Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution

It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure...

Full description

Saved in:
Bibliographic Details
Published inSignal processing. Image communication Vol. 110; p. 116891
Main Authors Zhou, Nan-Run, Zhang, Tian-Feng, Xie, Xin-Wen, Wu, Jun-Yun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text
ISSN0923-5965
1879-2677
DOI10.1016/j.image.2022.116891

Cover

Loading…
Abstract It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure of quantum generator is optimized to reduce the required parameters and make use of quantum devices to a greater extent. And an image generation scheme is designed based on quantum generative adversarial networks. Two structures of quantum generative adversarial networks are simulated on Bars and Stripes dataset, and the results corroborate that the quantum generator with reduced parameters has no visible performance loss. The original complex multimodal distribution of an image can be converted into a simple unimodal distribution by the remapping method. The MNIST images and the Fashion-MNIST images are successfully generated by the optimized quantum generator with the remapping method, which verified the feasibility of the proposed image generation scheme. •The structure of quantum generator is optimized to reduce the required parameters.•An image generation scheme is designed based on quantum generative adversarial networks.•The multimodal distribution of an image is converted into a unimodal distribution by the remapping method.•The MNIST images and the Fashion-MNIST ones are generated by the optimized quantum generator.
AbstractList It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure of quantum generator is optimized to reduce the required parameters and make use of quantum devices to a greater extent. And an image generation scheme is designed based on quantum generative adversarial networks. Two structures of quantum generative adversarial networks are simulated on Bars and Stripes dataset, and the results corroborate that the quantum generator with reduced parameters has no visible performance loss. The original complex multimodal distribution of an image can be converted into a simple unimodal distribution by the remapping method. The MNIST images and the Fashion-MNIST images are successfully generated by the optimized quantum generator with the remapping method, which verified the feasibility of the proposed image generation scheme. •The structure of quantum generator is optimized to reduce the required parameters.•An image generation scheme is designed based on quantum generative adversarial networks.•The multimodal distribution of an image is converted into a unimodal distribution by the remapping method.•The MNIST images and the Fashion-MNIST ones are generated by the optimized quantum generator.
ArticleNumber 116891
Author Wu, Jun-Yun
Xie, Xin-Wen
Zhang, Tian-Feng
Zhou, Nan-Run
Author_xml – sequence: 1
  givenname: Nan-Run
  orcidid: 0000-0002-5080-2189
  surname: Zhou
  fullname: Zhou, Nan-Run
  email: znr21@163.com
  organization: School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Songjiang 201620, Shanghai, China
– sequence: 2
  givenname: Tian-Feng
  surname: Zhang
  fullname: Zhang, Tian-Feng
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
– sequence: 3
  givenname: Xin-Wen
  orcidid: 0000-0001-5870-6565
  surname: Xie
  fullname: Xie, Xin-Wen
  email: xinwen.xie@jju.edu.cn
  organization: School of Management, Nanchang University, Nanchang 330031, Jiangxi, China
– sequence: 4
  givenname: Jun-Yun
  surname: Wu
  fullname: Wu, Jun-Yun
  organization: Department of Computer Science and Technology, Nanchang University, Nanchang 330031, China
BookMark eNqFkE1OwzAQhS0EEqVwAja5QIrtxHG8YIEq_qRKbGBtOfakcgkOjN0idtyBG3ISkhaxYAGrGY3mm3nvHZH90Acg5JTRGaOsOlvN_JNZwoxTzmeMVbVie2TCaqlyXkm5TyZU8SIXqhKH5CjGFaWUl1RNCN68Nehd9rI2Ia2fPt8_bGdi9NZ02RICoEl-A5lxG8Bo0A_jAOm1x8eYtT1m278_m33INt5kHRgMPiwz56NFSDA2CX2zHleOyUFruggn33VKHq4u7-c3-eLu-nZ-scgtL4qUg2yqmgkDTVPSVopWicZA2bi6dI2AUirJK2WZHHrgVelMISoha9fWAqgriykpdnct9jEitPoZB7n4phnVY2x6pbfy9Rib3sU2UOoXZX3aWktofPcPe75jYbC18YA6Wg_BgvMINmnX-z_5L_-ckMM
CitedBy_id crossref_primary_10_1049_qtc2_12078
crossref_primary_10_1016_j_apacoust_2024_110527
crossref_primary_10_1016_j_jisa_2023_103560
crossref_primary_10_3390_photonics9110844
crossref_primary_10_1007_s11128_023_04232_6
crossref_primary_10_3389_fphy_2022_1079624
crossref_primary_10_1007_s00371_023_02822_0
crossref_primary_10_1145_3655027
crossref_primary_10_1088_1402_4896_ad5c1d
crossref_primary_10_1007_s10773_023_05527_1
crossref_primary_10_1142_S0219749923500247
crossref_primary_10_1360_SSPMA_2023_0187
crossref_primary_10_3390_technologies11050148
crossref_primary_10_1142_S021974992450045X
crossref_primary_10_2174_0126662558282684240213062932
crossref_primary_10_1142_S0217732323500694
crossref_primary_10_1140_epjp_s13360_024_05557_6
crossref_primary_10_1142_S0217732323501419
crossref_primary_10_1088_1612_202X_acee64
crossref_primary_10_1360_SSPMA_2023_0273
crossref_primary_10_1016_j_enconman_2025_119694
crossref_primary_10_1088_1402_4896_ad0584
crossref_primary_10_1007_s40747_024_01694_8
crossref_primary_10_1007_s11128_023_04071_5
crossref_primary_10_3390_e25060870
crossref_primary_10_1007_s42484_024_00232_6
crossref_primary_10_1088_2058_9565_adaede
crossref_primary_10_3390_e26080644
crossref_primary_10_1140_epjqt_s40507_024_00304_3
crossref_primary_10_1007_s42484_025_00247_7
crossref_primary_10_1016_j_jksuci_2023_101839
crossref_primary_10_1002_qute_202400137
crossref_primary_10_3389_fphy_2023_1179868
crossref_primary_10_3390_electronics13173481
crossref_primary_10_1016_j_image_2025_117261
crossref_primary_10_59247_csol_v2i3_128
crossref_primary_10_1007_s10773_022_05262_z
crossref_primary_10_3233_KES_230326
crossref_primary_10_1016_j_optlastec_2024_110769
crossref_primary_10_1103_PhysRevA_110_022403
crossref_primary_10_1109_ACCESS_2023_3272985
crossref_primary_10_3389_fphy_2023_1213153
crossref_primary_10_1088_2058_9565_ad8e80
crossref_primary_10_1140_epjp_s13360_023_04537_6
crossref_primary_10_1007_s11042_024_18112_3
crossref_primary_10_1109_TPAMI_2023_3272029
crossref_primary_10_1007_s40747_024_01494_0
crossref_primary_10_1016_j_ijleo_2023_170590
crossref_primary_10_3390_photonics10050483
crossref_primary_10_1007_s40747_024_01458_4
crossref_primary_10_1088_1612_202X_ad8742
crossref_primary_10_1038_s41534_022_00650_z
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_1016_j_dsp_2024_104466
crossref_primary_10_1016_j_compbiomed_2023_107549
crossref_primary_10_1049_enc2_12122
crossref_primary_10_1007_s42484_024_00215_7
crossref_primary_10_3390_math11061484
crossref_primary_10_1016_j_knosys_2024_112260
crossref_primary_10_1007_s44217_025_00400_1
crossref_primary_10_1002_qute_202400223
crossref_primary_10_1016_j_optcom_2023_129287
crossref_primary_10_3389_fphy_2023_1154415
crossref_primary_10_1088_1402_4896_ad8190
crossref_primary_10_1109_ACCESS_2024_3418458
crossref_primary_10_3389_fphy_2022_1097754
crossref_primary_10_1088_1674_1056_ad02e7
crossref_primary_10_1007_s11128_023_04018_w
crossref_primary_10_3390_app15052555
crossref_primary_10_1002_qute_202300269
crossref_primary_10_1016_j_physa_2023_128693
crossref_primary_10_1088_1751_8121_ad6daf
crossref_primary_10_1016_j_physa_2024_129801
crossref_primary_10_3390_quantum4040042
crossref_primary_10_3390_s23208475
crossref_primary_10_3390_s23229111
crossref_primary_10_3390_e25030537
crossref_primary_10_1007_s40747_024_01606_w
crossref_primary_10_1088_1674_1056_ad0775
crossref_primary_10_1002_qute_202400078
crossref_primary_10_1016_j_physa_2023_128779
crossref_primary_10_7498_aps_72_20221902
crossref_primary_10_1007_s11227_024_06615_7
crossref_primary_10_1103_PhysRevA_107_052616
crossref_primary_10_1109_TNSE_2024_3354327
crossref_primary_10_1002_qute_202400510
crossref_primary_10_1109_TCOMM_2023_3299978
crossref_primary_10_3389_fphy_2024_1412664
crossref_primary_10_3389_fphy_2024_1443977
crossref_primary_10_1088_2632_2153_ad2aef
crossref_primary_10_1016_j_ijleo_2023_171022
crossref_primary_10_1016_j_optcom_2023_129993
crossref_primary_10_1002_qute_202300221
Cites_doi 10.1126/sciadv.aav2761
10.1016/j.neucom.2021.03.125
10.1038/s41591-020-01197-2
10.1103/PhysRevLett.121.040502
10.1016/S0375-9601(00)00480-1
10.1038/nature23458
10.1109/TIFS.2020.2968188
10.1146/annurev-food-071720-024112
10.1109/ACCESS.2018.2804278
10.1038/s41534-017-0018-2
10.1088/1367-2630/ab14b5
10.1038/nature23474
10.1007/s10773-019-04005-x
10.1038/nature14539
10.1109/TPAMI.2018.2872043
10.1038/s41567-018-0124-x
10.1016/j.eswa.2009.12.017
10.1007/s10916-018-1072-9
10.1016/j.image.2020.115806
10.1631/FITEE.1900386
10.1016/j.patcog.2020.107514
10.1038/nphys3272
10.1016/j.ins.2020.05.127
10.1186/s13638-021-01898-3
10.1093/nsr/nwy149
10.1002/qj.3410
10.1145/3422622
10.1038/nphys3029
10.1103/PhysRevA.99.032331
10.1103/PhysRev.70.460
10.1103/PhysRevA.98.032309
10.1016/j.eswa.2017.09.030
10.1016/j.image.2021.116295
10.3390/quantum4010006
10.1103/PhysRevA.98.012324
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.image.2022.116891
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1879-2677
ExternalDocumentID 10_1016_j_image_2022_116891
S0923596522001709
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c233t-e7b6815aebb40f75f95bae4bd84db5e4797269c175e4e264da356578df85e0d43
IEDL.DBID .~1
ISSN 0923-5965
IngestDate Thu Apr 24 23:08:13 EDT 2025
Tue Jul 01 03:17:59 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Quantum computation
Quantum machine learning
Quantum generative adversarial network
Hybrid quantum–classical algorithms
Image generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-e7b6815aebb40f75f95bae4bd84db5e4797269c175e4e264da356578df85e0d43
ORCID 0000-0002-5080-2189
0000-0001-5870-6565
ParticipantIDs crossref_primary_10_1016_j_image_2022_116891
crossref_citationtrail_10_1016_j_image_2022_116891
elsevier_sciencedirect_doi_10_1016_j_image_2022_116891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Signal processing. Image communication
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Scher, Messori (b3) 2018; 144
Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd (b22) 2017; 549
Tseng, Wu (b14) 2020; 15
Ackley, Hinton, Sejnowski (b8) 1985; 9
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b11) 2020; 63
Benedetti, Grant, Wossnig, Severini (b31) 2019; 21
Sousa, Ramos (b41) 2007; 7
Mao, Li, Xie, Lau, Wang, Smolley (b17) 2019; 41
Ocal, Ozbakir (b16) 2021; 449
Rudolph, Toussaint, Katabarwa, Johri, Peropadre, Perdomo-Ortiz (b48) 2020
Y., Bengio, Hinton (b7) 2015; 521
Bergholm, Izaac, Schuld, Gogolin, M. Alam, Ahmed, Arrazola, Blank, Delgado, Jahangiri, McKiernan, Meyer, Niu, Száva, Killoran (b46) 2018
Bloch (b40) 1946; 70
Iqbal, Ali (b12) 2018; 42
Situ, He, Wang, Li, Zheng (b32) 2020; 538
Hu, Wu, Cai, Ma, Mu, Xu, Wang, Song, Deng, Zou, Sun (b33) 2019; 5
Schuld, Bergholm, Gogolin, Izaac, Killoran (b45) 2019; 99
Arjovsky, Chintala, Bottou (b18) 2017; Vol. 70
Lloyd, Weedbrook (b30) 2018; 121
He, Li, Zheng, Huang, Situ (b42) 2019; 58
Higuchi, Sudbery (b47) 2000; 273
Douzas, Bacao (b15) 2018; 91
Wang, Xu, Liu, Zhao, Zhang, Zhang (b4) 2021; 96
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANs, in: 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, 2017, pp. 4–9.
Li, Xiao, Ouyang (b20) 2018; 6
P., Mohseni, Lloyd (b25) 2014; 113
Chang, Herbert, Vallecorsa, Combarro, Duncan (b36) 2021; Vol. 251
Aaronson (b39) 2015; 11
Lloyd, Mohseni, Rebentrost (b26) 2014; 10
Dallaire-Demers, Killoran (b29) 2018; 98
I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, Vol. 27, Montreal, CANADA, 2014, pp. 2672–2680.
Romero, Aspuru-Guzik (b34) 2021; 4
Deng, Cao, Horn (b2) 2021; 12
Brock, Donahue, Simonyan (b21) 2019
Mitarai, Negoro, Kitagawa, Fujii (b44) 2018; 98
Sun, Chen, Xiang, Chen, Gao, Zhang (b13) 2019; 20
Anand, Romero, Degroote, Aspuru-Guzik (b38) 2021; 4
Huang, Du, Gong, Zhao, Wu, Wang, Li, Liang, Lin, Xu, Yang, Liu, Hsieh, Deng, Rong, Peng, Lu, Chen, Tao, Zhu, Pan (b35) 2021; 16
Xiao, Yan, Zhang, Tang (b24) 2010; 37
Allcock, Zhang (b23) 2019; 6
May (b1) 2021; 1
Joo, Lee, Park, Moon (b9) 2020; 107
Liu, Zhang, Deng, Zhao, Tong (b43) 2021; 2021
Iosifidis, Tefas (b5) 2020; 83
Agliardi, Prati (b37) 2022; 4
Boixo, Isakov, Smelyanskiy, Babbush, Ding, Ding, Bremner, Martinis, Neven (b6) 2018; 14
Lund, Bremner, Ralph (b27) 2017; 3
Harrow, Montanaro (b28) 2017; 549
Iqbal (10.1016/j.image.2022.116891_b12) 2018; 42
Wang (10.1016/j.image.2022.116891_b4) 2021; 96
10.1016/j.image.2022.116891_b10
Situ (10.1016/j.image.2022.116891_b32) 2020; 538
Bloch (10.1016/j.image.2022.116891_b40) 1946; 70
Rudolph (10.1016/j.image.2022.116891_b48) 2020
Tseng (10.1016/j.image.2022.116891_b14) 2020; 15
Schuld (10.1016/j.image.2022.116891_b45) 2019; 99
Mao (10.1016/j.image.2022.116891_b17) 2019; 41
Joo (10.1016/j.image.2022.116891_b9) 2020; 107
Lloyd (10.1016/j.image.2022.116891_b26) 2014; 10
Anand (10.1016/j.image.2022.116891_b38) 2021; 4
Sousa (10.1016/j.image.2022.116891_b41) 2007; 7
Lund (10.1016/j.image.2022.116891_b27) 2017; 3
May (10.1016/j.image.2022.116891_b1) 2021; 1
Bergholm (10.1016/j.image.2022.116891_b46) 2018
Harrow (10.1016/j.image.2022.116891_b28) 2017; 549
Iosifidis (10.1016/j.image.2022.116891_b5) 2020; 83
Li (10.1016/j.image.2022.116891_b20) 2018; 6
Ackley (10.1016/j.image.2022.116891_b8) 1985; 9
Ocal (10.1016/j.image.2022.116891_b16) 2021; 449
Chang (10.1016/j.image.2022.116891_b36) 2021; Vol. 251
Agliardi (10.1016/j.image.2022.116891_b37) 2022; 4
Scher (10.1016/j.image.2022.116891_b3) 2018; 144
Y. (10.1016/j.image.2022.116891_b7) 2015; 521
Higuchi (10.1016/j.image.2022.116891_b47) 2000; 273
P. (10.1016/j.image.2022.116891_b25) 2014; 113
Dallaire-Demers (10.1016/j.image.2022.116891_b29) 2018; 98
Deng (10.1016/j.image.2022.116891_b2) 2021; 12
Huang (10.1016/j.image.2022.116891_b35) 2021; 16
Boixo (10.1016/j.image.2022.116891_b6) 2018; 14
Liu (10.1016/j.image.2022.116891_b43) 2021; 2021
Brock (10.1016/j.image.2022.116891_b21) 2019
Goodfellow (10.1016/j.image.2022.116891_b11) 2020; 63
Lloyd (10.1016/j.image.2022.116891_b30) 2018; 121
Arjovsky (10.1016/j.image.2022.116891_b18) 2017; Vol. 70
Allcock (10.1016/j.image.2022.116891_b23) 2019; 6
Aaronson (10.1016/j.image.2022.116891_b39) 2015; 11
He (10.1016/j.image.2022.116891_b42) 2019; 58
Biamonte (10.1016/j.image.2022.116891_b22) 2017; 549
Hu (10.1016/j.image.2022.116891_b33) 2019; 5
Xiao (10.1016/j.image.2022.116891_b24) 2010; 37
Benedetti (10.1016/j.image.2022.116891_b31) 2019; 21
Romero (10.1016/j.image.2022.116891_b34) 2021; 4
Sun (10.1016/j.image.2022.116891_b13) 2019; 20
Douzas (10.1016/j.image.2022.116891_b15) 2018; 91
Mitarai (10.1016/j.image.2022.116891_b44) 2018; 98
10.1016/j.image.2022.116891_b19
References_xml – volume: 6
  start-page: 11342
  year: 2018
  end-page: 11348
  ident: b20
  article-title: Improved boundary equilibrium generative adversarial networks
  publication-title: IEEE Access
– volume: 21
  year: 2019
  ident: b31
  article-title: Adversarial quantum circuit learning for pure state approximation
  publication-title: New J. Phys.
– volume: 107
  year: 2020
  ident: b9
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognit.
– volume: 4
  year: 2021
  ident: b34
  article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions
  publication-title: Adv. Quant. Technol.
– volume: 273
  start-page: 213
  year: 2000
  end-page: 217
  ident: b47
  article-title: How entangled can two couples get?
  publication-title: Phys. Lett. A
– volume: 15
  start-page: 2499
  year: 2020
  end-page: 2513
  ident: b14
  article-title: Compressive privacy generative adversarial network
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: Vol. 251
  start-page: 03050
  year: 2021
  ident: b36
  article-title: Dual-parameterized quantum circuit GAN model in high energy physics
  publication-title: EPJ Web of Conferences
– volume: 91
  start-page: 464
  year: 2018
  end-page: 471
  ident: b15
  article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks
  publication-title: Expert Syst. Appl.
– volume: 96
  year: 2021
  ident: b4
  article-title: MFIF-GAN: A new generative adversarial network for multi-focus image fusion
  publication-title: Signal Process.-Image Commun.
– reference: I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, Vol. 27, Montreal, CANADA, 2014, pp. 2672–2680.
– volume: 449
  start-page: 389
  year: 2021
  end-page: 398
  ident: b16
  article-title: Supervised deep convolutional generative adversarial networks
  publication-title: Neurocomputing
– volume: 2021
  start-page: 37
  year: 2021
  ident: b43
  article-title: A hybrid quantum–classical conditional generative adversarial network algorithm for human-centered paradigm in cloud
  publication-title: EURASIP J. Wireless Commun. Networking
– volume: Vol. 70
  start-page: 214
  year: 2017
  end-page: 223
  ident: b18
  article-title: Wasserstein generative adversarial networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– year: 2019
  ident: b21
  article-title: Large scale GAN training for high fidelity natural image synthesis
– volume: 121
  year: 2018
  ident: b30
  article-title: Quantum generative adversarial learning
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 595
  year: 2018
  end-page: 600
  ident: b6
  article-title: Characterizing quantum supremacy in near-term devices
  publication-title: Nat. Phys.
– volume: 1
  start-page: 2
  year: 2021
  end-page: 3
  ident: b1
  article-title: Eight ways machine learning is assisting medicine
  publication-title: Nat. Med.
– volume: 549
  start-page: 195
  year: 2017
  end-page: 202
  ident: b22
  article-title: Quantum machine learning
  publication-title: Nature
– volume: 5
  year: 2019
  ident: b33
  article-title: Quantum generative adversarial learning in a superconducting quantum circuit
  publication-title: Sci. Adv.
– year: 2020
  ident: b48
  article-title: Generation of high-resolution handwritten digits with an ion-trap quantum computer
– volume: 144
  start-page: 2830
  year: 2018
  end-page: 2841
  ident: b3
  article-title: Predicting weather forecast uncertainty with machine learning
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b7
  article-title: Deep learning
  publication-title: Nature
– volume: 4
  start-page: 75
  year: 2022
  end-page: 105
  ident: b37
  article-title: Optimal tuning of quantum generative adversarial networks for multivariate distribution loading
  publication-title: Quant. Rep.
– volume: 41
  start-page: 2947
  year: 2019
  end-page: 2960
  ident: b17
  article-title: On the effectiveness of least squares generative adversarial networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 113
  year: 2014
  ident: b25
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 15
  year: 2017
  ident: b27
  article-title: Quantum sampling problems, BosonSampling and quantum supremacy
  publication-title: NPJ Quant. Inf.
– volume: 6
  start-page: 26
  year: 2019
  end-page: 28
  ident: b23
  article-title: Quantum machine learning
  publication-title: National Sci. Rev.
– volume: 98
  year: 2018
  ident: b44
  article-title: Quantum circuit learnin
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 147
  year: 1985
  end-page: 169
  ident: b8
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn. Sci.
– volume: 63
  start-page: 139
  year: 2020
  end-page: 144
  ident: b11
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
– volume: 7
  start-page: 228
  year: 2007
  end-page: 242
  ident: b41
  article-title: Universal quantum circuit for N-qubit quantum gate: a programmable quantum gate
  publication-title: Quantum Inf. Comput.
– year: 2018
  ident: b46
  article-title: Pennylane: automatic differentiation of hybrid quantum–classical computations
– volume: 11
  start-page: 291
  year: 2015
  end-page: 293
  ident: b39
  article-title: Read the fine print
  publication-title: Nat. Phys.
– volume: 549
  start-page: 203
  year: 2017
  end-page: 209
  ident: b28
  article-title: Quantum computational supremacy
  publication-title: Nature
– volume: 4
  year: 2021
  ident: b38
  article-title: Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions
  publication-title: Adv. Quant. Technol.
– volume: 98
  year: 2018
  ident: b29
  article-title: Quantum generative adversarial networks
  publication-title: Phys. Rev. A
– volume: 70
  start-page: 460
  year: 1946
  end-page: 474
  ident: b40
  article-title: Nuclear induction
  publication-title: Phys. Rev.
– volume: 58
  start-page: 1138
  year: 2019
  end-page: 1149
  ident: b42
  article-title: A conditional generative model based on quantum circuit and classical optimization
  publication-title: Internat. J. Theoret. Phys.
– reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANs, in: 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, 2017, pp. 4–9.
– volume: 83
  year: 2020
  ident: b5
  article-title: Deep learning for visual content analysis
  publication-title: Signal Process.-Image Commun.
– volume: 12
  start-page: 513
  year: 2021
  end-page: 538
  ident: b2
  article-title: Emerging applications of machine learning in food safety
  publication-title: Annu. Rev. Food Sci. Technol.
– volume: 42
  start-page: 231
  year: 2018
  ident: b12
  article-title: Generative adversarial network for medical images (MI-GAN)
  publication-title: J. Med. Syst.
– volume: 37
  start-page: 4966
  year: 2010
  end-page: 4973
  ident: b24
  article-title: A quantum-inspired genetic algorithm for k-means clustering
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 631
  year: 2014
  end-page: 633
  ident: b26
  article-title: Quantum principal component analysis
  publication-title: Nat. Phys.
– volume: 16
  year: 2021
  ident: b35
  article-title: Experimental quantum generative adversarial networks for image generation
  publication-title: Phys. Rev. A
– volume: 538
  start-page: 193
  year: 2020
  end-page: 208
  ident: b32
  article-title: Quantum generative adversarial network for generating discrete distribution
  publication-title: Inform. Sci.
– volume: 20
  start-page: 1644
  year: 2019
  end-page: 1656
  ident: b13
  article-title: SmartPaint: a co-creative drawing system based on generative adversarial networks
  publication-title: Front. Inf. Technol. Electron. Eng.
– volume: 99
  year: 2019
  ident: b45
  article-title: Evaluating analytic gradients on quantum hardware
  publication-title: Phys. Rev. A
– volume: 4
  issue: 5
  year: 2021
  ident: 10.1016/j.image.2022.116891_b38
  article-title: Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions
  publication-title: Adv. Quant. Technol.
– volume: 5
  issue: 1
  year: 2019
  ident: 10.1016/j.image.2022.116891_b33
  article-title: Quantum generative adversarial learning in a superconducting quantum circuit
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2761
– volume: 449
  start-page: 389
  year: 2021
  ident: 10.1016/j.image.2022.116891_b16
  article-title: Supervised deep convolutional generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.125
– ident: 10.1016/j.image.2022.116891_b10
– volume: 1
  start-page: 2
  issue: 27
  year: 2021
  ident: 10.1016/j.image.2022.116891_b1
  article-title: Eight ways machine learning is assisting medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01197-2
– volume: 121
  issue: 4
  year: 2018
  ident: 10.1016/j.image.2022.116891_b30
  article-title: Quantum generative adversarial learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.040502
– volume: 273
  start-page: 213
  issue: 4
  year: 2000
  ident: 10.1016/j.image.2022.116891_b47
  article-title: How entangled can two couples get?
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(00)00480-1
– volume: 549
  start-page: 203
  issue: 7671
  year: 2017
  ident: 10.1016/j.image.2022.116891_b28
  article-title: Quantum computational supremacy
  publication-title: Nature
  doi: 10.1038/nature23458
– volume: 15
  start-page: 2499
  year: 2020
  ident: 10.1016/j.image.2022.116891_b14
  article-title: Compressive privacy generative adversarial network
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.2968188
– volume: 12
  start-page: 513
  issue: 1
  year: 2021
  ident: 10.1016/j.image.2022.116891_b2
  article-title: Emerging applications of machine learning in food safety
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-071720-024112
– volume: 6
  start-page: 11342
  year: 2018
  ident: 10.1016/j.image.2022.116891_b20
  article-title: Improved boundary equilibrium generative adversarial networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2804278
– volume: 3
  start-page: 15
  year: 2017
  ident: 10.1016/j.image.2022.116891_b27
  article-title: Quantum sampling problems, BosonSampling and quantum supremacy
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/s41534-017-0018-2
– volume: 21
  issue: 4
  year: 2019
  ident: 10.1016/j.image.2022.116891_b31
  article-title: Adversarial quantum circuit learning for pure state approximation
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab14b5
– year: 2019
  ident: 10.1016/j.image.2022.116891_b21
– volume: 549
  start-page: 195
  issue: 7671
  year: 2017
  ident: 10.1016/j.image.2022.116891_b22
  article-title: Quantum machine learning
  publication-title: Nature
  doi: 10.1038/nature23474
– volume: 113
  issue: 13
  year: 2014
  ident: 10.1016/j.image.2022.116891_b25
  article-title: Quantum support vector machine for big data classification
  publication-title: Phys. Rev. Lett.
– volume: 58
  start-page: 1138
  issue: 4
  year: 2019
  ident: 10.1016/j.image.2022.116891_b42
  article-title: A conditional generative model based on quantum circuit and classical optimization
  publication-title: Internat. J. Theoret. Phys.
  doi: 10.1007/s10773-019-04005-x
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.image.2022.116891_b7
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: Vol. 70
  start-page: 214
  year: 2017
  ident: 10.1016/j.image.2022.116891_b18
  article-title: Wasserstein generative adversarial networks
– volume: 41
  start-page: 2947
  issue: 12
  year: 2019
  ident: 10.1016/j.image.2022.116891_b17
  article-title: On the effectiveness of least squares generative adversarial networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2872043
– volume: 14
  start-page: 595
  issue: 6
  year: 2018
  ident: 10.1016/j.image.2022.116891_b6
  article-title: Characterizing quantum supremacy in near-term devices
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0124-x
– volume: 37
  start-page: 4966
  issue: 7
  year: 2010
  ident: 10.1016/j.image.2022.116891_b24
  article-title: A quantum-inspired genetic algorithm for k-means clustering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.12.017
– volume: 42
  start-page: 231
  issue: 11
  year: 2018
  ident: 10.1016/j.image.2022.116891_b12
  article-title: Generative adversarial network for medical images (MI-GAN)
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1072-9
– volume: 83
  year: 2020
  ident: 10.1016/j.image.2022.116891_b5
  article-title: Deep learning for visual content analysis
  publication-title: Signal Process.-Image Commun.
  doi: 10.1016/j.image.2020.115806
– volume: 16
  issue: 2
  year: 2021
  ident: 10.1016/j.image.2022.116891_b35
  article-title: Experimental quantum generative adversarial networks for image generation
  publication-title: Phys. Rev. A
– volume: 20
  start-page: 1644
  issue: 12
  year: 2019
  ident: 10.1016/j.image.2022.116891_b13
  article-title: SmartPaint: a co-creative drawing system based on generative adversarial networks
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1900386
– volume: 107
  year: 2020
  ident: 10.1016/j.image.2022.116891_b9
  article-title: Dirichlet variational autoencoder
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107514
– volume: 4
  issue: 1
  year: 2021
  ident: 10.1016/j.image.2022.116891_b34
  article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions
  publication-title: Adv. Quant. Technol.
– volume: 11
  start-page: 291
  issue: 4
  year: 2015
  ident: 10.1016/j.image.2022.116891_b39
  article-title: Read the fine print
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3272
– volume: 538
  start-page: 193
  year: 2020
  ident: 10.1016/j.image.2022.116891_b32
  article-title: Quantum generative adversarial network for generating discrete distribution
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.05.127
– volume: 2021
  start-page: 37
  issue: 1
  year: 2021
  ident: 10.1016/j.image.2022.116891_b43
  article-title: A hybrid quantum–classical conditional generative adversarial network algorithm for human-centered paradigm in cloud
  publication-title: EURASIP J. Wireless Commun. Networking
  doi: 10.1186/s13638-021-01898-3
– ident: 10.1016/j.image.2022.116891_b19
– volume: 6
  start-page: 26
  issue: 1
  year: 2019
  ident: 10.1016/j.image.2022.116891_b23
  article-title: Quantum machine learning
  publication-title: National Sci. Rev.
  doi: 10.1093/nsr/nwy149
– volume: 144
  start-page: 2830
  issue: 717
  year: 2018
  ident: 10.1016/j.image.2022.116891_b3
  article-title: Predicting weather forecast uncertainty with machine learning
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3410
– volume: 63
  start-page: 139
  issue: 11
  year: 2020
  ident: 10.1016/j.image.2022.116891_b11
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– year: 2020
  ident: 10.1016/j.image.2022.116891_b48
– volume: 10
  start-page: 631
  issue: 9
  year: 2014
  ident: 10.1016/j.image.2022.116891_b26
  article-title: Quantum principal component analysis
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3029
– volume: 7
  start-page: 228
  issue: 3
  year: 2007
  ident: 10.1016/j.image.2022.116891_b41
  article-title: Universal quantum circuit for N-qubit quantum gate: a programmable quantum gate
  publication-title: Quantum Inf. Comput.
– volume: 99
  issue: 3
  year: 2019
  ident: 10.1016/j.image.2022.116891_b45
  article-title: Evaluating analytic gradients on quantum hardware
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.032331
– year: 2018
  ident: 10.1016/j.image.2022.116891_b46
– volume: 70
  start-page: 460
  issue: 7, 8
  year: 1946
  ident: 10.1016/j.image.2022.116891_b40
  article-title: Nuclear induction
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.70.460
– volume: 98
  issue: 3
  year: 2018
  ident: 10.1016/j.image.2022.116891_b44
  article-title: Quantum circuit learnin
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.032309
– volume: 91
  start-page: 464
  year: 2018
  ident: 10.1016/j.image.2022.116891_b15
  article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.030
– volume: 9
  start-page: 147
  issue: 1
  year: 1985
  ident: 10.1016/j.image.2022.116891_b8
  article-title: A learning algorithm for Boltzmann machines
  publication-title: Cogn. Sci.
– volume: 96
  year: 2021
  ident: 10.1016/j.image.2022.116891_b4
  article-title: MFIF-GAN: A new generative adversarial network for multi-focus image fusion
  publication-title: Signal Process.-Image Commun.
  doi: 10.1016/j.image.2021.116295
– volume: 4
  start-page: 75
  issue: 1
  year: 2022
  ident: 10.1016/j.image.2022.116891_b37
  article-title: Optimal tuning of quantum generative adversarial networks for multivariate distribution loading
  publication-title: Quant. Rep.
  doi: 10.3390/quantum4010006
– volume: 98
  issue: 1
  year: 2018
  ident: 10.1016/j.image.2022.116891_b29
  article-title: Quantum generative adversarial networks
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.98.012324
– volume: Vol. 251
  start-page: 03050
  year: 2021
  ident: 10.1016/j.image.2022.116891_b36
  article-title: Dual-parameterized quantum circuit GAN model in high energy physics
SSID ssj0002409
Score 2.6182246
Snippet It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 116891
SubjectTerms Hybrid quantum–classical algorithms
Image generation
Quantum computation
Quantum generative adversarial network
Quantum machine learning
Title Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution
URI https://dx.doi.org/10.1016/j.image.2022.116891
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUlzwwEtomtuOMVUUVQHQBJLbIdhwUBAH6QGJB_Af-Ib-Eu8QpRUIMbJHlkxzf-e5zcvcdIYeh5NJGmfbAfOCCkhrlKaONB7akFU-5iCzWDl8MRXzNzm74TYP061oYTKt0vr_y6aW3diNtt5vtpzxvX3YAm_BIAIAoSWCwiI-xEK38-O07zQMiVsW35wcezq6Zh8ocr_wBDi1cEn0fXIeQUff36DQXcQZrZMVBRdqrVrNOGrZoklUHG6k7lGMYqjsz1GNNsjxHM7hBRvEr1mXR5yls4_Th8_3DIGZG9dDbknYafR5V2Jt5rNAiaVFlh48pYFparn8287GgL7mirt3ELcW63hFAb3yYtc_aJNeDk6t-7LleC57xg2Di2VAL2eXKas06WciziGtlmU4lSzW3LIxCX0QGwIZlFkBUqgL8YSrTTHLbSVmwRRaKx8JuE8r81DCFuA1CnzRawp0vy4SOAtVVwtoW8es9TowjIsd-GPdJnXF2l5QvlqBikkoxLXI0E3qqeDj-ni5q5SU_zCmBSPGX4M5_BXfJEnair77O7JGFyWhq9wGvTPRBaZAHZLF3eh4PvwCPVe4e
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByAEpb8SjgQ4-NdjexHfuIVl2F114AiVtkOw5aVALsA6m3_gf-Ib-EmcRZgYQ4cIssj-R4xjOfk5lvAH6lSiivSxuh-eAFpXAmMs66CG3JGlEIqT3VDp-OZHbBjy7F5RIM2loYSqsMvr_x6bW3DiPdsJvdu_G4e9ZDbCK0RABRk8DoT7BM7FSiA8sHh8fZaOGQMWg1lHtxEpFASz5Up3mNb_Dc4j0xjtF7SKX7bweoF0FnuA6rAS2yg2ZBX2HJVxuwFpAjC-dyikNtc4Z2bANWXjANfoNJ9o9Ks9j9HHdyfvP0_9ERbCYNsauaeZrcHjPUnnlqyChZ1SSITxnCWlavfzHztmIPY8NCx4krRqW9E0Tf9LDooPUdLoZ_zgdZFNotRC5OklnkUytVXxhvLe-VqSi1sMZzWyheWOF5qtNYaod4w3OPOKowCf0zVUWphO8VPPkBneq28pvAeFw4bgi6YfRTziq89pWltDoxfSO934K43ePcBS5yaonxN2-Tzq7z-sVyUkzeKGYLfi-E7hoqjveny1Z5-SuLyjFYvCe4_VHBfficnZ-e5CeHo-Md-EKN6ZuPNT-hM5vM_S7Cl5ndC-b5DLQV8M8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+quantum%E2%80%93classical+generative+adversarial+networks+for+image+generation+via+learning+discrete+distribution&rft.jtitle=Signal+processing.+Image+communication&rft.au=Zhou%2C+Nan-Run&rft.au=Zhang%2C+Tian-Feng&rft.au=Xie%2C+Xin-Wen&rft.au=Wu%2C+Jun-Yun&rft.date=2023-01-01&rft.issn=0923-5965&rft.volume=110&rft.spage=116891&rft_id=info:doi/10.1016%2Fj.image.2022.116891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_image_2022_116891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon