A high-throughput statistical homogenization technique to convert realistic microstructures into idealized periodic unit cells

Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes hig...

Full description

Saved in:
Bibliographic Details
Published inModelling and simulation in materials science and engineering Vol. 32; no. 7; pp. 75005 - 75036
Main Authors Foster, S Caleb, Wilkerson, Justin W
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstructure modeling in macroscale simulations, so computational homogenization methods are often employed. These, however, involve simplifying assumptions to make the problem tractable and many rely on periodic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures composed of anisotropic, spatially varying second-phase void morphologies and idealized periodic microstructures with roughly equivalent mechanical responses. We create a high-throughput, parametric study to investigate 96 unique bridging methods. We apply our proposed solution to a rolled AZ31B magnesium alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our methodology converts a µ -CT scan of the realistic microstructure to idealized periodic unit cell microstructures that are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the datasets for the various loading orientations. We find that certain combinations of our parameters capture the overall stress–strain response, including anisotropy effects, with some degree of success. The effect of different parameter options are explored in detail and we find that excluding certain particle populations from the analysis can give improved results.
AbstractList Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstructure modeling in macroscale simulations, so computational homogenization methods are often employed. These, however, involve simplifying assumptions to make the problem tractable and many rely on periodic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures composed of anisotropic, spatially varying second-phase void morphologies and idealized periodic microstructures with roughly equivalent mechanical responses. We create a high-throughput, parametric study to investigate 96 unique bridging methods. We apply our proposed solution to a rolled AZ31B magnesium alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our methodology converts a µ -CT scan of the realistic microstructure to idealized periodic unit cell microstructures that are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the datasets for the various loading orientations. We find that certain combinations of our parameters capture the overall stress–strain response, including anisotropy effects, with some degree of success. The effect of different parameter options are explored in detail and we find that excluding certain particle populations from the analysis can give improved results.
Author Foster, S Caleb
Wilkerson, Justin W
Author_xml – sequence: 1
  givenname: S Caleb
  orcidid: 0000-0002-9775-4778
  surname: Foster
  fullname: Foster, S Caleb
  organization: Texas A&M University J. Mike Walker’66 Department of Mechanical Engineering, College Station, TX 77843, United States of America
– sequence: 2
  givenname: Justin W
  orcidid: 0000-0001-9754-1409
  surname: Wilkerson
  fullname: Wilkerson, Justin W
  organization: Texas A&M University Department of Materials Science & Engineering, College Station, TX 77843, United States of America
BookMark eNp1kE1LAzEQhoNUsK3ePeYHuDbZNNn0WIpfUPCi4G1JsrPdlG2yJlnBHvzt7lrx5mngnecdhmeGJs47QOiakltKpFxQJmgmOH1bqEoYoc_Q9C-aoClZCZ4RtmIXaBbjnhDCZV5M0dcaN3bXZKkJvt81XZ9wTCrZmKxRLW78we_A2eMQeYcTmMbZ9x5w8th49wEh4QCq_eHxwZrgYwq9SX2AiK0bMFuN-yNUuINgfTVwvbMJG2jbeInOa9VGuPqdc_R6f_eyecy2zw9Pm_U2MzljKeO61lBpJQvOxbIwFeFLXWhaSFLI2hRLwkRe5UIpRXStiAKmOc9XUjDFdF6zOSKnu-ODMUBddsEeVPgsKSlHf-UoqxxllSd_Q-XmVLG-K_e-D2548H_8G82PeQY
CODEN MSMEEU
Cites_doi 10.1016/S0020-7683(98)00341-2
10.1016/j.pmatsci.2018.02.003
10.3390/met12101586
10.1016/j.ijplas.2009.09.002
10.1016/j.mechmat.2021.104005
10.1016/j.commatsci.2013.02.021
10.1016/j.jallcom.2007.07.061
10.1016/j.actamat.2018.02.003
10.1177/1056789509103482
10.1016/j.ijplas.2018.11.002
10.1016/j.actamat.2004.07.009
10.1007/s12289-015-1262-7
10.1016/j.msea.2015.08.077
10.1007/s11661-014-2211-7
10.1016/0020-7683(94)00097-G
10.1016/j.commatsci.2019.05.043
10.1007/s11831-014-9136-6
10.1557/mrs.2016.165
10.1016/j.engfracmech.2024.110030
10.1016/j.ijplas.2023.103741
10.1016/0045-7825(95)00974-4
10.1016/S0020-7683(00)00167-0
10.1016/j.actamat.2015.12.034
10.1016/j.jmrt.2020.01.106
10.1115/1.3443401
10.1016/j.ijplas.2019.02.005
10.1115/1.2048654
10.1007/s40870-020-00267-3
10.1016/j.jmps.2009.04.002
10.1016/j.pmatsci.2023.101085
10.1016/S0921-5093(98)01011-9
10.1016/j.jcp.2016.10.070
10.1016/j.engfracmech.2024.110013
10.1016/j.msea.2019.05.052
10.1016/j.jmps.2019.05.010
10.1007/s10704-016-0142-6
10.1016/S0167-6636(02)00165-5
10.1016/j.jmps.2007.07.008
10.1088/1361-651X/ab7150
10.1016/j.ijplas.2010.02.008
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1361-651X/ad6c6b
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1361-651X
ExternalDocumentID 10_1088_1361_651X_ad6c6b
msmsad6c6b
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
ADUKH
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
W28
XPP
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c233t-5bfbedba8755647cd054b7b178078fc740362d26aaa0bfa0ae3b5529863a3b2f3
IEDL.DBID IOP
ISSN 0965-0393
IngestDate Tue Jul 01 02:27:20 EDT 2025
Tue Sep 03 22:12:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-5bfbedba8755647cd054b7b178078fc740362d26aaa0bfa0ae3b5529863a3b2f3
Notes MSMSE-107367.R1
ORCID 0000-0002-9775-4778
0000-0001-9754-1409
PageCount 32
ParticipantIDs iop_journals_10_1088_1361_651X_ad6c6b
crossref_primary_10_1088_1361_651X_ad6c6b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Modelling and simulation in materials science and engineering
PublicationTitleAbbrev MSMSE
PublicationTitleAlternate Modelling Simul. Mater. Sci. Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Geers (msmsad6c6bbib18) 2016; vol 41
Sarmah (msmsad6c6bbib38) 2024; 301
Ghosh (msmsad6c6bbib14) 2009; 57
Ismail (msmsad6c6bbib42) 2019; 118
Chen (msmsad6c6bbib19) 2013
Bai (msmsad6c6bbib10) 2005; 58
McDowell (msmsad6c6bbib6) 2010; 26
Gurson (msmsad6c6bbib3) 1977; 99
Liu (msmsad6c6bbib48) 2019; 130
Hannard (msmsad6c6bbib1) 2018; 148
Zohdi (msmsad6c6bbib16) 2004; 2
Besson (msmsad6c6bbib29) 2010; 19
Kondori (msmsad6c6bbib27) 2015; 647
Ghosh (msmsad6c6bbib35) 2001; 38
Sarmah (msmsad6c6bbib24) 2023; 169
Noell (msmsad6c6bbib26) 2023; 135
Ghosh (msmsad6c6bbib34) 1996; 132
Ghosh (msmsad6c6bbib33) 1995; 32
Benzerga (msmsad6c6bbib28) 2016; 201
Pope (msmsad6c6bbib49) 2008
Pinz (msmsad6c6bbib37) 2019; 167
Terada (msmsad6c6bbib4) 2000; 37
Kondori (msmsad6c6bbib45) 2014; 45
(msmsad6c6bbib46) 2020
Fabrègue (msmsad6c6bbib44) 2008; 56
Olinger (msmsad6c6bbib5) 2020; 6
Suquet (msmsad6c6bbib20) 1997
Horstemeyer (msmsad6c6bbib8) 2010
Cao (msmsad6c6bbib2) 2017; 10
Horstemeyer (msmsad6c6bbib12) 2012
Bargmann (msmsad6c6bbib32) 2018; 96
Tekoglu (msmsad6c6bbib41) 2010; 26
Lloyd (msmsad6c6bbib22) 2019; 114
Benzerga (msmsad6c6bbib21) 2010; vol 44
Magagnosc (msmsad6c6bbib25) 2021; 161
Xie (msmsad6c6bbib43) 2024; 301
v. d. Giessen (msmsad6c6bbib7) 2020; 28
Jebahi (msmsad6c6bbib17) 2016; 23
Abedini (msmsad6c6bbib36) 2013; 73
Shang (msmsad6c6bbib31) 2020; 9
Gammage (msmsad6c6bbib40) 2004; 52
Pineau (msmsad6c6bbib13) 2016; 107
Sarvesha (msmsad6c6bbib23) 2019; 759
Srivatsan (msmsad6c6bbib30) 2008; 461
Matouš (msmsad6c6bbib11) 2017; 330
Geers (msmsad6c6bbib9) 2017
Horstemeyer (msmsad6c6bbib47) 2003; 35
Wilkinson (msmsad6c6bbib39) 1999; 262
Caulkins (msmsad6c6bbib15) 2022; 12
References_xml – volume: 37
  start-page: 2285
  year: 2000
  ident: msmsad6c6bbib4
  article-title: Simulation of the multi-scale convergence in computational homogenization approaches
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00341-2
– volume: 96
  start-page: 322
  year: 2018
  ident: msmsad6c6bbib32
  article-title: Generation of 3d representative volume elements for heterogeneous materials: a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2018.02.003
– volume: 12
  start-page: 1586
  year: 2022
  ident: msmsad6c6bbib15
  article-title: Effect of grain boundary misorientation on spall strength in ta via shock-free simulations with relatively few atoms
  publication-title: Metals
  doi: 10.3390/met12101586
– volume: 26
  start-page: 549
  year: 2010
  ident: msmsad6c6bbib41
  article-title: A micromechanics based damage model for composite materials
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2009.09.002
– volume: 161
  year: 2021
  ident: msmsad6c6bbib25
  article-title: Pre-twinned magnesium for improved ballistic performance
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2021.104005
– year: 2013
  ident: msmsad6c6bbib19
– volume: 73
  start-page: 15
  year: 2013
  ident: msmsad6c6bbib36
  article-title: Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.02.021
– volume: 461
  start-page: 154
  year: 2008
  ident: msmsad6c6bbib30
  article-title: The tensile deformation and fracture behavior of a magnesium alloy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2007.07.061
– volume: 148
  start-page: 456
  year: 2018
  ident: msmsad6c6bbib1
  article-title: Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.02.003
– volume: 19
  start-page: 3
  year: 2010
  ident: msmsad6c6bbib29
  article-title: Continuum models of ductile fracture: a review
  publication-title: Int. J. Damage Mech.
  doi: 10.1177/1056789509103482
– volume: 114
  start-page: 174
  year: 2019
  ident: msmsad6c6bbib22
  article-title: Dynamic tensile failure of rolled magnesium: simulations and experiments quantifying the role of texture and second-phase particles
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.11.002
– year: 2012
  ident: msmsad6c6bbib12
– volume: 52
  start-page: 5255
  year: 2004
  ident: msmsad6c6bbib40
  article-title: A model for damage coalescence in heterogeneous multi-phase materials
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2004.07.009
– start-page: pp 1
  year: 2017
  ident: msmsad6c6bbib9
  article-title: Homogenization methods and multiscale modeling: nonlinear problems
  publication-title: Encyclopedia of Computational Mechanics
– volume: 2
  start-page: 357
  year: 2004
  ident: msmsad6c6bbib16
  article-title: Homogenization methods and multiscale modeling, encyclopedia of computational mechanics
  publication-title: Solids Struct.
– volume: 10
  start-page: 139
  year: 2017
  ident: msmsad6c6bbib2
  article-title: Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-015-1262-7
– volume: 647
  start-page: 74
  year: 2015
  ident: msmsad6c6bbib27
  article-title: On the notch ductility of a magnesium-rare earth alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.08.077
– volume: 45
  start-page: 3292
  year: 2014
  ident: msmsad6c6bbib45
  article-title: Effect of stress triaxiality on the flow and fracture of mg alloy az31
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2211-7
– volume: 32
  start-page: 27
  year: 1995
  ident: msmsad6c6bbib33
  article-title: Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(94)00097-G
– volume: 167
  start-page: 198
  year: 2019
  ident: msmsad6c6bbib37
  article-title: Generating 3d virtual microstructures and statistically equivalent rves for subgranular gamma-gamma’ microstructures of nickel-based superalloys
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.05.043
– volume: 23
  start-page: 101
  year: 2016
  ident: msmsad6c6bbib17
  article-title: Multiscale modeling of complex dynamic problems: an overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-014-9136-6
– volume: vol 41
  start-page: pp 610
  year: 2016
  ident: msmsad6c6bbib18
  article-title: Multiscale modeling of microstructure-property relations
  publication-title: MRS Bulletin
  doi: 10.1557/mrs.2016.165
– volume: 301
  year: 2024
  ident: msmsad6c6bbib43
  article-title: Effect of coarse second-phase particles on mechanical properties of large-scale 2219 al alloy rings
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2024.110030
– volume: 169
  year: 2023
  ident: msmsad6c6bbib24
  article-title: Multiscale modeling of particle-induced damage in AA7075 aluminum sheet at large plastic strains
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103741
– volume: 132
  start-page: 63
  year: 1996
  ident: msmsad6c6bbib34
  article-title: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(95)00974-4
– volume: 38
  start-page: 2335
  year: 2001
  ident: msmsad6c6bbib35
  article-title: A multi-level computational model for multi-scale damage analysis in composite and porous materials
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(00)00167-0
– volume: 107
  start-page: 424
  year: 2016
  ident: msmsad6c6bbib13
  article-title: Failure of metals I: brittle and ductile fracture
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.12.034
– start-page: p 377
  year: 1997
  ident: msmsad6c6bbib20
  article-title: Continuum micromechanics
– start-page: pp 87
  year: 2010
  ident: msmsad6c6bbib8
  article-title: Multiscale modeling: a review
  publication-title: Practical Aspects of Computational Chemistry: Methods, Concepts and Applications
– volume: 9
  start-page: 3686
  year: 2020
  ident: msmsad6c6bbib31
  article-title: Three-dimensional characterization of typical inclusions in steel by x-ray micro-ct
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.01.106
– volume: 99
  start-page: 2
  year: 1977
  ident: msmsad6c6bbib3
  article-title: Continuum theory of ductile rupture by void nucleation and growth: part i-yield criteria and flow rules for porous ductile media
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– volume: 118
  start-page: 130
  year: 2019
  ident: msmsad6c6bbib42
  article-title: Impact of second phase morphology and orientation on the plastic behavior of dual-phase steels
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.02.005
– volume: 58
  start-page: 372
  year: 2005
  ident: msmsad6c6bbib10
  article-title: Statistical Mesomechanics of Solid, Linking Coupled Multiple Space and Time Scales
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.2048654
– volume: vol 44
  start-page: pp 169
  year: 2010
  ident: msmsad6c6bbib21
  article-title: Ductile fracture by void growth to coalescence
– volume: 6
  start-page: 445
  year: 2020
  ident: msmsad6c6bbib5
  article-title: Homogenized modeling of anisotropic impact damage in rolled az31b with aligned second-phase particles
  publication-title: J. Dyn. Behav. Mater.
  doi: 10.1007/s40870-020-00267-3
– volume: 57
  start-page: 1017
  year: 2009
  ident: msmsad6c6bbib14
  article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2009.04.002
– volume: 135
  year: 2023
  ident: msmsad6c6bbib26
  article-title: Void nucleation during ductile rupture of metals: a review
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2023.101085
– volume: 262
  start-page: 264
  year: 1999
  ident: msmsad6c6bbib39
  article-title: A model for damage in a clustered particulate composite
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(98)01011-9
– volume: 330
  start-page: 192
  year: 2017
  ident: msmsad6c6bbib11
  article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.10.070
– year: 2008
  ident: msmsad6c6bbib49
– volume: 301
  year: 2024
  ident: msmsad6c6bbib38
  article-title: Multi-scale modeling of decohesion characteristics of second phase particles from the matrix in uniaxial tension in a high strength aluminum alloy
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2024.110013
– volume: 759
  start-page: 368
  year: 2019
  ident: msmsad6c6bbib23
  article-title: Quantitative assessment of second phase particles characteristics and its role on the deformation response of a Mg-8AL-0.5 Zn alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.05.052
– volume: 130
  start-page: 21
  year: 2019
  ident: msmsad6c6bbib48
  article-title: On the micromechanism of inclusion driven ductile fracture and its implications on fracture toughness
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2019.05.010
– volume: 201
  start-page: 29
  year: 2016
  ident: msmsad6c6bbib28
  article-title: Ductile failure modeling
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-016-0142-6
– volume: 35
  start-page: 675
  year: 2003
  ident: msmsad6c6bbib47
  article-title: Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(02)00165-5
– volume: 56
  start-page: 719
  year: 2008
  ident: msmsad6c6bbib44
  article-title: A constitutive model for elastoplastic solids containing primary and secondary voids
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.07.008
– year: 2020
  ident: msmsad6c6bbib46
  article-title: Inc., Bwconncomp
– volume: 28
  year: 2020
  ident: msmsad6c6bbib7
  article-title: Roadmap on multiscale materials modeling
  publication-title: Modell. Simul. Mater. Sci. Eng.
  doi: 10.1088/1361-651X/ab7150
– volume: 26
  start-page: 1280
  year: 2010
  ident: msmsad6c6bbib6
  article-title: A perspective on trends in multiscale plasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2010.02.008
SSID ssj0005827
Score 2.3907576
Snippet Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation....
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 75005
SubjectTerms high-throughput multiscale modeling
magnesium alloy
material anisotropy
realistic microstructures
second-phase particles
Title A high-throughput statistical homogenization technique to convert realistic microstructures into idealized periodic unit cells
URI https://iopscience.iop.org/article/10.1088/1361-651X/ad6c6b
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5cEPTgLu7koAcPebbN0hZPIooILgeFdxBK0iT4UF8fvr6LB3-7k6auKIi3QockTJaZYb75BmAHo4g8E9xRFTkfoAhD8RblNJWRy6XjInO-wPn8Qp7e8LOu6I7BwXstTDVon_4Ofgai4KDCFhCX7cdMxlSKuLuvjCylHodJlqHh9NV7l1cf-I4s9GvNpaC-ALXNUf40whebNI7zfjIxJ3Nw-7a4gCy574xq3Smfv_E2_nP18zDbup7kMIguwJjtL8LMJ0LCRZhqAKHlcAleDolnMqZtH5_BqCa-9qihdcZB7qrHCo9eW8RJ3plgSV2RBsj-VBN0Rx8aefLoUX-BqXaE4T3p9VGsZ_z_Z2uIJ1uuDMqN8H0hPpUwXIabk-Pro1Pa9mqgZcJYTYV22hqtMPwRkqelQVdQpzpOPZ-9K1PuLaVJpFIq0k5FyjItRJJnkimmE8dWYKJf9e0qEPRII6t4LrV13CQOQ2gVm5wzZiMtSr4Ge2-7VQwCJUfRpNKzrPDaLbx2i6DdNdjFjSjaezn8VW79j3IbMJ2gVxPQfJswgZqzW-iV1Hq7OX2vjiLfkQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhA9tOUl6IP6AAcO3k3iR5Ijgq6gpcABpL0FO7YFAjYrNnvh0N_ecWwoICoh9RYpIzsZP2ZG8803AJsYRZSF4I6qxPkARRiKp6ikuUxcKR0XhfMFzr-O5P4Z_zEUw9jntKuFacbx6u_hYyAKDiqMgLiinzKZUinSYV8ZWUvdHxs3A28FQ9vpK_iOT_5iPIrQs7WUgvoi1JinfGmUJ3ZpBud-ZGYGH-D8_gMDuuSqN211r757xt34H3_wEd5HF5TsBPFFeGNHS_DuETHhEsx1wNB6sgy_d4hnNKaxn8942hJfg9TRO-MgF81Ng1swFnOSB0ZY0jakA7TftgTd0utOntx49F9grJ1imE8uRyh2afz7O2uIJ11uDMpN8Z4hPqUwWYGzwffT3X0aezbQOmOspUI7bY1WGAYJyfPaoEuoc53mntfe1Tn3FtNkUimVaKcSZZkWIisLyRTTmWOrMDtqRnYNCHqmiVW8lNo6bjKHobRKTckZs4kWNV-H7fsVq8aBmqPqUupFUXkNV17DVdDwOmzhYlTxfE7-KffplXLfYP5kb1AdHhz9_AwLGTo6AeD3BWZRifYrOiqt3ug24x9auOT1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-throughput+statistical+homogenization+technique+to+convert+realistic+microstructures+into+idealized+periodic+unit+cells&rft.jtitle=Modelling+and+simulation+in+materials+science+and+engineering&rft.au=Foster%2C+S+Caleb&rft.au=Wilkerson%2C+Justin+W&rft.date=2024-10-01&rft.issn=0965-0393&rft.eissn=1361-651X&rft.volume=32&rft.issue=7&rft.spage=75005&rft_id=info:doi/10.1088%2F1361-651X%2Fad6c6b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_651X_ad6c6b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-0393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-0393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-0393&client=summon