Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms
Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algor...
Saved in:
Published in | Plasma science & technology Vol. 26; no. 11; pp. 115504 - 115511 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/2058-6272/ad709c |
Cover
Abstract | Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold
E
th
, maximum sputtering energy
E
max
and maximum sputtering yield
SY
max
. In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors (
R
2
evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an
R
2
of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%. |
---|---|
AbstractList | Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold
E
th
, maximum sputtering energy
E
max
and maximum sputtering yield
SY
max
. In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors (
R
2
evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an
R
2
of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%. |
Author | LEI, Wen CHEN, Yu SHEN, Yan CAO, Shuai LUO, Jiawei |
Author_xml | – sequence: 1 givenname: Yu surname: CHEN fullname: CHEN, Yu organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China – sequence: 2 givenname: Jiawei surname: LUO fullname: LUO, Jiawei organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China – sequence: 3 givenname: Wen surname: LEI fullname: LEI, Wen organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China – sequence: 4 givenname: Yan surname: SHEN fullname: SHEN, Yan organization: Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, School of Aeronautics and Astronautics, Shenzhen 518107, People’s Republic of China – sequence: 5 givenname: Shuai surname: CAO fullname: CAO, Shuai organization: Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, School of Aeronautics and Astronautics, Shenzhen 518107, People’s Republic of China |
BookMark | eNp1kDtPwzAUhT0UibawM_oHEHod52GPVcVLqsQCc-RXWpfUjmxHqDs_nIR2YGE6R7rnHOl-CzRz3hmE7gg8EGBslUPJsiqv85XQNXA1Q3MCwDOoKFyjRYwHgLLgjM7R99qJ7hRtxMJp3AejrUrWO-xbHPshJROs2-GTNZ3GQ5y88kdpndF4b00QQe2tEh1W3RAvYfF3UoRkW6vsGHFmCL-Svnz4xKLb-WDT_hhv0FUrumhuL7pEH0-P75uXbPv2_LpZbzOVU5oyrYUkmrKKVy3XSrUgGCig3FRClpQLyccTKaQkvJKsYLIkhalzYlrF67qmSwTnXRV8jMG0TR_sUYRTQ6CZyDUTuWYi15zJjZX7c8X6vjn4IYy_xf_jP9Q_d98 |
Cites_doi | 10.1016/j.jallcom.2014.05.221 10.1116/6.0001485 10.1016/j.dsx.2020.05.026 10.1016/j.vacuum.2020.109353 10.1063/5.0006816 10.1016/j.nimb.2022.02.012 10.1063/5.0098040 10.1016/j.apsusc.2004.06.014 10.1116/6.0001230 10.3390/e21121175 10.1116/6.0001117 10.1016/j.enmm.2020.100307 10.1016/0168-583X(95)01567-1 10.1116/6.0002380 10.3847/2041-8213/ac42d8 10.1088/0022-3727/47/22/224008 10.1088/1361-6463/acc07e 10.1016/j.tsf.2006.10.024 10.1063/1.324150 10.1088/1361-6595/acb810 10.1088/1748-0221/14/05/C05011 10.1186/s12859-022-04675-1 10.3389/fphy.2022.876684 10.2514/1.b35717 10.1088/2058-6272/aa57f0 10.3390/app10113775 10.1063/1.335953 |
ContentType | Journal Article |
Copyright | 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
Copyright_xml | – notice: 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/ad709c |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_2058_6272_ad709c pstad709c |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX ADEQX CITATION Q-- |
ID | FETCH-LOGICAL-c233t-ddab1d38696f9dccf0a80c039e6ab539ab969614bb196b848b514e721efc97773 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Tue Jul 01 03:44:45 EDT 2025 Tue Oct 15 22:51:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-ddab1d38696f9dccf0a80c039e6ab539ab969614bb196b848b514e721efc97773 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1088_2058_6272_ad709c iop_journals_10_1088_2058_6272_ad709c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241101 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2024 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Fathinezhad (pst_26_11_115504_bib17) 2020; 14 Song (pst_26_11_115504_bib5) 2017; 19 Gergs (pst_26_11_115504_bib9) 2023; 56 Morrissey (pst_26_11_115504_bib25) 2022; 925 Alves (pst_26_11_115504_bib4) 2023; 32 Andreussi (pst_26_11_115504_bib23) 2019; 14 pst_26_11_115504_bib21 pst_26_11_115504_bib20 pst_26_11_115504_bib24 Preuss (pst_26_11_115504_bib10) 2019; 21 Kudriavtsev (pst_26_11_115504_bib26) 2005; 239 van Amersfoort (pst_26_11_115504_bib27) 1985; 58 Robinson (pst_26_11_115504_bib28) 1996; 115 Gergs (pst_26_11_115504_bib8) 2022; 40 Tinacba (pst_26_11_115504_bib11) 2021; 39 Cagomoc (pst_26_11_115504_bib12) 2023; 41 Kawase (pst_26_11_115504_bib13) 2007; 515 Duan (pst_26_11_115504_bib15) 2014; 613 Ghosal (pst_26_11_115504_bib19) 2020; 14 Cichocki (pst_26_11_115504_bib22) 2022; 10 Coburn (pst_26_11_115504_bib6) 1977; 48 Karahashi (pst_26_11_115504_bib7) 2014; 47 Cao (pst_26_11_115504_bib2) 2015; 31 Kino (pst_26_11_115504_bib14) 2021; 28 Dalmaijer (pst_26_11_115504_bib18) 2022; 23 Tinacba (pst_26_11_115504_bib3) 2021; 39 Gergs (pst_26_11_115504_bib16) 2022; 132 Brown (pst_26_11_115504_bib1) 2020; 10 Hofsäss (pst_26_11_115504_bib30) 2022; 517 Gangwar (pst_26_11_115504_bib29) 2020; 177 |
References_xml | – volume: 613 start-page: 1 year: 2014 ident: pst_26_11_115504_bib15 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.05.221 – volume: 40 start-page: 012802 year: 2022 ident: pst_26_11_115504_bib8 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0001485 – volume: 14 start-page: 707 year: 2020 ident: pst_26_11_115504_bib19 publication-title: Diabetes Metab. Syndr.: Clin. Res. Rev. doi: 10.1016/j.dsx.2020.05.026 – volume: 177 start-page: 109353 year: 2020 ident: pst_26_11_115504_bib29 publication-title: Vacuum doi: 10.1016/j.vacuum.2020.109353 – volume: 28 start-page: 013504 year: 2021 ident: pst_26_11_115504_bib14 publication-title: Phys. Plasmas doi: 10.1063/5.0006816 – volume: 517 start-page: 49 year: 2022 ident: pst_26_11_115504_bib30 publication-title: Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms doi: 10.1016/j.nimb.2022.02.012 – volume: 132 start-page: 063302 year: 2022 ident: pst_26_11_115504_bib16 publication-title: J. Appl. Phys. doi: 10.1063/5.0098040 – ident: pst_26_11_115504_bib24 – volume: 239 start-page: 273 year: 2005 ident: pst_26_11_115504_bib26 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2004.06.014 – volume: 39 start-page: 043203 year: 2021 ident: pst_26_11_115504_bib11 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/6.0001230 – ident: pst_26_11_115504_bib20 – volume: 21 start-page: 1175 year: 2019 ident: pst_26_11_115504_bib10 publication-title: Entropy doi: 10.3390/e21121175 – volume: 39 start-page: 042603 year: 2021 ident: pst_26_11_115504_bib3 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0001117 – volume: 14 start-page: 100307 year: 2020 ident: pst_26_11_115504_bib17 publication-title: Environ. Nanotechnol. Monit. Manag. doi: 10.1016/j.enmm.2020.100307 – volume: 115 start-page: 549 year: 1996 ident: pst_26_11_115504_bib28 publication-title: Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms doi: 10.1016/0168-583X(95)01567-1 – volume: 41 start-page: 023001 year: 2023 ident: pst_26_11_115504_bib12 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/6.0002380 – volume: 925 start-page: L6 year: 2022 ident: pst_26_11_115504_bib25 publication-title: Astrophys. J. Lett. doi: 10.3847/2041-8213/ac42d8 – volume: 47 start-page: 224008 year: 2014 ident: pst_26_11_115504_bib7 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/22/224008 – volume: 56 start-page: 194001 year: 2023 ident: pst_26_11_115504_bib9 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/acc07e – volume: 515 start-page: 4883 year: 2007 ident: pst_26_11_115504_bib13 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2006.10.024 – volume: 48 start-page: 3532 year: 1977 ident: pst_26_11_115504_bib6 publication-title: J. Appl. Phys. doi: 10.1063/1.324150 – volume: 32 start-page: 023001 year: 2023 ident: pst_26_11_115504_bib4 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/1361-6595/acb810 – volume: 14 start-page: C05011 year: 2019 ident: pst_26_11_115504_bib23 publication-title: J. Inst. doi: 10.1088/1748-0221/14/05/C05011 – volume: 23 start-page: 205 year: 2022 ident: pst_26_11_115504_bib18 publication-title: BMC Bioinform. doi: 10.1186/s12859-022-04675-1 – ident: pst_26_11_115504_bib21 – volume: 10 start-page: 876684 year: 2022 ident: pst_26_11_115504_bib22 publication-title: Front. Phys. doi: 10.3389/fphy.2022.876684 – volume: 31 start-page: 1785 year: 2015 ident: pst_26_11_115504_bib2 publication-title: J. Propul. Power doi: 10.2514/1.b35717 – volume: 19 start-page: 045502 year: 2017 ident: pst_26_11_115504_bib5 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aa57f0 – volume: 10 start-page: 3775 year: 2020 ident: pst_26_11_115504_bib1 publication-title: Appl. Sci. doi: 10.3390/app10113775 – volume: 58 start-page: 2317 year: 1985 ident: pst_26_11_115504_bib27 publication-title: J. Appl. Phys. doi: 10.1063/1.335953 |
SSID | ssj0054983 |
Score | 2.3269222 |
Snippet | Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 115504 |
SubjectTerms | machine learning plasma sputtering |
Title | Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/ad709c |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLa4vctCDh67dpo8ETyIuKvg4KHgQSjJJVVy3Zds96Nkf7qTpyioK4qk9DGmYmSQznS_fELILJuRCgfRw_8cEJQLh8VAnHmSCB4kMhGT27vDFZXx6G57fRXdT5PDzLkxeNFt_B18dUbBTYQOI45iuR9yLgyQ4kDrxBUyTGdu40rr32dX1eBvGvIc7dL39-x8zv6lR_jTClzNpGr87ccT0Fsj9eHIOWfLcGVWqA2_feBv_OftFMt-EnvTIiS6RKTNYJrM1BBTKFfI-5iehcqBpMbQVHGs1mme0LOp-1njM0VcLeaMWLv9A0VsxsTaa2obadUkCLU6hPyobYTk5pJ2j46uglkWzftQYdCr7D_nwqXp8KVfJbe_k5vjUa3o0eBAwVnlaS9XVqH8RZ0IDZL7kPvhMmFiqiAmpLP1ON1QKl7riIVcYoRlMO00GGHombI20BvnArBPKGVdaRKCzCEIDXZEIlfHMyESJkANrk_2xldLCUXGkdQmd89RqNbVaTZ1W22QPDZA267H8VW7jj3KbZC5Ab3aXELdIqxqOzDZGI5Xaqb3uA-ER28Y |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZYUCsuQKGIV6kP7YFDdrNxHvYRQVdLH9s9FGlvwR7bgIBstMke4NwfzjjOShQVCYlTchg5zow9ntF8_oaQL2BiLhTIAP0_JigJiIDHOgvACh5lMhKSubvDv0bp8Dz-PkkmbZ_T5i7MtGxdfxdfPVGwV2ELiOOYric8SKMs6kmdhQJ6pbYdspKgK3aYrrPf44UrxtyHe4S9qwCkLGzrlP8b5Z9zqYPffnLMDNbJxWKCHl1y053XqgsPz7gb3_AHG2StDUHpsRf_QJZMsUneNVBQqLbI3wVPCZWFpuXMVXKc9ejU0qps-lrjcUfvHfSNOtj8JcVViwm20dQ11m5KE2h5CrfzqhWWT4d08_S8FdSxaTaPBotO5e3ldHZdX91VH8n54Nufk2HQ9moIIGKsDrSWqq8ZT0VqhQawoeQhhEyYVKqECakcDU8_Vgq3vOIxVxipGUw_jQUMQTO2TZaLaWF2COWMKy0S0DaB2EBfZEJZbo3MlIg5sF1ytLBUXnpKjrwppXOeO83mTrO51-wu-YpGyNt9Wb0ot_dKuc_k_fh0kP88G_3YJ6sRLnB_L_GALNezufmEAUqtDptF-Ahpn-Eq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+prediction+of+sputtering+yield+using+combined+hierarchical+clustering+analysis+and+artificial+neural+network+algorithms&rft.jtitle=Plasma+science+%26+technology&rft.au=CHEN%2C+Yu&rft.au=LUO%2C+Jiawei&rft.au=LEI%2C+Wen&rft.au=SHEN%2C+Yan&rft.date=2024-11-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=11&rft_id=info:doi/10.1088%2F2058-6272%2Fad709c&rft.externalDocID=pstad709c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |