Randomized Nonlinear MPC for Uncertain Control-Affine Systems with Bounded Closed-Loop Constraint Violations

In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Opt...

Full description

Saved in:
Bibliographic Details
Published inIFAC Proceedings Volumes Vol. 47; no. 3; pp. 1649 - 1654
Main Authors Zhang, Xiaojing, Grammatico, Sergio, Margellos, Kostas, Goulart, Paul, Lygeros, John
Format Journal Article
LanguageEnglish
Published 2014
Subjects
Online AccessGet full text
ISSN1474-6670
DOI10.3182/20140824-6-ZA-1003.02436

Cover

Abstract In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Optimal Control Problems are computationally intractable in general and hence must be approximated. We propose an approximation scheme which is based on randomization and stems from recent theoretical developments on random non-convex programs. Since numerical solvers for non-convex optimization problems can typically only reach local optima, our method is designed to provide probabilistic guarantees for any local optimum inside a set of chosen complexity. Moreover, the proposed method comes with bounds on the (time) average closed-loop constraint violation when SMPC is applied in a receding horizon fashion. Our numerical example shows that the number of constraints of the proposed random non-convex program can be up to ten times smaller than those required by existing methods.
AbstractList In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Optimal Control Problems are computationally intractable in general and hence must be approximated. We propose an approximation scheme which is based on randomization and stems from recent theoretical developments on random non-convex programs. Since numerical solvers for non-convex optimization problems can typically only reach local optima, our method is designed to provide probabilistic guarantees for any local optimum inside a set of chosen complexity. Moreover, the proposed method comes with bounds on the (time) average closed-loop constraint violation when SMPC is applied in a receding horizon fashion. Our numerical example shows that the number of constraints of the proposed random non-convex program can be up to ten times smaller than those required by existing methods.
Author Margellos, Kostas
Goulart, Paul
Lygeros, John
Grammatico, Sergio
Zhang, Xiaojing
Author_xml – sequence: 1
  givenname: Xiaojing
  surname: Zhang
  fullname: Zhang, Xiaojing
  email: xiaozhan@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland
– sequence: 2
  givenname: Sergio
  surname: Grammatico
  fullname: Grammatico, Sergio
  email: grammatico@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland
– sequence: 3
  givenname: Kostas
  surname: Margellos
  fullname: Margellos, Kostas
  email: margellos@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland
– sequence: 4
  givenname: Paul
  surname: Goulart
  fullname: Goulart, Paul
  email: pgoulart@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland
– sequence: 5
  givenname: John
  surname: Lygeros
  fullname: Lygeros, John
  email: lygeros@control.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland
BookMark eNqNkMtKAzEUhrOoYK19h7zA1FymM7MSpoM3qBfUuugm5IqBaVKSqNSnN9Pqxo2uDvyc_-Oc7wSMnHcaAIjRjOKGnBGES9SQsqiKdVtghOgMkZJWIzDGZZ3jqkbHYBqjFYjUc0zm83oM-kfulN_YT63gnXe9dZoHePvQQeMDXDmpQ-LWwc67FHxftMbkFfi0i0lvIvyw6RUu_JtTud_1PmpVLL3fDvsxhdxM8MX6niebg1NwZHgf9fR7TsDq8uK5uy6W91c3XbssJKE0FUpgVFNpqBaSSi4REQZLRRRBsjZKiRLxyiCsqrIRldBGixJrJTkSNTGZMQHnB64MPsagDZM27U8YTuoZRmxQxn6UsYqtWzYoY3tlGdD8AmyD3fCw-091cajq_OC71YFFaXX2qGzQMjHl7d-QL6X3jMc
CitedBy_id crossref_primary_10_1016_j_ifacol_2015_11_297
crossref_primary_10_1016_j_automatica_2020_108854
crossref_primary_10_1146_annurev_control_060117_105215
Cites_doi 10.1109/ACC.1994.751893
10.1109/ACC.2014.6859142
10.1109/TAC.2008.2008335
10.1016/j.automatica.2014.10.035
10.1109/ECC.2014.6862498
10.1137/090773490
10.1109/TAC.2006.875041
10.1016/0005-1098(96)00063-5
10.23919/ECC.2013.6669664
10.1109/TAC.2009.2031207
10.1109/TAC.2008.2010886
10.1016/j.automatica.2008.06.017
10.1016/S0005-1098(99)00214-9
10.1109/TAC.2011.2159422
10.1109/TAC.2012.2203054
10.1137/07069821X
10.1109/TAC.2015.2433591
ContentType Journal Article
Copyright 2014 IFAC
Copyright_xml – notice: 2014 IFAC
DBID AAYXX
CITATION
DOI 10.3182/20140824-6-ZA-1003.02436
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 1654
ExternalDocumentID 10_3182_20140824_6_ZA_1003_02436
S1474667016418495
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
OK1
AAYXX
CITATION
ID FETCH-LOGICAL-c233t-db1073cf3ebc3cac02bf1cd2d20c7fddb40a6f01d648b6befeb41edca0b72fc23
ISSN 1474-6670
IngestDate Tue Jul 01 04:17:52 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Thu Jan 20 16:35:00 EST 2022
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords non-convex optimization
predictive control
stochastic control
scenario approach
randomized methods
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c233t-db1073cf3ebc3cac02bf1cd2d20c7fddb40a6f01d648b6befeb41edca0b72fc23
PageCount 6
ParticipantIDs crossref_citationtrail_10_3182_20140824_6_ZA_1003_02436
crossref_primary_10_3182_20140824_6_ZA_1003_02436
elsevier_sciencedirect_doi_10_3182_20140824_6_ZA_1003_02436
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014
2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle IFAC Proceedings Volumes
PublicationYear 2014
References Kothare, Balakrishnan, Morari (bib46486) 1996; 32
Mayne, Rawlings, Rao, Scokaert (bib46487) 2000; 36
Calafiore, G.C. and Fagiano, L. (2013) Robust model predictive control via scenario optimization. IEEE Trans. on Automatic Control, 58.
Florence, Italy.
Calafiore (bib46478) 2010; 20
Portland, Oregon, USA.
Shapiro, Dentcheva, Ruszczyński (bib46491) 2009
Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014a) A scenario approach for non-convex control design. IEEE Trans. on Automatic Control (submitted) Available online at
Calafiore, Campi (bib46477) 2006; 51
.
Primbs, Sung (bib46489) 2009; 54
Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014b). A scenario approach to non-convex control design: preliminary probabilistic guarantees. In
Alamo, T., Tempo, R., and Camacho, E.F. (2009) Randomized strategies for probabilistic solutions of uncertain feasibility and optimazation problems. IEEE Trans. on Automatic Control.
Schildbach, G., Fagiano, L., Frei, C., and Morari, M. (2014) The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica (provisionally accepted). Available online at
Brockett, R. (1983) Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 181-208.
Campi, Calafiore (bib46480) 2009; 54
Chatterjee, Hokayem, Lygeros (bib46483) 2011; 56
Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., and Lygeros, J. (2014). On the Sample Size of Randomized MPC for Chance-Constrained Systems with Application to Building Climate Control. In
Campi, Garatti (bib46481) 2008; 19
Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2013a). Stochastic Model Predictive Control Using a Combination of Randomized and Robust Optimization. In
Zhang, X., Schildbach, G., Sturzenegger, D., and Morari, M. (2013b). Scenario-based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty. In
Zurich, Switzerland.
Cannon, Kouvaritakis, Wu (bib46482) 2009; 45
M'Closkey, R.T. and Murray, R.M. (1994). Experiments in exponential stabilization of a mobile robot towing a trailer. In IEEE American Control Conference, 1994, volume 1, 988-993.
10.3182/20140824-6-ZA-1003.02436_bib46490
Campi (10.3182/20140824-6-ZA-1003.02436_bib46481) 2008; 19
Calafiore (10.3182/20140824-6-ZA-1003.02436_bib46477) 2006; 51
Calafiore (10.3182/20140824-6-ZA-1003.02436_bib46478) 2010; 20
Campi (10.3182/20140824-6-ZA-1003.02436_bib46480) 2009; 54
10.3182/20140824-6-ZA-1003.02436_bib46479
Kothare (10.3182/20140824-6-ZA-1003.02436_bib46486) 1996; 32
10.3182/20140824-6-ZA-1003.02436_bib46488
Primbs (10.3182/20140824-6-ZA-1003.02436_bib46489) 2009; 54
10.3182/20140824-6-ZA-1003.02436_bib46475
Cannon (10.3182/20140824-6-ZA-1003.02436_bib46482) 2009; 45
Chatterjee (10.3182/20140824-6-ZA-1003.02436_bib46483) 2011; 56
10.3182/20140824-6-ZA-1003.02436_bib46476
10.3182/20140824-6-ZA-1003.02436_bib46484
10.3182/20140824-6-ZA-1003.02436_bib46485
Shapiro (10.3182/20140824-6-ZA-1003.02436_bib46491) 2009
10.3182/20140824-6-ZA-1003.02436_bib46493
Mayne (10.3182/20140824-6-ZA-1003.02436_bib46487) 2000; 36
10.3182/20140824-6-ZA-1003.02436_bib46494
10.3182/20140824-6-ZA-1003.02436_bib46492
References_xml – reference: Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014b). A scenario approach to non-convex control design: preliminary probabilistic guarantees. In
– reference: Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2013a). Stochastic Model Predictive Control Using a Combination of Randomized and Robust Optimization. In
– reference: Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014a) A scenario approach for non-convex control design. IEEE Trans. on Automatic Control (submitted) Available online at:
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: bib46487
  article-title: Constrained model predictive control: stability and optimality
  publication-title: Automatica
– volume: 54
  year: 2009
  ident: bib46489
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Trans. on Automatic Control
– volume: 45
  start-page: 167
  year: 2009
  end-page: 172
  ident: bib46482
  article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints
  publication-title: Automatica
– volume: 56
  start-page: 2704
  year: 2011
  end-page: 2710
  ident: bib46483
  article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach
  publication-title: IEEE Trans. on Automatic Control
– reference: Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., and Lygeros, J. (2014). On the Sample Size of Randomized MPC for Chance-Constrained Systems with Application to Building Climate Control. In
– volume: 51
  year: 2006
  ident: bib46477
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. on Automatic Control
– reference: Brockett, R. (1983) Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 181-208.
– volume: 32
  start-page: 1361
  year: 1996
  end-page: 1379
  ident: bib46486
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
– reference: .
– reference: . Zurich, Switzerland.
– reference: Zhang, X., Schildbach, G., Sturzenegger, D., and Morari, M. (2013b). Scenario-based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty. In
– year: 2009
  ident: bib46491
  publication-title: Lectures on Stochastic Programing. Modeling and Theory
– volume: 54
  start-page: 382
  year: 2009
  end-page: 385
  ident: bib46480
  article-title: Notes on the scenario design approach
  publication-title: IEEE Trans. on Automatic Control
– reference: Alamo, T., Tempo, R., and Camacho, E.F. (2009) Randomized strategies for probabilistic solutions of uncertain feasibility and optimazation problems. IEEE Trans. on Automatic Control.
– volume: 19
  start-page: 1211
  year: 2008
  end-page: 1230
  ident: bib46481
  article-title: The exact feasibility of randomized solutions of robust convex programs
  publication-title: SIAM Journal on Optimization
– reference: . Florence, Italy.
– reference: Calafiore, G.C. and Fagiano, L. (2013) Robust model predictive control via scenario optimization. IEEE Trans. on Automatic Control, 58.
– reference: Schildbach, G., Fagiano, L., Frei, C., and Morari, M. (2014) The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica (provisionally accepted). Available online at:
– volume: 20
  start-page: 3427
  year: 2010
  end-page: 3464
  ident: bib46478
  article-title: Random convex programs
  publication-title: SIAM Journal on Optimization
– reference: . Portland, Oregon, USA.
– reference: M'Closkey, R.T. and Murray, R.M. (1994). Experiments in exponential stabilization of a mobile robot towing a trailer. In IEEE American Control Conference, 1994, volume 1, 988-993.
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46488
  doi: 10.1109/ACC.1994.751893
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46485
  doi: 10.1109/ACC.2014.6859142
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46476
– volume: 54
  start-page: 382
  issue: 2
  year: 2009
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46480
  article-title: Notes on the scenario design approach
  publication-title: IEEE Trans. on Automatic Control
  doi: 10.1109/TAC.2008.2008335
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46490
  doi: 10.1016/j.automatica.2014.10.035
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46492
  doi: 10.1109/ECC.2014.6862498
– volume: 20
  start-page: 3427
  issue: 6
  year: 2010
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46478
  article-title: Random convex programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/090773490
– volume: 51
  issue: 5
  year: 2006
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46477
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. on Automatic Control
  doi: 10.1109/TAC.2006.875041
– volume: 32
  start-page: 1361
  issue: 10
  year: 1996
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46486
  article-title: Robust constrained model predictive control using linear matrix inequalities
  publication-title: Automatica
  doi: 10.1016/0005-1098(96)00063-5
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46494
  doi: 10.23919/ECC.2013.6669664
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46475
  doi: 10.1109/TAC.2009.2031207
– year: 2009
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46491
– volume: 54
  issue: 2
  year: 2009
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46489
  article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise
  publication-title: IEEE Trans. on Automatic Control
  doi: 10.1109/TAC.2008.2010886
– volume: 45
  start-page: 167
  year: 2009
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46482
  article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.06.017
– volume: 36
  start-page: 789
  year: 2000
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46487
  article-title: Constrained model predictive control: stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– volume: 56
  start-page: 2704
  issue: 11
  year: 2011
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46483
  article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach
  publication-title: IEEE Trans. on Automatic Control
  doi: 10.1109/TAC.2011.2159422
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46493
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46479
  doi: 10.1109/TAC.2012.2203054
– volume: 19
  start-page: 1211
  issue: 3
  year: 2008
  ident: 10.3182/20140824-6-ZA-1003.02436_bib46481
  article-title: The exact feasibility of randomized solutions of robust convex programs
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/07069821X
– ident: 10.3182/20140824-6-ZA-1003.02436_bib46484
  doi: 10.1109/TAC.2015.2433591
SSID ssib027512557
ssib036250806
ssib001723113
ssib001723112
ssib046627245
ssib028086724
Score 1.5877116
Snippet In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1649
SubjectTerms non-convex optimization
predictive control
randomized methods
scenario approach
stochastic control
Title Randomized Nonlinear MPC for Uncertain Control-Affine Systems with Bounded Closed-Loop Constraint Violations
URI https://dx.doi.org/10.3182/20140824-6-ZA-1003.02436
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIAoL_nArTIkjjdO1FNYURUKFaButeoliu24WrTdVG166W_hxzJjOw_QopZeolVWmTzm08zn8TwIeWu04jjAnFVprphQ2ZQpKXMmKx3FWZZPpcBC4a-H6f5cfF5MF5PJr1HW0lWr3unrjXUld9EqnAO9YpXsf2i2Fwon4DfoF46gYTjeSsc_qrVpzpbXQBoPfcsL7MrzbeZyB-egTrfdj1V9mI7OCmuRU4Ym5T4E-wHHKmGUd9Vc1oZ9aZpzN8TTjY5od46XzWoU0wss9tNeMfMlBs71Xe4cOxvX0_M-Cr1YVs3Pzjn6uuwz1yPWBWjBTp36NLDQ0OAUd4IcsA4aYK29PJzDXfnaoj6TMUQqfG1oMKtCCpamfkRIZ3d9p82Ar2RkRGEFl48cMtZbbTL2YI2weSzeCXgMyGcnBXgVbFnLRbKhv_Zffq_PRoR1EMoqO0llWp4U2Mw5KZ2ke-Q-lzLGhNGD76M9RgnceCBDXAJ3mg57yDyD1aIceuEDUwAyPOxpC2y9z90U7f7z-FQzfJj3_3qtzfxpxImOHpGHYTFDC4_Mx2RSr5-Q1YBK2qOSAiopoJL2qKR_opIGVFJEJQ2opCNU0gGVdEDlUzLf-3g022dhpgfTPElaZlQMTkXbpFY60WAQuLKxNtzwSEtrjBJRldooNqnIVKpqWysR10ZXkZLcgoxnZGvdrOvn8KXAM1thcq25FmBy1NTkNpG11NrGXJptIrsvVerQ8B4fc1XepPBtEvdXnvumL7e4ZrdTRhnIqyelJcD1xqtf3OGOL8kD_MvHA1-Rrfbiqn4NDLlVbxxQfwO9yrAi
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Nonlinear+MPC+for+Uncertain+Control-Affine+Systems+with+Bounded+Closed-Loop+Constraint+Violations&rft.jtitle=IFAC+Proceedings+Volumes&rft.au=Zhang%2C+Xiaojing&rft.au=Grammatico%2C+Sergio&rft.au=Margellos%2C+Kostas&rft.au=Goulart%2C+Paul&rft.date=2014&rft.issn=1474-6670&rft.volume=47&rft.issue=3&rft.spage=1649&rft.epage=1654&rft_id=info:doi/10.3182%2F20140824-6-ZA-1003.02436&rft.externalDBID=n%2Fa&rft.externalDocID=10_3182_20140824_6_ZA_1003_02436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-6670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-6670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-6670&client=summon