Randomized Nonlinear MPC for Uncertain Control-Affine Systems with Bounded Closed-Loop Constraint Violations
In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Opt...
Saved in:
Published in | IFAC Proceedings Volumes Vol. 47; no. 3; pp. 1649 - 1654 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1474-6670 |
DOI | 10.3182/20140824-6-ZA-1003.02436 |
Cover
Abstract | In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Optimal Control Problems are computationally intractable in general and hence must be approximated. We propose an approximation scheme which is based on randomization and stems from recent theoretical developments on random non-convex programs. Since numerical solvers for non-convex optimization problems can typically only reach local optima, our method is designed to provide probabilistic guarantees for any local optimum inside a set of chosen complexity. Moreover, the proposed method comes with bounds on the (time) average closed-loop constraint violation when SMPC is applied in a receding horizon fashion. Our numerical example shows that the number of constraints of the proposed random non-convex program can be up to ten times smaller than those required by existing methods. |
---|---|
AbstractList | In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive Control (SMPC) strategies for nonlinear systems subject to chance constraints. The resulting non-convex chance constrained Finite Horizon Optimal Control Problems are computationally intractable in general and hence must be approximated. We propose an approximation scheme which is based on randomization and stems from recent theoretical developments on random non-convex programs. Since numerical solvers for non-convex optimization problems can typically only reach local optima, our method is designed to provide probabilistic guarantees for any local optimum inside a set of chosen complexity. Moreover, the proposed method comes with bounds on the (time) average closed-loop constraint violation when SMPC is applied in a receding horizon fashion. Our numerical example shows that the number of constraints of the proposed random non-convex program can be up to ten times smaller than those required by existing methods. |
Author | Margellos, Kostas Goulart, Paul Lygeros, John Grammatico, Sergio Zhang, Xiaojing |
Author_xml | – sequence: 1 givenname: Xiaojing surname: Zhang fullname: Zhang, Xiaojing email: xiaozhan@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland – sequence: 2 givenname: Sergio surname: Grammatico fullname: Grammatico, Sergio email: grammatico@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland – sequence: 3 givenname: Kostas surname: Margellos fullname: Margellos, Kostas email: margellos@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland – sequence: 4 givenname: Paul surname: Goulart fullname: Goulart, Paul email: pgoulart@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland – sequence: 5 givenname: John surname: Lygeros fullname: Lygeros, John email: lygeros@control.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Physikstrasse 3, 8092 Switzerland |
BookMark | eNqNkMtKAzEUhrOoYK19h7zA1FymM7MSpoM3qBfUuugm5IqBaVKSqNSnN9Pqxo2uDvyc_-Oc7wSMnHcaAIjRjOKGnBGES9SQsqiKdVtghOgMkZJWIzDGZZ3jqkbHYBqjFYjUc0zm83oM-kfulN_YT63gnXe9dZoHePvQQeMDXDmpQ-LWwc67FHxftMbkFfi0i0lvIvyw6RUu_JtTud_1PmpVLL3fDvsxhdxM8MX6niebg1NwZHgf9fR7TsDq8uK5uy6W91c3XbssJKE0FUpgVFNpqBaSSi4REQZLRRRBsjZKiRLxyiCsqrIRldBGixJrJTkSNTGZMQHnB64MPsagDZM27U8YTuoZRmxQxn6UsYqtWzYoY3tlGdD8AmyD3fCw-091cajq_OC71YFFaXX2qGzQMjHl7d-QL6X3jMc |
CitedBy_id | crossref_primary_10_1016_j_ifacol_2015_11_297 crossref_primary_10_1016_j_automatica_2020_108854 crossref_primary_10_1146_annurev_control_060117_105215 |
Cites_doi | 10.1109/ACC.1994.751893 10.1109/ACC.2014.6859142 10.1109/TAC.2008.2008335 10.1016/j.automatica.2014.10.035 10.1109/ECC.2014.6862498 10.1137/090773490 10.1109/TAC.2006.875041 10.1016/0005-1098(96)00063-5 10.23919/ECC.2013.6669664 10.1109/TAC.2009.2031207 10.1109/TAC.2008.2010886 10.1016/j.automatica.2008.06.017 10.1016/S0005-1098(99)00214-9 10.1109/TAC.2011.2159422 10.1109/TAC.2012.2203054 10.1137/07069821X 10.1109/TAC.2015.2433591 |
ContentType | Journal Article |
Copyright | 2014 IFAC |
Copyright_xml | – notice: 2014 IFAC |
DBID | AAYXX CITATION |
DOI | 10.3182/20140824-6-ZA-1003.02436 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EndPage | 1654 |
ExternalDocumentID | 10_3182_20140824_6_ZA_1003_02436 S1474667016418495 |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS OK1 AAYXX CITATION |
ID | FETCH-LOGICAL-c233t-db1073cf3ebc3cac02bf1cd2d20c7fddb40a6f01d648b6befeb41edca0b72fc23 |
ISSN | 1474-6670 |
IngestDate | Tue Jul 01 04:17:52 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 Thu Jan 20 16:35:00 EST 2022 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Keywords | non-convex optimization predictive control stochastic control scenario approach randomized methods |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c233t-db1073cf3ebc3cac02bf1cd2d20c7fddb40a6f01d648b6befeb41edca0b72fc23 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_3182_20140824_6_ZA_1003_02436 crossref_primary_10_3182_20140824_6_ZA_1003_02436 elsevier_sciencedirect_doi_10_3182_20140824_6_ZA_1003_02436 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014 2014-00-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | IFAC Proceedings Volumes |
PublicationYear | 2014 |
References | Kothare, Balakrishnan, Morari (bib46486) 1996; 32 Mayne, Rawlings, Rao, Scokaert (bib46487) 2000; 36 Calafiore, G.C. and Fagiano, L. (2013) Robust model predictive control via scenario optimization. IEEE Trans. on Automatic Control, 58. Florence, Italy. Calafiore (bib46478) 2010; 20 Portland, Oregon, USA. Shapiro, Dentcheva, Ruszczyński (bib46491) 2009 Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014a) A scenario approach for non-convex control design. IEEE Trans. on Automatic Control (submitted) Available online at Calafiore, Campi (bib46477) 2006; 51 . Primbs, Sung (bib46489) 2009; 54 Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014b). A scenario approach to non-convex control design: preliminary probabilistic guarantees. In Alamo, T., Tempo, R., and Camacho, E.F. (2009) Randomized strategies for probabilistic solutions of uncertain feasibility and optimazation problems. IEEE Trans. on Automatic Control. Schildbach, G., Fagiano, L., Frei, C., and Morari, M. (2014) The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica (provisionally accepted). Available online at Brockett, R. (1983) Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 181-208. Campi, Calafiore (bib46480) 2009; 54 Chatterjee, Hokayem, Lygeros (bib46483) 2011; 56 Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., and Lygeros, J. (2014). On the Sample Size of Randomized MPC for Chance-Constrained Systems with Application to Building Climate Control. In Campi, Garatti (bib46481) 2008; 19 Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2013a). Stochastic Model Predictive Control Using a Combination of Randomized and Robust Optimization. In Zhang, X., Schildbach, G., Sturzenegger, D., and Morari, M. (2013b). Scenario-based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty. In Zurich, Switzerland. Cannon, Kouvaritakis, Wu (bib46482) 2009; 45 M'Closkey, R.T. and Murray, R.M. (1994). Experiments in exponential stabilization of a mobile robot towing a trailer. In IEEE American Control Conference, 1994, volume 1, 988-993. 10.3182/20140824-6-ZA-1003.02436_bib46490 Campi (10.3182/20140824-6-ZA-1003.02436_bib46481) 2008; 19 Calafiore (10.3182/20140824-6-ZA-1003.02436_bib46477) 2006; 51 Calafiore (10.3182/20140824-6-ZA-1003.02436_bib46478) 2010; 20 Campi (10.3182/20140824-6-ZA-1003.02436_bib46480) 2009; 54 10.3182/20140824-6-ZA-1003.02436_bib46479 Kothare (10.3182/20140824-6-ZA-1003.02436_bib46486) 1996; 32 10.3182/20140824-6-ZA-1003.02436_bib46488 Primbs (10.3182/20140824-6-ZA-1003.02436_bib46489) 2009; 54 10.3182/20140824-6-ZA-1003.02436_bib46475 Cannon (10.3182/20140824-6-ZA-1003.02436_bib46482) 2009; 45 Chatterjee (10.3182/20140824-6-ZA-1003.02436_bib46483) 2011; 56 10.3182/20140824-6-ZA-1003.02436_bib46476 10.3182/20140824-6-ZA-1003.02436_bib46484 10.3182/20140824-6-ZA-1003.02436_bib46485 Shapiro (10.3182/20140824-6-ZA-1003.02436_bib46491) 2009 10.3182/20140824-6-ZA-1003.02436_bib46493 Mayne (10.3182/20140824-6-ZA-1003.02436_bib46487) 2000; 36 10.3182/20140824-6-ZA-1003.02436_bib46494 10.3182/20140824-6-ZA-1003.02436_bib46492 |
References_xml | – reference: Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014b). A scenario approach to non-convex control design: preliminary probabilistic guarantees. In – reference: Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2013a). Stochastic Model Predictive Control Using a Combination of Randomized and Robust Optimization. In – reference: Grammatico, S., Zhang, X., Margellos, K., Goulart, P., and Lygeros, J. (2014a) A scenario approach for non-convex control design. IEEE Trans. on Automatic Control (submitted) Available online at: – volume: 36 start-page: 789 year: 2000 end-page: 814 ident: bib46487 article-title: Constrained model predictive control: stability and optimality publication-title: Automatica – volume: 54 year: 2009 ident: bib46489 article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise publication-title: IEEE Trans. on Automatic Control – volume: 45 start-page: 167 year: 2009 end-page: 172 ident: bib46482 article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints publication-title: Automatica – volume: 56 start-page: 2704 year: 2011 end-page: 2710 ident: bib46483 article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach publication-title: IEEE Trans. on Automatic Control – reference: Zhang, X., Grammatico, S., Schildbach, G., Goulart, P., and Lygeros, J. (2014). On the Sample Size of Randomized MPC for Chance-Constrained Systems with Application to Building Climate Control. In – volume: 51 year: 2006 ident: bib46477 article-title: The scenario approach to robust control design publication-title: IEEE Trans. on Automatic Control – reference: Brockett, R. (1983) Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, 181-208. – volume: 32 start-page: 1361 year: 1996 end-page: 1379 ident: bib46486 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica – reference: . – reference: . Zurich, Switzerland. – reference: Zhang, X., Schildbach, G., Sturzenegger, D., and Morari, M. (2013b). Scenario-based MPC for Energy-Efficient Building Climate Control under Weather and Occupancy Uncertainty. In – year: 2009 ident: bib46491 publication-title: Lectures on Stochastic Programing. Modeling and Theory – volume: 54 start-page: 382 year: 2009 end-page: 385 ident: bib46480 article-title: Notes on the scenario design approach publication-title: IEEE Trans. on Automatic Control – reference: Alamo, T., Tempo, R., and Camacho, E.F. (2009) Randomized strategies for probabilistic solutions of uncertain feasibility and optimazation problems. IEEE Trans. on Automatic Control. – volume: 19 start-page: 1211 year: 2008 end-page: 1230 ident: bib46481 article-title: The exact feasibility of randomized solutions of robust convex programs publication-title: SIAM Journal on Optimization – reference: . Florence, Italy. – reference: Calafiore, G.C. and Fagiano, L. (2013) Robust model predictive control via scenario optimization. IEEE Trans. on Automatic Control, 58. – reference: Schildbach, G., Fagiano, L., Frei, C., and Morari, M. (2014) The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations. Automatica (provisionally accepted). Available online at: – volume: 20 start-page: 3427 year: 2010 end-page: 3464 ident: bib46478 article-title: Random convex programs publication-title: SIAM Journal on Optimization – reference: . Portland, Oregon, USA. – reference: M'Closkey, R.T. and Murray, R.M. (1994). Experiments in exponential stabilization of a mobile robot towing a trailer. In IEEE American Control Conference, 1994, volume 1, 988-993. – ident: 10.3182/20140824-6-ZA-1003.02436_bib46488 doi: 10.1109/ACC.1994.751893 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46485 doi: 10.1109/ACC.2014.6859142 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46476 – volume: 54 start-page: 382 issue: 2 year: 2009 ident: 10.3182/20140824-6-ZA-1003.02436_bib46480 article-title: Notes on the scenario design approach publication-title: IEEE Trans. on Automatic Control doi: 10.1109/TAC.2008.2008335 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46490 doi: 10.1016/j.automatica.2014.10.035 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46492 doi: 10.1109/ECC.2014.6862498 – volume: 20 start-page: 3427 issue: 6 year: 2010 ident: 10.3182/20140824-6-ZA-1003.02436_bib46478 article-title: Random convex programs publication-title: SIAM Journal on Optimization doi: 10.1137/090773490 – volume: 51 issue: 5 year: 2006 ident: 10.3182/20140824-6-ZA-1003.02436_bib46477 article-title: The scenario approach to robust control design publication-title: IEEE Trans. on Automatic Control doi: 10.1109/TAC.2006.875041 – volume: 32 start-page: 1361 issue: 10 year: 1996 ident: 10.3182/20140824-6-ZA-1003.02436_bib46486 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica doi: 10.1016/0005-1098(96)00063-5 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46494 doi: 10.23919/ECC.2013.6669664 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46475 doi: 10.1109/TAC.2009.2031207 – year: 2009 ident: 10.3182/20140824-6-ZA-1003.02436_bib46491 – volume: 54 issue: 2 year: 2009 ident: 10.3182/20140824-6-ZA-1003.02436_bib46489 article-title: Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise publication-title: IEEE Trans. on Automatic Control doi: 10.1109/TAC.2008.2010886 – volume: 45 start-page: 167 year: 2009 ident: 10.3182/20140824-6-ZA-1003.02436_bib46482 article-title: Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints publication-title: Automatica doi: 10.1016/j.automatica.2008.06.017 – volume: 36 start-page: 789 year: 2000 ident: 10.3182/20140824-6-ZA-1003.02436_bib46487 article-title: Constrained model predictive control: stability and optimality publication-title: Automatica doi: 10.1016/S0005-1098(99)00214-9 – volume: 56 start-page: 2704 issue: 11 year: 2011 ident: 10.3182/20140824-6-ZA-1003.02436_bib46483 article-title: Stochastic receding horizon control with bounded control inputs: a vector space approach publication-title: IEEE Trans. on Automatic Control doi: 10.1109/TAC.2011.2159422 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46493 – ident: 10.3182/20140824-6-ZA-1003.02436_bib46479 doi: 10.1109/TAC.2012.2203054 – volume: 19 start-page: 1211 issue: 3 year: 2008 ident: 10.3182/20140824-6-ZA-1003.02436_bib46481 article-title: The exact feasibility of randomized solutions of robust convex programs publication-title: SIAM Journal on Optimization doi: 10.1137/07069821X – ident: 10.3182/20140824-6-ZA-1003.02436_bib46484 doi: 10.1109/TAC.2015.2433591 |
SSID | ssib027512557 ssib036250806 ssib001723113 ssib001723112 ssib046627245 ssib028086724 |
Score | 1.5877116 |
Snippet | In this paper we consider uncertain nonlinear control-affine systems with probabilistic constraints. In particular, we investigate Stochastic Model Predictive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1649 |
SubjectTerms | non-convex optimization predictive control randomized methods scenario approach stochastic control |
Title | Randomized Nonlinear MPC for Uncertain Control-Affine Systems with Bounded Closed-Loop Constraint Violations |
URI | https://dx.doi.org/10.3182/20140824-6-ZA-1003.02436 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcuGCQIAoL_nArTIkjjdO1FNYURUKFaButeoliu24WrTdVG166W_hxzJjOw_QopZeolVWmTzm08zn8TwIeWu04jjAnFVprphQ2ZQpKXMmKx3FWZZPpcBC4a-H6f5cfF5MF5PJr1HW0lWr3unrjXUld9EqnAO9YpXsf2i2Fwon4DfoF46gYTjeSsc_qrVpzpbXQBoPfcsL7MrzbeZyB-egTrfdj1V9mI7OCmuRU4Ym5T4E-wHHKmGUd9Vc1oZ9aZpzN8TTjY5od46XzWoU0wss9tNeMfMlBs71Xe4cOxvX0_M-Cr1YVs3Pzjn6uuwz1yPWBWjBTp36NLDQ0OAUd4IcsA4aYK29PJzDXfnaoj6TMUQqfG1oMKtCCpamfkRIZ3d9p82Ar2RkRGEFl48cMtZbbTL2YI2weSzeCXgMyGcnBXgVbFnLRbKhv_Zffq_PRoR1EMoqO0llWp4U2Mw5KZ2ke-Q-lzLGhNGD76M9RgnceCBDXAJ3mg57yDyD1aIceuEDUwAyPOxpC2y9z90U7f7z-FQzfJj3_3qtzfxpxImOHpGHYTFDC4_Mx2RSr5-Q1YBK2qOSAiopoJL2qKR_opIGVFJEJQ2opCNU0gGVdEDlUzLf-3g022dhpgfTPElaZlQMTkXbpFY60WAQuLKxNtzwSEtrjBJRldooNqnIVKpqWysR10ZXkZLcgoxnZGvdrOvn8KXAM1thcq25FmBy1NTkNpG11NrGXJptIrsvVerQ8B4fc1XepPBtEvdXnvumL7e4ZrdTRhnIqyelJcD1xqtf3OGOL8kD_MvHA1-Rrfbiqn4NDLlVbxxQfwO9yrAi |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Randomized+Nonlinear+MPC+for+Uncertain+Control-Affine+Systems+with+Bounded+Closed-Loop+Constraint+Violations&rft.jtitle=IFAC+Proceedings+Volumes&rft.au=Zhang%2C+Xiaojing&rft.au=Grammatico%2C+Sergio&rft.au=Margellos%2C+Kostas&rft.au=Goulart%2C+Paul&rft.date=2014&rft.issn=1474-6670&rft.volume=47&rft.issue=3&rft.spage=1649&rft.epage=1654&rft_id=info:doi/10.3182%2F20140824-6-ZA-1003.02436&rft.externalDBID=n%2Fa&rft.externalDocID=10_3182_20140824_6_ZA_1003_02436 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-6670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-6670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-6670&client=summon |