: fullname: Jusu – volume: 11 start-page: 5091 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0110 article-title: A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands publication-title: Nat. Commun. doi: 10.1038/s41467-020-18907-6 contributor: fullname: Rodrigues – volume: 16 start-page: 97 year: 2017 ident: 10.1016/j.jconrel.2021.09.010_bb0285 article-title: Solanezumab: too late in mild Alzheimer’s disease? publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(16)30395-7 contributor: fullname: The Lancet – volume: 381 start-page: 86 year: 2009 ident: 10.1016/j.jconrel.2021.09.010_bb0150 article-title: pH-sensitive immunoliposomes specific to the CD33 cell surface antigen of leukemic cells publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2009.05.013 contributor: fullname: Simard – volume: 138 start-page: 187 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0015 article-title: Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease publication-title: Acta Neuropathol. doi: 10.1007/s00401-019-02000-4 contributor: fullname: Estus – volume: 11 start-page: 373 year: 2019 ident: 10.1016/j.jconrel.2021.09.010_bb0270 article-title: Blood-brain barrier and delivery of protein and gene therapeutics to brain publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2019.00373 contributor: fullname: Pardridge – volume: 10 start-page: 96 year: 2018 ident: 10.1016/j.jconrel.2021.09.010_bb0290 article-title: Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE) publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-018-0424-5 contributor: fullname: Salloway – volume: 118 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0235 article-title: Modulation of immune cell reactivity with cis-binding Siglec agonists publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2012408118 contributor: fullname: Delaveris – volume: 3 start-page: 133 year: 2008 ident: 10.1016/j.jconrel.2021.09.010_bb0250 article-title: Drug delivery and nanoparticles:applications and hazards publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S596 contributor: fullname: De Jong – volume: 2 start-page: 214 year: 2003 ident: 10.1016/j.jconrel.2021.09.010_bb0175 article-title: Effect of pegylation on pharmaceuticals publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1033 contributor: fullname: Harris – volume: 12 start-page: 11672 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0220 article-title: Identification of a moderate affinity CD22 binding peptide and in vitro optimization of peptide-targeted nanoparticles for selective uptake by CD22+ B-cell malignancies publication-title: Nanoscale doi: 10.1039/D0NR02133D contributor: fullname: Kim – volume: 83 start-page: 311 year: 2018 ident: 10.1016/j.jconrel.2021.09.010_bb0280 article-title: Anti-amyloid-beta monoclonal antibodies for Alzheimer’s disease: pitfalls and promise publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2017.08.010 contributor: fullname: van Dyck – volume: 18 start-page: 5784 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0135 article-title: Structural advances of Siglecs: insight into synthetic glycan ligands for immunomodulation publication-title: Org. Biomol. Chem. doi: 10.1039/D0OB01116A contributor: fullname: Movsisyan – volume: 12 start-page: 20 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0260 article-title: Nanoliposomes as a therapeutic tool for Alzheimer’s disease publication-title: Front. Synaptic Neurosci. doi: 10.3389/fnsyn.2020.00020 contributor: fullname: Ordonez-Gutierrez – volume: 12 year: 2020 ident: 10.1016/j.jconrel.2021.09.010_bb0060 article-title: Enhancing protective microglial activities with a dual function TREM2 antibody to the stalk region publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201911227 contributor: fullname: Schlepckow – volume: 96 start-page: 203 year: 2007 ident: 10.1016/j.jconrel.2021.09.010_bb0245 article-title: Microparticles and nanoparticles for drug delivery publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21301 contributor: fullname: Kohane – volume: 49 start-page: 6288 year: 2010 ident: 10.1016/j.jconrel.2021.09.010_bb0165 article-title: Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives publication-title: Angew. Chem. Int. Ed. Eng. doi: 10.1002/anie.200902672 contributor: fullname: Knop – volume: 36 start-page: 66 year: 1997 ident: 10.1016/j.jconrel.2021.09.010_bb0205 article-title: Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro publication-title: Biochemistry doi: 10.1021/bi962148u contributor: fullname: Kirpotin – volume: 13 start-page: 8507 year: 2018 ident: 10.1016/j.jconrel.2021.09.010_bb0255 article-title: Liposome delivery systems for the treatment of Alzheimer’s disease publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S183117 contributor: fullname: Ross – volume: 18 start-page: 19 year: 2021 ident: 10.1016/j.jconrel.2021.09.010_bb0065 article-title: Engagement of TREM2 by a novel monoclonal antibody induces activation of microglia and improves cognitive function in Alzheimer’s disease models publication-title: J. Neuroinflammation doi: 10.1186/s12974-020-01980-5 contributor: fullname: Fassler – volume: 7 start-page: 1098 year: 2010 ident: 10.1016/j.jconrel.2021.09.010_bb0155 article-title: In vivo evaluation of pH-sensitive polymer-based immunoliposomes targeting the CD33 antigen publication-title: Mol. Pharm. doi: 10.1021/mp900261m contributor: fullname: Simard |
SSID | ssj0005347 |
Score | 2.4151106 |
Snippet | CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 680 |
SubjectTerms | Carbohydrates CD33 Immune cell Nanoparticles Phagocytosis Siglec |
Title | Increasing phagocytosis of microglia by targeting CD33 with liposomes displaying glycan ligands |
URI | https://dx.doi.org/10.1016/j.jconrel.2021.09.010 https://search.proquest.com/docview/2572530096 |
Volume | 338 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS_QwEA6-68XLi5_4TQTxZHfbJO0mR1mVVVEEFbyFpE337bK7LXY99OJvd2bbsijCCx77kVAy6TMznXmeEnIa-dIpiwqXKZYZVZh4EuIAz4bOGOE7JRbyxfcP0fBF3L6Grytk0HJhsK2ywf4a0xdo3ZzpNavZK7Ks9wTBiuRYFUTRM6kAh1fBHTHZIasXN3fDh2WnBxc1azqSHg5YEnl64-4Y0s43h0UIFiwUT5FL-7OL-gbWCw90vU7-NqEjvaifboOsuNkmOXustaerc_q8pFKV5_SMPi5VqastogEJsAEdXBUt_plRHlfzvMxKmqd0il15o0lmqK1o3RuOtw0uOaf4oZZOsiIv86kraZKVxcQgN4qOJhXYBa6NkC68TV6ur54HQ6_5u4IXMy58zwnAwbgP_jkNYsscjxIuDNLTEgiDwhgCCz-BfMi3Tvp9y8JEhXEcsDS1fedkyndIZ5bP3C6hhqVMBTCH6TsB-ZwSxkIYqSJhFQoa7pFuu6C6qEU0dNtdNtaNBTRaQPtKgwX2iGyXXX_ZDRqA_n9DT1ozaXhTsPxhZi5_LzWAEws55mz7v5_-gKzhEXqvwD8knfnbuzuCsGRuj8mf7kdw3Gy-T-564mo |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5ED3oRn_h2BfHU2CS7SbPHUpXWRynYQm_LbrKpKbUJph7y751pEooiCF6z2SXsbL75JjPzhZBr3w6M0KhwGWOaUXiRFQAPsLRnlOK2EXwpX_zS97sj_jj2xmukU_fCYFllhf0lpi_RurrSrHazmSVJ8xXISsAwK4iiZ4EAHN4ANiDg7dxo9566_VWlB-Nl17QfWDhh1cjTnN5OIez8MJiEcJ2l4in20v7uon6A9dIDPeyQ7Yo60nb5dLtkzcz3yM2g1J4uGnS4aqXKG_SGDlaq1MU-kYAEWIAOropmb2qShsUizZOcpjF9x6q8ySxRVBe0rA3H2zp3jFH8UEtnSZbm6bvJaZTk2UxhbxSdzAqwC4xNsF34gIwe7oedrlX9XcEKXcZty3DAwbAF_jl2Qu0a5keMK2xPi4AGeSEQCzuCeMjWJrBb2vUi4YWh48axbhkTxOyQrM_TuTkiVLmxKxxYQ7UMh3hOcKWBRgqfa4GChsfktt5QmZUiGrKuLpvKygISLSBtIcECxySot11-Ow0SgP6vqVe1mSS8KZj-UHOTfuYSwMn1GMZsJ_9f_pJsdocvz_K51386JVs4gp7Msc_I-uLj05wDRVnoi-oIfgFrC-Re |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+phagocytosis+of+microglia+by+targeting+CD33+with+liposomes+displaying+glycan+ligands&rft.jtitle=Journal+of+controlled+release&rft.au=Bhattacherjee%2C+Abhishek&rft.au=Daskhan%2C+Gour+C.&rft.au=Bains%2C+Arjun&rft.au=Watson%2C+Adrianne+E.S.&rft.date=2021-10-10&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=338&rft.spage=680&rft.epage=693&rft_id=info:doi/10.1016%2Fj.jconrel.2021.09.010&rft.externalDocID=S0168365921004892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |