A high-throughput statistical homogenization technique to convert realistic microstructures into idealized periodic unit cells
Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes hig...
Saved in:
Published in | Modelling and simulation in materials science and engineering Vol. 32; no. 7; pp. 75005 - 75036 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstructure modeling in macroscale simulations, so computational homogenization methods are often employed. These, however, involve simplifying assumptions to make the problem tractable and many rely on periodic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures composed of anisotropic, spatially varying second-phase void morphologies and idealized periodic microstructures with roughly equivalent mechanical responses. We create a high-throughput, parametric study to investigate 96 unique bridging methods. We apply our proposed solution to a rolled AZ31B magnesium alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our methodology converts a
µ
-CT scan of the realistic microstructure to idealized periodic unit cell microstructures that are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the datasets for the various loading orientations. We find that certain combinations of our parameters capture the overall stress–strain response, including anisotropy effects, with some degree of success. The effect of different parameter options are explored in detail and we find that excluding certain particle populations from the analysis can give improved results. |
---|---|
AbstractList | Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation. These distributions are often extremely complex and processing can induce high levels of anisotropy. The particle length-scale precludes high-fidelity microstructure modeling in macroscale simulations, so computational homogenization methods are often employed. These, however, involve simplifying assumptions to make the problem tractable and many rely on periodic microstructures. Here we propose a methodology to bridge the gap between realistic microstructures composed of anisotropic, spatially varying second-phase void morphologies and idealized periodic microstructures with roughly equivalent mechanical responses. We create a high-throughput, parametric study to investigate 96 unique bridging methods. We apply our proposed solution to a rolled AZ31B magnesium alloy, for which we have a rich dataset of microstructure morphology and mechanical behavior. Our methodology converts a
µ
-CT scan of the realistic microstructure to idealized periodic unit cell microstructures that are specific to the loading orientation. We recreate the unit cells for each parameter set in a commercial finite element software, subject them to macroscopic uniaxial loading conditions, and compare our results to the datasets for the various loading orientations. We find that certain combinations of our parameters capture the overall stress–strain response, including anisotropy effects, with some degree of success. The effect of different parameter options are explored in detail and we find that excluding certain particle populations from the analysis can give improved results. |
Author | Foster, S Caleb Wilkerson, Justin W |
Author_xml | – sequence: 1 givenname: S Caleb orcidid: 0000-0002-9775-4778 surname: Foster fullname: Foster, S Caleb organization: Texas A&M University J. Mike Walker’66 Department of Mechanical Engineering, College Station, TX 77843, United States of America – sequence: 2 givenname: Justin W orcidid: 0000-0001-9754-1409 surname: Wilkerson fullname: Wilkerson, Justin W organization: Texas A&M University Department of Materials Science & Engineering, College Station, TX 77843, United States of America |
BookMark | eNp1kE1LAzEQhoNUsK3ePeYHuDbZNNn0WIpfUPCi4G1JsrPdlG2yJlnBHvzt7lrx5mngnecdhmeGJs47QOiakltKpFxQJmgmOH1bqEoYoc_Q9C-aoClZCZ4RtmIXaBbjnhDCZV5M0dcaN3bXZKkJvt81XZ9wTCrZmKxRLW78we_A2eMQeYcTmMbZ9x5w8th49wEh4QCq_eHxwZrgYwq9SX2AiK0bMFuN-yNUuINgfTVwvbMJG2jbeInOa9VGuPqdc_R6f_eyecy2zw9Pm_U2MzljKeO61lBpJQvOxbIwFeFLXWhaSFLI2hRLwkRe5UIpRXStiAKmOc9XUjDFdF6zOSKnu-ODMUBddsEeVPgsKSlHf-UoqxxllSd_Q-XmVLG-K_e-D2548H_8G82PeQY |
CODEN | MSMEEU |
Cites_doi | 10.1016/S0020-7683(98)00341-2 10.1016/j.pmatsci.2018.02.003 10.3390/met12101586 10.1016/j.ijplas.2009.09.002 10.1016/j.mechmat.2021.104005 10.1016/j.commatsci.2013.02.021 10.1016/j.jallcom.2007.07.061 10.1016/j.actamat.2018.02.003 10.1177/1056789509103482 10.1016/j.ijplas.2018.11.002 10.1016/j.actamat.2004.07.009 10.1007/s12289-015-1262-7 10.1016/j.msea.2015.08.077 10.1007/s11661-014-2211-7 10.1016/0020-7683(94)00097-G 10.1016/j.commatsci.2019.05.043 10.1007/s11831-014-9136-6 10.1557/mrs.2016.165 10.1016/j.engfracmech.2024.110030 10.1016/j.ijplas.2023.103741 10.1016/0045-7825(95)00974-4 10.1016/S0020-7683(00)00167-0 10.1016/j.actamat.2015.12.034 10.1016/j.jmrt.2020.01.106 10.1115/1.3443401 10.1016/j.ijplas.2019.02.005 10.1115/1.2048654 10.1007/s40870-020-00267-3 10.1016/j.jmps.2009.04.002 10.1016/j.pmatsci.2023.101085 10.1016/S0921-5093(98)01011-9 10.1016/j.jcp.2016.10.070 10.1016/j.engfracmech.2024.110013 10.1016/j.msea.2019.05.052 10.1016/j.jmps.2019.05.010 10.1007/s10704-016-0142-6 10.1016/S0167-6636(02)00165-5 10.1016/j.jmps.2007.07.008 10.1088/1361-651X/ab7150 10.1016/j.ijplas.2010.02.008 |
ContentType | Journal Article |
Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1361-651X/ad6c6b |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-651X |
ExternalDocumentID | 10_1088_1361_651X_ad6c6b msmsad6c6b |
GroupedDBID | -~X 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP ADUKH AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 W28 XPP ZMT AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c233t-5bfbedba8755647cd054b7b178078fc740362d26aaa0bfa0ae3b5529863a3b2f3 |
IEDL.DBID | IOP |
ISSN | 0965-0393 |
IngestDate | Tue Jul 01 02:27:20 EDT 2025 Tue Sep 03 22:12:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-5bfbedba8755647cd054b7b178078fc740362d26aaa0bfa0ae3b5529863a3b2f3 |
Notes | MSMSE-107367.R1 |
ORCID | 0000-0002-9775-4778 0000-0001-9754-1409 |
PageCount | 32 |
ParticipantIDs | iop_journals_10_1088_1361_651X_ad6c6b crossref_primary_10_1088_1361_651X_ad6c6b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Modelling and simulation in materials science and engineering |
PublicationTitleAbbrev | MSMSE |
PublicationTitleAlternate | Modelling Simul. Mater. Sci. Eng |
PublicationYear | 2024 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Geers (msmsad6c6bbib18) 2016; vol 41 Sarmah (msmsad6c6bbib38) 2024; 301 Ghosh (msmsad6c6bbib14) 2009; 57 Ismail (msmsad6c6bbib42) 2019; 118 Chen (msmsad6c6bbib19) 2013 Bai (msmsad6c6bbib10) 2005; 58 McDowell (msmsad6c6bbib6) 2010; 26 Gurson (msmsad6c6bbib3) 1977; 99 Liu (msmsad6c6bbib48) 2019; 130 Hannard (msmsad6c6bbib1) 2018; 148 Zohdi (msmsad6c6bbib16) 2004; 2 Besson (msmsad6c6bbib29) 2010; 19 Kondori (msmsad6c6bbib27) 2015; 647 Ghosh (msmsad6c6bbib35) 2001; 38 Sarmah (msmsad6c6bbib24) 2023; 169 Noell (msmsad6c6bbib26) 2023; 135 Ghosh (msmsad6c6bbib34) 1996; 132 Ghosh (msmsad6c6bbib33) 1995; 32 Benzerga (msmsad6c6bbib28) 2016; 201 Pope (msmsad6c6bbib49) 2008 Pinz (msmsad6c6bbib37) 2019; 167 Terada (msmsad6c6bbib4) 2000; 37 Kondori (msmsad6c6bbib45) 2014; 45 (msmsad6c6bbib46) 2020 Fabrègue (msmsad6c6bbib44) 2008; 56 Olinger (msmsad6c6bbib5) 2020; 6 Suquet (msmsad6c6bbib20) 1997 Horstemeyer (msmsad6c6bbib8) 2010 Cao (msmsad6c6bbib2) 2017; 10 Horstemeyer (msmsad6c6bbib12) 2012 Bargmann (msmsad6c6bbib32) 2018; 96 Tekoglu (msmsad6c6bbib41) 2010; 26 Lloyd (msmsad6c6bbib22) 2019; 114 Benzerga (msmsad6c6bbib21) 2010; vol 44 Magagnosc (msmsad6c6bbib25) 2021; 161 Xie (msmsad6c6bbib43) 2024; 301 v. d. Giessen (msmsad6c6bbib7) 2020; 28 Jebahi (msmsad6c6bbib17) 2016; 23 Abedini (msmsad6c6bbib36) 2013; 73 Shang (msmsad6c6bbib31) 2020; 9 Gammage (msmsad6c6bbib40) 2004; 52 Pineau (msmsad6c6bbib13) 2016; 107 Sarvesha (msmsad6c6bbib23) 2019; 759 Srivatsan (msmsad6c6bbib30) 2008; 461 Matouš (msmsad6c6bbib11) 2017; 330 Geers (msmsad6c6bbib9) 2017 Horstemeyer (msmsad6c6bbib47) 2003; 35 Wilkinson (msmsad6c6bbib39) 1999; 262 Caulkins (msmsad6c6bbib15) 2022; 12 |
References_xml | – volume: 37 start-page: 2285 year: 2000 ident: msmsad6c6bbib4 article-title: Simulation of the multi-scale convergence in computational homogenization approaches publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00341-2 – volume: 96 start-page: 322 year: 2018 ident: msmsad6c6bbib32 article-title: Generation of 3d representative volume elements for heterogeneous materials: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2018.02.003 – volume: 12 start-page: 1586 year: 2022 ident: msmsad6c6bbib15 article-title: Effect of grain boundary misorientation on spall strength in ta via shock-free simulations with relatively few atoms publication-title: Metals doi: 10.3390/met12101586 – volume: 26 start-page: 549 year: 2010 ident: msmsad6c6bbib41 article-title: A micromechanics based damage model for composite materials publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2009.09.002 – volume: 161 year: 2021 ident: msmsad6c6bbib25 article-title: Pre-twinned magnesium for improved ballistic performance publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2021.104005 – year: 2013 ident: msmsad6c6bbib19 – volume: 73 start-page: 15 year: 2013 ident: msmsad6c6bbib36 article-title: Numerical simulation of the influence of particle clustering on tensile behavior of particle-reinforced composites publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.02.021 – volume: 461 start-page: 154 year: 2008 ident: msmsad6c6bbib30 article-title: The tensile deformation and fracture behavior of a magnesium alloy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2007.07.061 – volume: 148 start-page: 456 year: 2018 ident: msmsad6c6bbib1 article-title: Quantitative assessment of the impact of second phase particle arrangement on damage and fracture anisotropy publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.02.003 – volume: 19 start-page: 3 year: 2010 ident: msmsad6c6bbib29 article-title: Continuum models of ductile fracture: a review publication-title: Int. J. Damage Mech. doi: 10.1177/1056789509103482 – volume: 114 start-page: 174 year: 2019 ident: msmsad6c6bbib22 article-title: Dynamic tensile failure of rolled magnesium: simulations and experiments quantifying the role of texture and second-phase particles publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.11.002 – year: 2012 ident: msmsad6c6bbib12 – volume: 52 start-page: 5255 year: 2004 ident: msmsad6c6bbib40 article-title: A model for damage coalescence in heterogeneous multi-phase materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2004.07.009 – start-page: pp 1 year: 2017 ident: msmsad6c6bbib9 article-title: Homogenization methods and multiscale modeling: nonlinear problems publication-title: Encyclopedia of Computational Mechanics – volume: 2 start-page: 357 year: 2004 ident: msmsad6c6bbib16 article-title: Homogenization methods and multiscale modeling, encyclopedia of computational mechanics publication-title: Solids Struct. – volume: 10 start-page: 139 year: 2017 ident: msmsad6c6bbib2 article-title: Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review publication-title: Int. J. Mater. Form. doi: 10.1007/s12289-015-1262-7 – volume: 647 start-page: 74 year: 2015 ident: msmsad6c6bbib27 article-title: On the notch ductility of a magnesium-rare earth alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.08.077 – volume: 45 start-page: 3292 year: 2014 ident: msmsad6c6bbib45 article-title: Effect of stress triaxiality on the flow and fracture of mg alloy az31 publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2211-7 – volume: 32 start-page: 27 year: 1995 ident: msmsad6c6bbib33 article-title: Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(94)00097-G – volume: 167 start-page: 198 year: 2019 ident: msmsad6c6bbib37 article-title: Generating 3d virtual microstructures and statistically equivalent rves for subgranular gamma-gamma’ microstructures of nickel-based superalloys publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.05.043 – volume: 23 start-page: 101 year: 2016 ident: msmsad6c6bbib17 article-title: Multiscale modeling of complex dynamic problems: an overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-014-9136-6 – volume: vol 41 start-page: pp 610 year: 2016 ident: msmsad6c6bbib18 article-title: Multiscale modeling of microstructure-property relations publication-title: MRS Bulletin doi: 10.1557/mrs.2016.165 – volume: 301 year: 2024 ident: msmsad6c6bbib43 article-title: Effect of coarse second-phase particles on mechanical properties of large-scale 2219 al alloy rings publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2024.110030 – volume: 169 year: 2023 ident: msmsad6c6bbib24 article-title: Multiscale modeling of particle-induced damage in AA7075 aluminum sheet at large plastic strains publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103741 – volume: 132 start-page: 63 year: 1996 ident: msmsad6c6bbib34 article-title: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(95)00974-4 – volume: 38 start-page: 2335 year: 2001 ident: msmsad6c6bbib35 article-title: A multi-level computational model for multi-scale damage analysis in composite and porous materials publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(00)00167-0 – volume: 107 start-page: 424 year: 2016 ident: msmsad6c6bbib13 article-title: Failure of metals I: brittle and ductile fracture publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.034 – start-page: p 377 year: 1997 ident: msmsad6c6bbib20 article-title: Continuum micromechanics – start-page: pp 87 year: 2010 ident: msmsad6c6bbib8 article-title: Multiscale modeling: a review publication-title: Practical Aspects of Computational Chemistry: Methods, Concepts and Applications – volume: 9 start-page: 3686 year: 2020 ident: msmsad6c6bbib31 article-title: Three-dimensional characterization of typical inclusions in steel by x-ray micro-ct publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.01.106 – volume: 99 start-page: 2 year: 1977 ident: msmsad6c6bbib3 article-title: Continuum theory of ductile rupture by void nucleation and growth: part i-yield criteria and flow rules for porous ductile media publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3443401 – volume: 118 start-page: 130 year: 2019 ident: msmsad6c6bbib42 article-title: Impact of second phase morphology and orientation on the plastic behavior of dual-phase steels publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.02.005 – volume: 58 start-page: 372 year: 2005 ident: msmsad6c6bbib10 article-title: Statistical Mesomechanics of Solid, Linking Coupled Multiple Space and Time Scales publication-title: Appl. Mech. Rev. doi: 10.1115/1.2048654 – volume: vol 44 start-page: pp 169 year: 2010 ident: msmsad6c6bbib21 article-title: Ductile fracture by void growth to coalescence – volume: 6 start-page: 445 year: 2020 ident: msmsad6c6bbib5 article-title: Homogenized modeling of anisotropic impact damage in rolled az31b with aligned second-phase particles publication-title: J. Dyn. Behav. Mater. doi: 10.1007/s40870-020-00267-3 – volume: 57 start-page: 1017 year: 2009 ident: msmsad6c6bbib14 article-title: Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2009.04.002 – volume: 135 year: 2023 ident: msmsad6c6bbib26 article-title: Void nucleation during ductile rupture of metals: a review publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2023.101085 – volume: 262 start-page: 264 year: 1999 ident: msmsad6c6bbib39 article-title: A model for damage in a clustered particulate composite publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(98)01011-9 – volume: 330 start-page: 192 year: 2017 ident: msmsad6c6bbib11 article-title: A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.10.070 – year: 2008 ident: msmsad6c6bbib49 – volume: 301 year: 2024 ident: msmsad6c6bbib38 article-title: Multi-scale modeling of decohesion characteristics of second phase particles from the matrix in uniaxial tension in a high strength aluminum alloy publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2024.110013 – volume: 759 start-page: 368 year: 2019 ident: msmsad6c6bbib23 article-title: Quantitative assessment of second phase particles characteristics and its role on the deformation response of a Mg-8AL-0.5 Zn alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.05.052 – volume: 130 start-page: 21 year: 2019 ident: msmsad6c6bbib48 article-title: On the micromechanism of inclusion driven ductile fracture and its implications on fracture toughness publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2019.05.010 – volume: 201 start-page: 29 year: 2016 ident: msmsad6c6bbib28 article-title: Ductile failure modeling publication-title: Int. J. Fract. doi: 10.1007/s10704-016-0142-6 – volume: 35 start-page: 675 year: 2003 ident: msmsad6c6bbib47 article-title: Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase publication-title: Mech. Mater. doi: 10.1016/S0167-6636(02)00165-5 – volume: 56 start-page: 719 year: 2008 ident: msmsad6c6bbib44 article-title: A constitutive model for elastoplastic solids containing primary and secondary voids publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2007.07.008 – year: 2020 ident: msmsad6c6bbib46 article-title: Inc., Bwconncomp – volume: 28 year: 2020 ident: msmsad6c6bbib7 article-title: Roadmap on multiscale materials modeling publication-title: Modell. Simul. Mater. Sci. Eng. doi: 10.1088/1361-651X/ab7150 – volume: 26 start-page: 1280 year: 2010 ident: msmsad6c6bbib6 article-title: A perspective on trends in multiscale plasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2010.02.008 |
SSID | ssj0005827 |
Score | 2.3907576 |
Snippet | Metal alloys frequently contain distributions of second-phase particles that deleteriously affect the material behavior by acting as sites for void nucleation.... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 75005 |
SubjectTerms | high-throughput multiscale modeling magnesium alloy material anisotropy realistic microstructures second-phase particles |
Title | A high-throughput statistical homogenization technique to convert realistic microstructures into idealized periodic unit cells |
URI | https://iopscience.iop.org/article/10.1088/1361-651X/ad6c6b |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8UwEB5cEPTgLu7koAcPebbN0hZPIooILgeFdxBK0iT4UF8fvr6LB3-7k6auKIi3QockTJaZYb75BmAHo4g8E9xRFTkfoAhD8RblNJWRy6XjInO-wPn8Qp7e8LOu6I7BwXstTDVon_4Ofgai4KDCFhCX7cdMxlSKuLuvjCylHodJlqHh9NV7l1cf-I4s9GvNpaC-ALXNUf40whebNI7zfjIxJ3Nw-7a4gCy574xq3Smfv_E2_nP18zDbup7kMIguwJjtL8LMJ0LCRZhqAKHlcAleDolnMqZtH5_BqCa-9qihdcZB7qrHCo9eW8RJ3plgSV2RBsj-VBN0Rx8aefLoUX-BqXaE4T3p9VGsZ_z_Z2uIJ1uuDMqN8H0hPpUwXIabk-Pro1Pa9mqgZcJYTYV22hqtMPwRkqelQVdQpzpOPZ-9K1PuLaVJpFIq0k5FyjItRJJnkimmE8dWYKJf9e0qEPRII6t4LrV13CQOQ2gVm5wzZiMtSr4Ge2-7VQwCJUfRpNKzrPDaLbx2i6DdNdjFjSjaezn8VW79j3IbMJ2gVxPQfJswgZqzW-iV1Hq7OX2vjiLfkQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VKhA9tOUl6IP6AAcO3k3iR5Ijgq6gpcABpL0FO7YFAjYrNnvh0N_ecWwoICoh9RYpIzsZP2ZG8803AJsYRZSF4I6qxPkARRiKp6ikuUxcKR0XhfMFzr-O5P4Z_zEUw9jntKuFacbx6u_hYyAKDiqMgLiinzKZUinSYV8ZWUvdHxs3A28FQ9vpK_iOT_5iPIrQs7WUgvoi1JinfGmUJ3ZpBud-ZGYGH-D8_gMDuuSqN211r757xt34H3_wEd5HF5TsBPFFeGNHS_DuETHhEsx1wNB6sgy_d4hnNKaxn8942hJfg9TRO-MgF81Ng1swFnOSB0ZY0jakA7TftgTd0utOntx49F9grJ1imE8uRyh2afz7O2uIJ11uDMpN8Z4hPqUwWYGzwffT3X0aezbQOmOspUI7bY1WGAYJyfPaoEuoc53mntfe1Tn3FtNkUimVaKcSZZkWIisLyRTTmWOrMDtqRnYNCHqmiVW8lNo6bjKHobRKTckZs4kWNV-H7fsVq8aBmqPqUupFUXkNV17DVdDwOmzhYlTxfE7-KffplXLfYP5kb1AdHhz9_AwLGTo6AeD3BWZRifYrOiqt3ug24x9auOT1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-throughput+statistical+homogenization+technique+to+convert+realistic+microstructures+into+idealized+periodic+unit+cells&rft.jtitle=Modelling+and+simulation+in+materials+science+and+engineering&rft.au=Foster%2C+S+Caleb&rft.au=Wilkerson%2C+Justin+W&rft.date=2024-10-01&rft.issn=0965-0393&rft.eissn=1361-651X&rft.volume=32&rft.issue=7&rft.spage=75005&rft_id=info:doi/10.1088%2F1361-651X%2Fad6c6b&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_651X_ad6c6b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-0393&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-0393&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-0393&client=summon |