Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution
It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure...
Saved in:
Published in | Signal processing. Image communication Vol. 110; p. 116891 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0923-5965 1879-2677 |
DOI | 10.1016/j.image.2022.116891 |
Cover
Loading…
Abstract | It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure of quantum generator is optimized to reduce the required parameters and make use of quantum devices to a greater extent. And an image generation scheme is designed based on quantum generative adversarial networks. Two structures of quantum generative adversarial networks are simulated on Bars and Stripes dataset, and the results corroborate that the quantum generator with reduced parameters has no visible performance loss. The original complex multimodal distribution of an image can be converted into a simple unimodal distribution by the remapping method. The MNIST images and the Fashion-MNIST images are successfully generated by the optimized quantum generator with the remapping method, which verified the feasibility of the proposed image generation scheme.
•The structure of quantum generator is optimized to reduce the required parameters.•An image generation scheme is designed based on quantum generative adversarial networks.•The multimodal distribution of an image is converted into a unimodal distribution by the remapping method.•The MNIST images and the Fashion-MNIST ones are generated by the optimized quantum generator. |
---|---|
AbstractList | It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks. However, quantum machine learning is difficult to find real applications in the near future due to the limitation of quantum devices. The structure of quantum generator is optimized to reduce the required parameters and make use of quantum devices to a greater extent. And an image generation scheme is designed based on quantum generative adversarial networks. Two structures of quantum generative adversarial networks are simulated on Bars and Stripes dataset, and the results corroborate that the quantum generator with reduced parameters has no visible performance loss. The original complex multimodal distribution of an image can be converted into a simple unimodal distribution by the remapping method. The MNIST images and the Fashion-MNIST images are successfully generated by the optimized quantum generator with the remapping method, which verified the feasibility of the proposed image generation scheme.
•The structure of quantum generator is optimized to reduce the required parameters.•An image generation scheme is designed based on quantum generative adversarial networks.•The multimodal distribution of an image is converted into a unimodal distribution by the remapping method.•The MNIST images and the Fashion-MNIST ones are generated by the optimized quantum generator. |
ArticleNumber | 116891 |
Author | Wu, Jun-Yun Xie, Xin-Wen Zhang, Tian-Feng Zhou, Nan-Run |
Author_xml | – sequence: 1 givenname: Nan-Run orcidid: 0000-0002-5080-2189 surname: Zhou fullname: Zhou, Nan-Run email: znr21@163.com organization: School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Songjiang 201620, Shanghai, China – sequence: 2 givenname: Tian-Feng surname: Zhang fullname: Zhang, Tian-Feng organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, Jiangxi, China – sequence: 3 givenname: Xin-Wen orcidid: 0000-0001-5870-6565 surname: Xie fullname: Xie, Xin-Wen email: xinwen.xie@jju.edu.cn organization: School of Management, Nanchang University, Nanchang 330031, Jiangxi, China – sequence: 4 givenname: Jun-Yun surname: Wu fullname: Wu, Jun-Yun organization: Department of Computer Science and Technology, Nanchang University, Nanchang 330031, China |
BookMark | eNqFkE1OwzAQhS0EEqVwAja5QIrtxHG8YIEq_qRKbGBtOfakcgkOjN0idtyBG3ISkhaxYAGrGY3mm3nvHZH90Acg5JTRGaOsOlvN_JNZwoxTzmeMVbVie2TCaqlyXkm5TyZU8SIXqhKH5CjGFaWUl1RNCN68Nehd9rI2Ia2fPt8_bGdi9NZ02RICoEl-A5lxG8Bo0A_jAOm1x8eYtT1m278_m33INt5kHRgMPiwz56NFSDA2CX2zHleOyUFruggn33VKHq4u7-c3-eLu-nZ-scgtL4qUg2yqmgkDTVPSVopWicZA2bi6dI2AUirJK2WZHHrgVelMISoha9fWAqgriykpdnct9jEitPoZB7n4phnVY2x6pbfy9Rib3sU2UOoXZX3aWktofPcPe75jYbC18YA6Wg_BgvMINmnX-z_5L_-ckMM |
CitedBy_id | crossref_primary_10_1049_qtc2_12078 crossref_primary_10_1016_j_apacoust_2024_110527 crossref_primary_10_1016_j_jisa_2023_103560 crossref_primary_10_3390_photonics9110844 crossref_primary_10_1007_s11128_023_04232_6 crossref_primary_10_3389_fphy_2022_1079624 crossref_primary_10_1007_s00371_023_02822_0 crossref_primary_10_1145_3655027 crossref_primary_10_1088_1402_4896_ad5c1d crossref_primary_10_1007_s10773_023_05527_1 crossref_primary_10_1142_S0219749923500247 crossref_primary_10_1360_SSPMA_2023_0187 crossref_primary_10_3390_technologies11050148 crossref_primary_10_1142_S021974992450045X crossref_primary_10_2174_0126662558282684240213062932 crossref_primary_10_1142_S0217732323500694 crossref_primary_10_1140_epjp_s13360_024_05557_6 crossref_primary_10_1142_S0217732323501419 crossref_primary_10_1088_1612_202X_acee64 crossref_primary_10_1360_SSPMA_2023_0273 crossref_primary_10_1016_j_enconman_2025_119694 crossref_primary_10_1088_1402_4896_ad0584 crossref_primary_10_1007_s40747_024_01694_8 crossref_primary_10_1007_s11128_023_04071_5 crossref_primary_10_3390_e25060870 crossref_primary_10_1007_s42484_024_00232_6 crossref_primary_10_1088_2058_9565_adaede crossref_primary_10_3390_e26080644 crossref_primary_10_1140_epjqt_s40507_024_00304_3 crossref_primary_10_1007_s42484_025_00247_7 crossref_primary_10_1016_j_jksuci_2023_101839 crossref_primary_10_1002_qute_202400137 crossref_primary_10_3389_fphy_2023_1179868 crossref_primary_10_3390_electronics13173481 crossref_primary_10_1016_j_image_2025_117261 crossref_primary_10_59247_csol_v2i3_128 crossref_primary_10_1007_s10773_022_05262_z crossref_primary_10_3233_KES_230326 crossref_primary_10_1016_j_optlastec_2024_110769 crossref_primary_10_1103_PhysRevA_110_022403 crossref_primary_10_1109_ACCESS_2023_3272985 crossref_primary_10_3389_fphy_2023_1213153 crossref_primary_10_1088_2058_9565_ad8e80 crossref_primary_10_1140_epjp_s13360_023_04537_6 crossref_primary_10_1007_s11042_024_18112_3 crossref_primary_10_1109_TPAMI_2023_3272029 crossref_primary_10_1007_s40747_024_01494_0 crossref_primary_10_1016_j_ijleo_2023_170590 crossref_primary_10_3390_photonics10050483 crossref_primary_10_1007_s40747_024_01458_4 crossref_primary_10_1088_1612_202X_ad8742 crossref_primary_10_1038_s41534_022_00650_z crossref_primary_10_1080_09540091_2024_2435654 crossref_primary_10_1016_j_dsp_2024_104466 crossref_primary_10_1016_j_compbiomed_2023_107549 crossref_primary_10_1049_enc2_12122 crossref_primary_10_1007_s42484_024_00215_7 crossref_primary_10_3390_math11061484 crossref_primary_10_1016_j_knosys_2024_112260 crossref_primary_10_1007_s44217_025_00400_1 crossref_primary_10_1002_qute_202400223 crossref_primary_10_1016_j_optcom_2023_129287 crossref_primary_10_3389_fphy_2023_1154415 crossref_primary_10_1088_1402_4896_ad8190 crossref_primary_10_1109_ACCESS_2024_3418458 crossref_primary_10_3389_fphy_2022_1097754 crossref_primary_10_1088_1674_1056_ad02e7 crossref_primary_10_1007_s11128_023_04018_w crossref_primary_10_3390_app15052555 crossref_primary_10_1002_qute_202300269 crossref_primary_10_1016_j_physa_2023_128693 crossref_primary_10_1088_1751_8121_ad6daf crossref_primary_10_1016_j_physa_2024_129801 crossref_primary_10_3390_quantum4040042 crossref_primary_10_3390_s23208475 crossref_primary_10_3390_s23229111 crossref_primary_10_3390_e25030537 crossref_primary_10_1007_s40747_024_01606_w crossref_primary_10_1088_1674_1056_ad0775 crossref_primary_10_1002_qute_202400078 crossref_primary_10_1016_j_physa_2023_128779 crossref_primary_10_7498_aps_72_20221902 crossref_primary_10_1007_s11227_024_06615_7 crossref_primary_10_1103_PhysRevA_107_052616 crossref_primary_10_1109_TNSE_2024_3354327 crossref_primary_10_1002_qute_202400510 crossref_primary_10_1109_TCOMM_2023_3299978 crossref_primary_10_3389_fphy_2024_1412664 crossref_primary_10_3389_fphy_2024_1443977 crossref_primary_10_1088_2632_2153_ad2aef crossref_primary_10_1016_j_ijleo_2023_171022 crossref_primary_10_1016_j_optcom_2023_129993 crossref_primary_10_1002_qute_202300221 |
Cites_doi | 10.1126/sciadv.aav2761 10.1016/j.neucom.2021.03.125 10.1038/s41591-020-01197-2 10.1103/PhysRevLett.121.040502 10.1016/S0375-9601(00)00480-1 10.1038/nature23458 10.1109/TIFS.2020.2968188 10.1146/annurev-food-071720-024112 10.1109/ACCESS.2018.2804278 10.1038/s41534-017-0018-2 10.1088/1367-2630/ab14b5 10.1038/nature23474 10.1007/s10773-019-04005-x 10.1038/nature14539 10.1109/TPAMI.2018.2872043 10.1038/s41567-018-0124-x 10.1016/j.eswa.2009.12.017 10.1007/s10916-018-1072-9 10.1016/j.image.2020.115806 10.1631/FITEE.1900386 10.1016/j.patcog.2020.107514 10.1038/nphys3272 10.1016/j.ins.2020.05.127 10.1186/s13638-021-01898-3 10.1093/nsr/nwy149 10.1002/qj.3410 10.1145/3422622 10.1038/nphys3029 10.1103/PhysRevA.99.032331 10.1103/PhysRev.70.460 10.1103/PhysRevA.98.032309 10.1016/j.eswa.2017.09.030 10.1016/j.image.2021.116295 10.3390/quantum4010006 10.1103/PhysRevA.98.012324 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.image.2022.116891 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1879-2677 |
ExternalDocumentID | 10_1016_j_image_2022_116891 S0923596522001709 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c233t-e7b6815aebb40f75f95bae4bd84db5e4797269c175e4e264da356578df85e0d43 |
IEDL.DBID | .~1 |
ISSN | 0923-5965 |
IngestDate | Thu Apr 24 23:08:13 EDT 2025 Tue Jul 01 03:17:59 EDT 2025 Fri Feb 23 02:39:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Quantum computation Quantum machine learning Quantum generative adversarial network Hybrid quantum–classical algorithms Image generation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-e7b6815aebb40f75f95bae4bd84db5e4797269c175e4e264da356578df85e0d43 |
ORCID | 0000-0002-5080-2189 0000-0001-5870-6565 |
ParticipantIDs | crossref_primary_10_1016_j_image_2022_116891 crossref_citationtrail_10_1016_j_image_2022_116891 elsevier_sciencedirect_doi_10_1016_j_image_2022_116891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing. Image communication |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Scher, Messori (b3) 2018; 144 Biamonte, Wittek, Pancotti, Rebentrost, Wiebe, Lloyd (b22) 2017; 549 Tseng, Wu (b14) 2020; 15 Ackley, Hinton, Sejnowski (b8) 1985; 9 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b11) 2020; 63 Benedetti, Grant, Wossnig, Severini (b31) 2019; 21 Sousa, Ramos (b41) 2007; 7 Mao, Li, Xie, Lau, Wang, Smolley (b17) 2019; 41 Ocal, Ozbakir (b16) 2021; 449 Rudolph, Toussaint, Katabarwa, Johri, Peropadre, Perdomo-Ortiz (b48) 2020 Y., Bengio, Hinton (b7) 2015; 521 Bergholm, Izaac, Schuld, Gogolin, M. Alam, Ahmed, Arrazola, Blank, Delgado, Jahangiri, McKiernan, Meyer, Niu, Száva, Killoran (b46) 2018 Bloch (b40) 1946; 70 Iqbal, Ali (b12) 2018; 42 Situ, He, Wang, Li, Zheng (b32) 2020; 538 Hu, Wu, Cai, Ma, Mu, Xu, Wang, Song, Deng, Zou, Sun (b33) 2019; 5 Schuld, Bergholm, Gogolin, Izaac, Killoran (b45) 2019; 99 Arjovsky, Chintala, Bottou (b18) 2017; Vol. 70 Lloyd, Weedbrook (b30) 2018; 121 He, Li, Zheng, Huang, Situ (b42) 2019; 58 Higuchi, Sudbery (b47) 2000; 273 Douzas, Bacao (b15) 2018; 91 Wang, Xu, Liu, Zhao, Zhang, Zhang (b4) 2021; 96 I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANs, in: 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, 2017, pp. 4–9. Li, Xiao, Ouyang (b20) 2018; 6 P., Mohseni, Lloyd (b25) 2014; 113 Chang, Herbert, Vallecorsa, Combarro, Duncan (b36) 2021; Vol. 251 Aaronson (b39) 2015; 11 Lloyd, Mohseni, Rebentrost (b26) 2014; 10 Dallaire-Demers, Killoran (b29) 2018; 98 I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, Vol. 27, Montreal, CANADA, 2014, pp. 2672–2680. Romero, Aspuru-Guzik (b34) 2021; 4 Deng, Cao, Horn (b2) 2021; 12 Brock, Donahue, Simonyan (b21) 2019 Mitarai, Negoro, Kitagawa, Fujii (b44) 2018; 98 Sun, Chen, Xiang, Chen, Gao, Zhang (b13) 2019; 20 Anand, Romero, Degroote, Aspuru-Guzik (b38) 2021; 4 Huang, Du, Gong, Zhao, Wu, Wang, Li, Liang, Lin, Xu, Yang, Liu, Hsieh, Deng, Rong, Peng, Lu, Chen, Tao, Zhu, Pan (b35) 2021; 16 Xiao, Yan, Zhang, Tang (b24) 2010; 37 Allcock, Zhang (b23) 2019; 6 May (b1) 2021; 1 Joo, Lee, Park, Moon (b9) 2020; 107 Liu, Zhang, Deng, Zhao, Tong (b43) 2021; 2021 Iosifidis, Tefas (b5) 2020; 83 Agliardi, Prati (b37) 2022; 4 Boixo, Isakov, Smelyanskiy, Babbush, Ding, Ding, Bremner, Martinis, Neven (b6) 2018; 14 Lund, Bremner, Ralph (b27) 2017; 3 Harrow, Montanaro (b28) 2017; 549 Iqbal (10.1016/j.image.2022.116891_b12) 2018; 42 Wang (10.1016/j.image.2022.116891_b4) 2021; 96 10.1016/j.image.2022.116891_b10 Situ (10.1016/j.image.2022.116891_b32) 2020; 538 Bloch (10.1016/j.image.2022.116891_b40) 1946; 70 Rudolph (10.1016/j.image.2022.116891_b48) 2020 Tseng (10.1016/j.image.2022.116891_b14) 2020; 15 Schuld (10.1016/j.image.2022.116891_b45) 2019; 99 Mao (10.1016/j.image.2022.116891_b17) 2019; 41 Joo (10.1016/j.image.2022.116891_b9) 2020; 107 Lloyd (10.1016/j.image.2022.116891_b26) 2014; 10 Anand (10.1016/j.image.2022.116891_b38) 2021; 4 Sousa (10.1016/j.image.2022.116891_b41) 2007; 7 Lund (10.1016/j.image.2022.116891_b27) 2017; 3 May (10.1016/j.image.2022.116891_b1) 2021; 1 Bergholm (10.1016/j.image.2022.116891_b46) 2018 Harrow (10.1016/j.image.2022.116891_b28) 2017; 549 Iosifidis (10.1016/j.image.2022.116891_b5) 2020; 83 Li (10.1016/j.image.2022.116891_b20) 2018; 6 Ackley (10.1016/j.image.2022.116891_b8) 1985; 9 Ocal (10.1016/j.image.2022.116891_b16) 2021; 449 Chang (10.1016/j.image.2022.116891_b36) 2021; Vol. 251 Agliardi (10.1016/j.image.2022.116891_b37) 2022; 4 Scher (10.1016/j.image.2022.116891_b3) 2018; 144 Y. (10.1016/j.image.2022.116891_b7) 2015; 521 Higuchi (10.1016/j.image.2022.116891_b47) 2000; 273 P. (10.1016/j.image.2022.116891_b25) 2014; 113 Dallaire-Demers (10.1016/j.image.2022.116891_b29) 2018; 98 Deng (10.1016/j.image.2022.116891_b2) 2021; 12 Huang (10.1016/j.image.2022.116891_b35) 2021; 16 Boixo (10.1016/j.image.2022.116891_b6) 2018; 14 Liu (10.1016/j.image.2022.116891_b43) 2021; 2021 Brock (10.1016/j.image.2022.116891_b21) 2019 Goodfellow (10.1016/j.image.2022.116891_b11) 2020; 63 Lloyd (10.1016/j.image.2022.116891_b30) 2018; 121 Arjovsky (10.1016/j.image.2022.116891_b18) 2017; Vol. 70 Allcock (10.1016/j.image.2022.116891_b23) 2019; 6 Aaronson (10.1016/j.image.2022.116891_b39) 2015; 11 He (10.1016/j.image.2022.116891_b42) 2019; 58 Biamonte (10.1016/j.image.2022.116891_b22) 2017; 549 Hu (10.1016/j.image.2022.116891_b33) 2019; 5 Xiao (10.1016/j.image.2022.116891_b24) 2010; 37 Benedetti (10.1016/j.image.2022.116891_b31) 2019; 21 Romero (10.1016/j.image.2022.116891_b34) 2021; 4 Sun (10.1016/j.image.2022.116891_b13) 2019; 20 Douzas (10.1016/j.image.2022.116891_b15) 2018; 91 Mitarai (10.1016/j.image.2022.116891_b44) 2018; 98 10.1016/j.image.2022.116891_b19 |
References_xml | – volume: 6 start-page: 11342 year: 2018 end-page: 11348 ident: b20 article-title: Improved boundary equilibrium generative adversarial networks publication-title: IEEE Access – volume: 21 year: 2019 ident: b31 article-title: Adversarial quantum circuit learning for pure state approximation publication-title: New J. Phys. – volume: 107 year: 2020 ident: b9 article-title: Dirichlet variational autoencoder publication-title: Pattern Recognit. – volume: 4 year: 2021 ident: b34 article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions publication-title: Adv. Quant. Technol. – volume: 273 start-page: 213 year: 2000 end-page: 217 ident: b47 article-title: How entangled can two couples get? publication-title: Phys. Lett. A – volume: 15 start-page: 2499 year: 2020 end-page: 2513 ident: b14 article-title: Compressive privacy generative adversarial network publication-title: IEEE Trans. Inf. Forensics Secur. – volume: Vol. 251 start-page: 03050 year: 2021 ident: b36 article-title: Dual-parameterized quantum circuit GAN model in high energy physics publication-title: EPJ Web of Conferences – volume: 91 start-page: 464 year: 2018 end-page: 471 ident: b15 article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks publication-title: Expert Syst. Appl. – volume: 96 year: 2021 ident: b4 article-title: MFIF-GAN: A new generative adversarial network for multi-focus image fusion publication-title: Signal Process.-Image Commun. – reference: I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in Neural Information Processing Systems, Vol. 27, Montreal, CANADA, 2014, pp. 2672–2680. – volume: 449 start-page: 389 year: 2021 end-page: 398 ident: b16 article-title: Supervised deep convolutional generative adversarial networks publication-title: Neurocomputing – volume: 2021 start-page: 37 year: 2021 ident: b43 article-title: A hybrid quantum–classical conditional generative adversarial network algorithm for human-centered paradigm in cloud publication-title: EURASIP J. Wireless Commun. Networking – volume: Vol. 70 start-page: 214 year: 2017 end-page: 223 ident: b18 article-title: Wasserstein generative adversarial networks publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 2019 ident: b21 article-title: Large scale GAN training for high fidelity natural image synthesis – volume: 121 year: 2018 ident: b30 article-title: Quantum generative adversarial learning publication-title: Phys. Rev. Lett. – volume: 14 start-page: 595 year: 2018 end-page: 600 ident: b6 article-title: Characterizing quantum supremacy in near-term devices publication-title: Nat. Phys. – volume: 1 start-page: 2 year: 2021 end-page: 3 ident: b1 article-title: Eight ways machine learning is assisting medicine publication-title: Nat. Med. – volume: 549 start-page: 195 year: 2017 end-page: 202 ident: b22 article-title: Quantum machine learning publication-title: Nature – volume: 5 year: 2019 ident: b33 article-title: Quantum generative adversarial learning in a superconducting quantum circuit publication-title: Sci. Adv. – year: 2020 ident: b48 article-title: Generation of high-resolution handwritten digits with an ion-trap quantum computer – volume: 144 start-page: 2830 year: 2018 end-page: 2841 ident: b3 article-title: Predicting weather forecast uncertainty with machine learning publication-title: Q. J. R. Meteorol. Soc. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b7 article-title: Deep learning publication-title: Nature – volume: 4 start-page: 75 year: 2022 end-page: 105 ident: b37 article-title: Optimal tuning of quantum generative adversarial networks for multivariate distribution loading publication-title: Quant. Rep. – volume: 41 start-page: 2947 year: 2019 end-page: 2960 ident: b17 article-title: On the effectiveness of least squares generative adversarial networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 113 year: 2014 ident: b25 article-title: Quantum support vector machine for big data classification publication-title: Phys. Rev. Lett. – volume: 3 start-page: 15 year: 2017 ident: b27 article-title: Quantum sampling problems, BosonSampling and quantum supremacy publication-title: NPJ Quant. Inf. – volume: 6 start-page: 26 year: 2019 end-page: 28 ident: b23 article-title: Quantum machine learning publication-title: National Sci. Rev. – volume: 98 year: 2018 ident: b44 article-title: Quantum circuit learnin publication-title: Phys. Rev. A – volume: 9 start-page: 147 year: 1985 end-page: 169 ident: b8 article-title: A learning algorithm for Boltzmann machines publication-title: Cogn. Sci. – volume: 63 start-page: 139 year: 2020 end-page: 144 ident: b11 article-title: Generative adversarial networks publication-title: Commun. ACM – volume: 7 start-page: 228 year: 2007 end-page: 242 ident: b41 article-title: Universal quantum circuit for N-qubit quantum gate: a programmable quantum gate publication-title: Quantum Inf. Comput. – year: 2018 ident: b46 article-title: Pennylane: automatic differentiation of hybrid quantum–classical computations – volume: 11 start-page: 291 year: 2015 end-page: 293 ident: b39 article-title: Read the fine print publication-title: Nat. Phys. – volume: 549 start-page: 203 year: 2017 end-page: 209 ident: b28 article-title: Quantum computational supremacy publication-title: Nature – volume: 4 year: 2021 ident: b38 article-title: Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions publication-title: Adv. Quant. Technol. – volume: 98 year: 2018 ident: b29 article-title: Quantum generative adversarial networks publication-title: Phys. Rev. A – volume: 70 start-page: 460 year: 1946 end-page: 474 ident: b40 article-title: Nuclear induction publication-title: Phys. Rev. – volume: 58 start-page: 1138 year: 2019 end-page: 1149 ident: b42 article-title: A conditional generative model based on quantum circuit and classical optimization publication-title: Internat. J. Theoret. Phys. – reference: I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. Courville, Improved training of wasserstein GANs, in: 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, 2017, pp. 4–9. – volume: 83 year: 2020 ident: b5 article-title: Deep learning for visual content analysis publication-title: Signal Process.-Image Commun. – volume: 12 start-page: 513 year: 2021 end-page: 538 ident: b2 article-title: Emerging applications of machine learning in food safety publication-title: Annu. Rev. Food Sci. Technol. – volume: 42 start-page: 231 year: 2018 ident: b12 article-title: Generative adversarial network for medical images (MI-GAN) publication-title: J. Med. Syst. – volume: 37 start-page: 4966 year: 2010 end-page: 4973 ident: b24 article-title: A quantum-inspired genetic algorithm for k-means clustering publication-title: Expert Syst. Appl. – volume: 10 start-page: 631 year: 2014 end-page: 633 ident: b26 article-title: Quantum principal component analysis publication-title: Nat. Phys. – volume: 16 year: 2021 ident: b35 article-title: Experimental quantum generative adversarial networks for image generation publication-title: Phys. Rev. A – volume: 538 start-page: 193 year: 2020 end-page: 208 ident: b32 article-title: Quantum generative adversarial network for generating discrete distribution publication-title: Inform. Sci. – volume: 20 start-page: 1644 year: 2019 end-page: 1656 ident: b13 article-title: SmartPaint: a co-creative drawing system based on generative adversarial networks publication-title: Front. Inf. Technol. Electron. Eng. – volume: 99 year: 2019 ident: b45 article-title: Evaluating analytic gradients on quantum hardware publication-title: Phys. Rev. A – volume: 4 issue: 5 year: 2021 ident: 10.1016/j.image.2022.116891_b38 article-title: Noise robustness and experimental demonstration of a quantum generative adversarial network for continuous distributions publication-title: Adv. Quant. Technol. – volume: 5 issue: 1 year: 2019 ident: 10.1016/j.image.2022.116891_b33 article-title: Quantum generative adversarial learning in a superconducting quantum circuit publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2761 – volume: 449 start-page: 389 year: 2021 ident: 10.1016/j.image.2022.116891_b16 article-title: Supervised deep convolutional generative adversarial networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.125 – ident: 10.1016/j.image.2022.116891_b10 – volume: 1 start-page: 2 issue: 27 year: 2021 ident: 10.1016/j.image.2022.116891_b1 article-title: Eight ways machine learning is assisting medicine publication-title: Nat. Med. doi: 10.1038/s41591-020-01197-2 – volume: 121 issue: 4 year: 2018 ident: 10.1016/j.image.2022.116891_b30 article-title: Quantum generative adversarial learning publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.040502 – volume: 273 start-page: 213 issue: 4 year: 2000 ident: 10.1016/j.image.2022.116891_b47 article-title: How entangled can two couples get? publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(00)00480-1 – volume: 549 start-page: 203 issue: 7671 year: 2017 ident: 10.1016/j.image.2022.116891_b28 article-title: Quantum computational supremacy publication-title: Nature doi: 10.1038/nature23458 – volume: 15 start-page: 2499 year: 2020 ident: 10.1016/j.image.2022.116891_b14 article-title: Compressive privacy generative adversarial network publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.2968188 – volume: 12 start-page: 513 issue: 1 year: 2021 ident: 10.1016/j.image.2022.116891_b2 article-title: Emerging applications of machine learning in food safety publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-071720-024112 – volume: 6 start-page: 11342 year: 2018 ident: 10.1016/j.image.2022.116891_b20 article-title: Improved boundary equilibrium generative adversarial networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2804278 – volume: 3 start-page: 15 year: 2017 ident: 10.1016/j.image.2022.116891_b27 article-title: Quantum sampling problems, BosonSampling and quantum supremacy publication-title: NPJ Quant. Inf. doi: 10.1038/s41534-017-0018-2 – volume: 21 issue: 4 year: 2019 ident: 10.1016/j.image.2022.116891_b31 article-title: Adversarial quantum circuit learning for pure state approximation publication-title: New J. Phys. doi: 10.1088/1367-2630/ab14b5 – year: 2019 ident: 10.1016/j.image.2022.116891_b21 – volume: 549 start-page: 195 issue: 7671 year: 2017 ident: 10.1016/j.image.2022.116891_b22 article-title: Quantum machine learning publication-title: Nature doi: 10.1038/nature23474 – volume: 113 issue: 13 year: 2014 ident: 10.1016/j.image.2022.116891_b25 article-title: Quantum support vector machine for big data classification publication-title: Phys. Rev. Lett. – volume: 58 start-page: 1138 issue: 4 year: 2019 ident: 10.1016/j.image.2022.116891_b42 article-title: A conditional generative model based on quantum circuit and classical optimization publication-title: Internat. J. Theoret. Phys. doi: 10.1007/s10773-019-04005-x – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.image.2022.116891_b7 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: Vol. 70 start-page: 214 year: 2017 ident: 10.1016/j.image.2022.116891_b18 article-title: Wasserstein generative adversarial networks – volume: 41 start-page: 2947 issue: 12 year: 2019 ident: 10.1016/j.image.2022.116891_b17 article-title: On the effectiveness of least squares generative adversarial networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2872043 – volume: 14 start-page: 595 issue: 6 year: 2018 ident: 10.1016/j.image.2022.116891_b6 article-title: Characterizing quantum supremacy in near-term devices publication-title: Nat. Phys. doi: 10.1038/s41567-018-0124-x – volume: 37 start-page: 4966 issue: 7 year: 2010 ident: 10.1016/j.image.2022.116891_b24 article-title: A quantum-inspired genetic algorithm for k-means clustering publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.12.017 – volume: 42 start-page: 231 issue: 11 year: 2018 ident: 10.1016/j.image.2022.116891_b12 article-title: Generative adversarial network for medical images (MI-GAN) publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1072-9 – volume: 83 year: 2020 ident: 10.1016/j.image.2022.116891_b5 article-title: Deep learning for visual content analysis publication-title: Signal Process.-Image Commun. doi: 10.1016/j.image.2020.115806 – volume: 16 issue: 2 year: 2021 ident: 10.1016/j.image.2022.116891_b35 article-title: Experimental quantum generative adversarial networks for image generation publication-title: Phys. Rev. A – volume: 20 start-page: 1644 issue: 12 year: 2019 ident: 10.1016/j.image.2022.116891_b13 article-title: SmartPaint: a co-creative drawing system based on generative adversarial networks publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1900386 – volume: 107 year: 2020 ident: 10.1016/j.image.2022.116891_b9 article-title: Dirichlet variational autoencoder publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107514 – volume: 4 issue: 1 year: 2021 ident: 10.1016/j.image.2022.116891_b34 article-title: Variational quantum generators: generative adversarial quantum machine learning for continuous distributions publication-title: Adv. Quant. Technol. – volume: 11 start-page: 291 issue: 4 year: 2015 ident: 10.1016/j.image.2022.116891_b39 article-title: Read the fine print publication-title: Nat. Phys. doi: 10.1038/nphys3272 – volume: 538 start-page: 193 year: 2020 ident: 10.1016/j.image.2022.116891_b32 article-title: Quantum generative adversarial network for generating discrete distribution publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.05.127 – volume: 2021 start-page: 37 issue: 1 year: 2021 ident: 10.1016/j.image.2022.116891_b43 article-title: A hybrid quantum–classical conditional generative adversarial network algorithm for human-centered paradigm in cloud publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1186/s13638-021-01898-3 – ident: 10.1016/j.image.2022.116891_b19 – volume: 6 start-page: 26 issue: 1 year: 2019 ident: 10.1016/j.image.2022.116891_b23 article-title: Quantum machine learning publication-title: National Sci. Rev. doi: 10.1093/nsr/nwy149 – volume: 144 start-page: 2830 issue: 717 year: 2018 ident: 10.1016/j.image.2022.116891_b3 article-title: Predicting weather forecast uncertainty with machine learning publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3410 – volume: 63 start-page: 139 issue: 11 year: 2020 ident: 10.1016/j.image.2022.116891_b11 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – year: 2020 ident: 10.1016/j.image.2022.116891_b48 – volume: 10 start-page: 631 issue: 9 year: 2014 ident: 10.1016/j.image.2022.116891_b26 article-title: Quantum principal component analysis publication-title: Nat. Phys. doi: 10.1038/nphys3029 – volume: 7 start-page: 228 issue: 3 year: 2007 ident: 10.1016/j.image.2022.116891_b41 article-title: Universal quantum circuit for N-qubit quantum gate: a programmable quantum gate publication-title: Quantum Inf. Comput. – volume: 99 issue: 3 year: 2019 ident: 10.1016/j.image.2022.116891_b45 article-title: Evaluating analytic gradients on quantum hardware publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.032331 – year: 2018 ident: 10.1016/j.image.2022.116891_b46 – volume: 70 start-page: 460 issue: 7, 8 year: 1946 ident: 10.1016/j.image.2022.116891_b40 article-title: Nuclear induction publication-title: Phys. Rev. doi: 10.1103/PhysRev.70.460 – volume: 98 issue: 3 year: 2018 ident: 10.1016/j.image.2022.116891_b44 article-title: Quantum circuit learnin publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.032309 – volume: 91 start-page: 464 year: 2018 ident: 10.1016/j.image.2022.116891_b15 article-title: Effective data generation for imbalanced learning using conditional generative adversarial networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.030 – volume: 9 start-page: 147 issue: 1 year: 1985 ident: 10.1016/j.image.2022.116891_b8 article-title: A learning algorithm for Boltzmann machines publication-title: Cogn. Sci. – volume: 96 year: 2021 ident: 10.1016/j.image.2022.116891_b4 article-title: MFIF-GAN: A new generative adversarial network for multi-focus image fusion publication-title: Signal Process.-Image Commun. doi: 10.1016/j.image.2021.116295 – volume: 4 start-page: 75 issue: 1 year: 2022 ident: 10.1016/j.image.2022.116891_b37 article-title: Optimal tuning of quantum generative adversarial networks for multivariate distribution loading publication-title: Quant. Rep. doi: 10.3390/quantum4010006 – volume: 98 issue: 1 year: 2018 ident: 10.1016/j.image.2022.116891_b29 article-title: Quantum generative adversarial networks publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.012324 – volume: Vol. 251 start-page: 03050 year: 2021 ident: 10.1016/j.image.2022.116891_b36 article-title: Dual-parameterized quantum circuit GAN model in high energy physics |
SSID | ssj0002409 |
Score | 2.6182246 |
Snippet | It has been reported that quantum generative adversarial networks have a potential exponential advantage over classical generative adversarial networks.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 116891 |
SubjectTerms | Hybrid quantum–classical algorithms Image generation Quantum computation Quantum generative adversarial network Quantum machine learning |
Title | Hybrid quantum–classical generative adversarial networks for image generation via learning discrete distribution |
URI | https://dx.doi.org/10.1016/j.image.2022.116891 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGDgUUCUlzwwEtomtuOMVUUVQHQBJLbIdhwUBAH6QGJB_Af-Ib-Eu8QpRUIMbJHlkxzf-e5zcvcdIYeh5NJGmfbAfOCCkhrlKaONB7akFU-5iCzWDl8MRXzNzm74TYP061oYTKt0vr_y6aW3diNtt5vtpzxvX3YAm_BIAIAoSWCwiI-xEK38-O07zQMiVsW35wcezq6Zh8ocr_wBDi1cEn0fXIeQUff36DQXcQZrZMVBRdqrVrNOGrZoklUHG6k7lGMYqjsz1GNNsjxHM7hBRvEr1mXR5yls4_Th8_3DIGZG9dDbknYafR5V2Jt5rNAiaVFlh48pYFparn8287GgL7mirt3ELcW63hFAb3yYtc_aJNeDk6t-7LleC57xg2Di2VAL2eXKas06WciziGtlmU4lSzW3LIxCX0QGwIZlFkBUqgL8YSrTTHLbSVmwRRaKx8JuE8r81DCFuA1CnzRawp0vy4SOAtVVwtoW8es9TowjIsd-GPdJnXF2l5QvlqBikkoxLXI0E3qqeDj-ni5q5SU_zCmBSPGX4M5_BXfJEnair77O7JGFyWhq9wGvTPRBaZAHZLF3eh4PvwCPVe4e |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7R5dByAEpb8SjgQ4-NdjexHfuIVl2F114AiVtkOw5aVALsA6m3_gf-Ib-EmcRZgYQ4cIssj-R4xjOfk5lvAH6lSiivSxuh-eAFpXAmMs66CG3JGlEIqT3VDp-OZHbBjy7F5RIM2loYSqsMvr_x6bW3DiPdsJvdu_G4e9ZDbCK0RABRk8DoT7BM7FSiA8sHh8fZaOGQMWg1lHtxEpFASz5Up3mNb_Dc4j0xjtF7SKX7bweoF0FnuA6rAS2yg2ZBX2HJVxuwFpAjC-dyikNtc4Z2bANWXjANfoNJ9o9Ks9j9HHdyfvP0_9ERbCYNsauaeZrcHjPUnnlqyChZ1SSITxnCWlavfzHztmIPY8NCx4krRqW9E0Tf9LDooPUdLoZ_zgdZFNotRC5OklnkUytVXxhvLe-VqSi1sMZzWyheWOF5qtNYaod4w3OPOKowCf0zVUWphO8VPPkBneq28pvAeFw4bgi6YfRTziq89pWltDoxfSO934K43ePcBS5yaonxN2-Tzq7z-sVyUkzeKGYLfi-E7hoqjveny1Z5-SuLyjFYvCe4_VHBfficnZ-e5CeHo-Md-EKN6ZuPNT-hM5vM_S7Cl5ndC-b5DLQV8M8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+quantum%E2%80%93classical+generative+adversarial+networks+for+image+generation+via+learning+discrete+distribution&rft.jtitle=Signal+processing.+Image+communication&rft.au=Zhou%2C+Nan-Run&rft.au=Zhang%2C+Tian-Feng&rft.au=Xie%2C+Xin-Wen&rft.au=Wu%2C+Jun-Yun&rft.date=2023-01-01&rft.issn=0923-5965&rft.volume=110&rft.spage=116891&rft_id=info:doi/10.1016%2Fj.image.2022.116891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_image_2022_116891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon |