Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms

Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algor...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 26; no. 11; pp. 115504 - 115511
Main Authors CHEN, Yu, LUO, Jiawei, LEI, Wen, SHEN, Yan, CAO, Shuai
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.11.2024
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/2058-6272/ad709c

Cover

Abstract Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold E th , maximum sputtering energy E max and maximum sputtering yield SY max . In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors ( R 2 evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an R 2 of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%.
AbstractList Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for improving thruster design and designing material processing control algorithms. In this study we use the hierarchical clustering analysis algorithm to perform cluster analysis on 17 descriptors related to sputtering. These descriptors are divided into four fundamental groups, with representative descriptors being the mass of the incident ion, the formation energy of the incident ion, the mass of the target and the formation energy of the target. We further discuss the possible physical processes and significance involved in the classification process, including cascade collisions, energy transfer and other processes. Finally, based on the analysis of the above descriptors, several neural network models are constructed for the regression of sputtering threshold E th , maximum sputtering energy E max and maximum sputtering yield SY max . In the regression model based on 267 samples, the four descriptor attributes showed higher accuracy than the 17 descriptors ( R 2 evaluation) in the same neural network structure, with the 5×5 neural network structure achieving the highest accuracy, having an R 2 of 0.92. Additionally, simple sputtering test data also demonstrated the generalization ability of the 5×5 neural network model, the error in maximum sputtering yield being less than 5%.
Author LEI, Wen
CHEN, Yu
SHEN, Yan
CAO, Shuai
LUO, Jiawei
Author_xml – sequence: 1
  givenname: Yu
  surname: CHEN
  fullname: CHEN, Yu
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 2
  givenname: Jiawei
  surname: LUO
  fullname: LUO, Jiawei
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 3
  givenname: Wen
  surname: LEI
  fullname: LEI, Wen
  organization: School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518107, People’s Republic of China
– sequence: 4
  givenname: Yan
  surname: SHEN
  fullname: SHEN, Yan
  organization: Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, School of Aeronautics and Astronautics, Shenzhen 518107, People’s Republic of China
– sequence: 5
  givenname: Shuai
  surname: CAO
  fullname: CAO, Shuai
  organization: Shenzhen Key Laboratory of Intelligent Microsatellite Constellation, School of Aeronautics and Astronautics, Shenzhen 518107, People’s Republic of China
BookMark eNp1kDtPwzAUhT0UibawM_oHEHod52GPVcVLqsQCc-RXWpfUjmxHqDs_nIR2YGE6R7rnHOl-CzRz3hmE7gg8EGBslUPJsiqv85XQNXA1Q3MCwDOoKFyjRYwHgLLgjM7R99qJ7hRtxMJp3AejrUrWO-xbHPshJROs2-GTNZ3GQ5y88kdpndF4b00QQe2tEh1W3RAvYfF3UoRkW6vsGHFmCL-Svnz4xKLb-WDT_hhv0FUrumhuL7pEH0-P75uXbPv2_LpZbzOVU5oyrYUkmrKKVy3XSrUgGCig3FRClpQLyccTKaQkvJKsYLIkhalzYlrF67qmSwTnXRV8jMG0TR_sUYRTQ6CZyDUTuWYi15zJjZX7c8X6vjn4IYy_xf_jP9Q_d98
Cites_doi 10.1016/j.jallcom.2014.05.221
10.1116/6.0001485
10.1016/j.dsx.2020.05.026
10.1016/j.vacuum.2020.109353
10.1063/5.0006816
10.1016/j.nimb.2022.02.012
10.1063/5.0098040
10.1016/j.apsusc.2004.06.014
10.1116/6.0001230
10.3390/e21121175
10.1116/6.0001117
10.1016/j.enmm.2020.100307
10.1016/0168-583X(95)01567-1
10.1116/6.0002380
10.3847/2041-8213/ac42d8
10.1088/0022-3727/47/22/224008
10.1088/1361-6463/acc07e
10.1016/j.tsf.2006.10.024
10.1063/1.324150
10.1088/1361-6595/acb810
10.1088/1748-0221/14/05/C05011
10.1186/s12859-022-04675-1
10.3389/fphy.2022.876684
10.2514/1.b35717
10.1088/2058-6272/aa57f0
10.3390/app10113775
10.1063/1.335953
ContentType Journal Article
Copyright 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
Copyright_xml – notice: 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/ad709c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_2058_6272_ad709c
pstad709c
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
CITATION
Q--
ID FETCH-LOGICAL-c233t-ddab1d38696f9dccf0a80c039e6ab539ab969614bb196b848b514e721efc97773
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Tue Jul 01 03:44:45 EDT 2025
Tue Oct 15 22:51:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-ddab1d38696f9dccf0a80c039e6ab539ab969614bb196b848b514e721efc97773
PageCount 8
ParticipantIDs crossref_primary_10_1088_2058_6272_ad709c
iop_journals_10_1088_2058_6272_ad709c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241101
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2024
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Fathinezhad (pst_26_11_115504_bib17) 2020; 14
Song (pst_26_11_115504_bib5) 2017; 19
Gergs (pst_26_11_115504_bib9) 2023; 56
Morrissey (pst_26_11_115504_bib25) 2022; 925
Alves (pst_26_11_115504_bib4) 2023; 32
Andreussi (pst_26_11_115504_bib23) 2019; 14
pst_26_11_115504_bib21
pst_26_11_115504_bib20
pst_26_11_115504_bib24
Preuss (pst_26_11_115504_bib10) 2019; 21
Kudriavtsev (pst_26_11_115504_bib26) 2005; 239
van Amersfoort (pst_26_11_115504_bib27) 1985; 58
Robinson (pst_26_11_115504_bib28) 1996; 115
Gergs (pst_26_11_115504_bib8) 2022; 40
Tinacba (pst_26_11_115504_bib11) 2021; 39
Cagomoc (pst_26_11_115504_bib12) 2023; 41
Kawase (pst_26_11_115504_bib13) 2007; 515
Duan (pst_26_11_115504_bib15) 2014; 613
Ghosal (pst_26_11_115504_bib19) 2020; 14
Cichocki (pst_26_11_115504_bib22) 2022; 10
Coburn (pst_26_11_115504_bib6) 1977; 48
Karahashi (pst_26_11_115504_bib7) 2014; 47
Cao (pst_26_11_115504_bib2) 2015; 31
Kino (pst_26_11_115504_bib14) 2021; 28
Dalmaijer (pst_26_11_115504_bib18) 2022; 23
Tinacba (pst_26_11_115504_bib3) 2021; 39
Gergs (pst_26_11_115504_bib16) 2022; 132
Brown (pst_26_11_115504_bib1) 2020; 10
Hofsäss (pst_26_11_115504_bib30) 2022; 517
Gangwar (pst_26_11_115504_bib29) 2020; 177
References_xml – volume: 613
  start-page: 1
  year: 2014
  ident: pst_26_11_115504_bib15
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.05.221
– volume: 40
  start-page: 012802
  year: 2022
  ident: pst_26_11_115504_bib8
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/6.0001485
– volume: 14
  start-page: 707
  year: 2020
  ident: pst_26_11_115504_bib19
  publication-title: Diabetes Metab. Syndr.: Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.05.026
– volume: 177
  start-page: 109353
  year: 2020
  ident: pst_26_11_115504_bib29
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2020.109353
– volume: 28
  start-page: 013504
  year: 2021
  ident: pst_26_11_115504_bib14
  publication-title: Phys. Plasmas
  doi: 10.1063/5.0006816
– volume: 517
  start-page: 49
  year: 2022
  ident: pst_26_11_115504_bib30
  publication-title: Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms
  doi: 10.1016/j.nimb.2022.02.012
– volume: 132
  start-page: 063302
  year: 2022
  ident: pst_26_11_115504_bib16
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0098040
– ident: pst_26_11_115504_bib24
– volume: 239
  start-page: 273
  year: 2005
  ident: pst_26_11_115504_bib26
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2004.06.014
– volume: 39
  start-page: 043203
  year: 2021
  ident: pst_26_11_115504_bib11
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/6.0001230
– ident: pst_26_11_115504_bib20
– volume: 21
  start-page: 1175
  year: 2019
  ident: pst_26_11_115504_bib10
  publication-title: Entropy
  doi: 10.3390/e21121175
– volume: 39
  start-page: 042603
  year: 2021
  ident: pst_26_11_115504_bib3
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0001117
– volume: 14
  start-page: 100307
  year: 2020
  ident: pst_26_11_115504_bib17
  publication-title: Environ. Nanotechnol. Monit. Manag.
  doi: 10.1016/j.enmm.2020.100307
– volume: 115
  start-page: 549
  year: 1996
  ident: pst_26_11_115504_bib28
  publication-title: Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atoms
  doi: 10.1016/0168-583X(95)01567-1
– volume: 41
  start-page: 023001
  year: 2023
  ident: pst_26_11_115504_bib12
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0002380
– volume: 925
  start-page: L6
  year: 2022
  ident: pst_26_11_115504_bib25
  publication-title: Astrophys. J. Lett.
  doi: 10.3847/2041-8213/ac42d8
– volume: 47
  start-page: 224008
  year: 2014
  ident: pst_26_11_115504_bib7
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/22/224008
– volume: 56
  start-page: 194001
  year: 2023
  ident: pst_26_11_115504_bib9
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/acc07e
– volume: 515
  start-page: 4883
  year: 2007
  ident: pst_26_11_115504_bib13
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2006.10.024
– volume: 48
  start-page: 3532
  year: 1977
  ident: pst_26_11_115504_bib6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.324150
– volume: 32
  start-page: 023001
  year: 2023
  ident: pst_26_11_115504_bib4
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/1361-6595/acb810
– volume: 14
  start-page: C05011
  year: 2019
  ident: pst_26_11_115504_bib23
  publication-title: J. Inst.
  doi: 10.1088/1748-0221/14/05/C05011
– volume: 23
  start-page: 205
  year: 2022
  ident: pst_26_11_115504_bib18
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-022-04675-1
– ident: pst_26_11_115504_bib21
– volume: 10
  start-page: 876684
  year: 2022
  ident: pst_26_11_115504_bib22
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2022.876684
– volume: 31
  start-page: 1785
  year: 2015
  ident: pst_26_11_115504_bib2
  publication-title: J. Propul. Power
  doi: 10.2514/1.b35717
– volume: 19
  start-page: 045502
  year: 2017
  ident: pst_26_11_115504_bib5
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aa57f0
– volume: 10
  start-page: 3775
  year: 2020
  ident: pst_26_11_115504_bib1
  publication-title: Appl. Sci.
  doi: 10.3390/app10113775
– volume: 58
  start-page: 2317
  year: 1985
  ident: pst_26_11_115504_bib27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.335953
SSID ssj0054983
Score 2.3269222
Snippet Sputtering is a crucial technology in fields such as electric propulsion, materials processing and semiconductors. Modeling of sputtering is significant for...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 115504
SubjectTerms machine learning
plasma
sputtering
Title Analysis and prediction of sputtering yield using combined hierarchical clustering analysis and artificial neural network algorithms
URI https://iopscience.iop.org/article/10.1088/2058-6272/ad709c
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66InjxLa4vctCDh67dpo8ETyIuKvg4KHgQSjJJVVy3Zds96Nkf7qTpyioK4qk9DGmYmSQznS_fELILJuRCgfRw_8cEJQLh8VAnHmSCB4kMhGT27vDFZXx6G57fRXdT5PDzLkxeNFt_B18dUbBTYQOI45iuR9yLgyQ4kDrxBUyTGdu40rr32dX1eBvGvIc7dL39-x8zv6lR_jTClzNpGr87ccT0Fsj9eHIOWfLcGVWqA2_feBv_OftFMt-EnvTIiS6RKTNYJrM1BBTKFfI-5iehcqBpMbQVHGs1mme0LOp-1njM0VcLeaMWLv9A0VsxsTaa2obadUkCLU6hPyobYTk5pJ2j46uglkWzftQYdCr7D_nwqXp8KVfJbe_k5vjUa3o0eBAwVnlaS9XVqH8RZ0IDZL7kPvhMmFiqiAmpLP1ON1QKl7riIVcYoRlMO00GGHombI20BvnArBPKGVdaRKCzCEIDXZEIlfHMyESJkANrk_2xldLCUXGkdQmd89RqNbVaTZ1W22QPDZA267H8VW7jj3KbZC5Ab3aXELdIqxqOzDZGI5Xaqb3uA-ER28Y
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZYUCsuQKGIV6kP7YFDdrNxHvYRQVdLH9s9FGlvwR7bgIBstMke4NwfzjjOShQVCYlTchg5zow9ntF8_oaQL2BiLhTIAP0_JigJiIDHOgvACh5lMhKSubvDv0bp8Dz-PkkmbZ_T5i7MtGxdfxdfPVGwV2ELiOOYric8SKMs6kmdhQJ6pbYdspKgK3aYrrPf44UrxtyHe4S9qwCkLGzrlP8b5Z9zqYPffnLMDNbJxWKCHl1y053XqgsPz7gb3_AHG2StDUHpsRf_QJZMsUneNVBQqLbI3wVPCZWFpuXMVXKc9ejU0qps-lrjcUfvHfSNOtj8JcVViwm20dQ11m5KE2h5CrfzqhWWT4d08_S8FdSxaTaPBotO5e3ldHZdX91VH8n54Nufk2HQ9moIIGKsDrSWqq8ZT0VqhQawoeQhhEyYVKqECakcDU8_Vgq3vOIxVxipGUw_jQUMQTO2TZaLaWF2COWMKy0S0DaB2EBfZEJZbo3MlIg5sF1ytLBUXnpKjrwppXOeO83mTrO51-wu-YpGyNt9Wb0ot_dKuc_k_fh0kP88G_3YJ6sRLnB_L_GALNezufmEAUqtDptF-Ahpn-Eq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+and+prediction+of+sputtering+yield+using+combined+hierarchical+clustering+analysis+and+artificial+neural+network+algorithms&rft.jtitle=Plasma+science+%26+technology&rft.au=CHEN%2C+Yu&rft.au=LUO%2C+Jiawei&rft.au=LEI%2C+Wen&rft.au=SHEN%2C+Yan&rft.date=2024-11-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=11&rft_id=info:doi/10.1088%2F2058-6272%2Fad709c&rft.externalDocID=pstad709c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon