Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number...
Saved in:
Published in | Plasma science & technology Vol. 26; no. 9; pp. 95502 - 95510 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Plasma Science and Technology
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1009-0630 |
DOI | 10.1088/2058-6272/ad5119 |
Cover
Abstract | This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number of samples, namely, SC-assisted CF-LIBS. Al alloy standard samples, divided into calibration and test samples, were applied to validate the proposed method. SC was built based on the characteristic line of Pb and Cr in the calibration sample, and the contents of Pb and Cr in the test sample were calculated with relative errors of 6% and 4%, respectively. SC built using Cr with multiple characteristic lines yielded better calculation results. The relative contents of ten elements in the test sample were calculated using CF-LIBS. Subsequently, the SC-assisted CF-LIBS was executed, with the majority of the calculation relative errors falling within the range of 2%–5%. Finally, the Al and Na contents of the Al alloy were predicted. The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples. Furthermore, this quantitative analysis method was successfully applied to soil and
Astragalus
samples, realizing an accurate calculation of the contents of multiple elements. Thus, it is important to advance the LIBS quantitative analysis and its related applications. |
---|---|
AbstractList | This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number of samples, namely, SC-assisted CF-LIBS. Al alloy standard samples, divided into calibration and test samples, were applied to validate the proposed method. SC was built based on the characteristic line of Pb and Cr in the calibration sample, and the contents of Pb and Cr in the test sample were calculated with relative errors of 6% and 4%, respectively. SC built using Cr with multiple characteristic lines yielded better calculation results. The relative contents of ten elements in the test sample were calculated using CF-LIBS. Subsequently, the SC-assisted CF-LIBS was executed, with the majority of the calculation relative errors falling within the range of 2%–5%. Finally, the Al and Na contents of the Al alloy were predicted. The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples. Furthermore, this quantitative analysis method was successfully applied to soil and
Astragalus
samples, realizing an accurate calculation of the contents of multiple elements. Thus, it is important to advance the LIBS quantitative analysis and its related applications. |
Author | ZHANG, Guoding ZHANG, Denghong GUO, Kai ZHANG, Yuzhuo WANG, Haoliang SU, Maogen DONG, Chenzhong HAN, Weiwei SUN, Duixiong WANG, Honglin |
Author_xml | – sequence: 1 givenname: Weiwei surname: HAN fullname: HAN, Weiwei organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 2 givenname: Duixiong surname: SUN fullname: SUN, Duixiong organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 3 givenname: Guoding surname: ZHANG fullname: ZHANG, Guoding organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 4 givenname: Honglin surname: WANG fullname: WANG, Honglin organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 5 givenname: Kai surname: GUO fullname: GUO, Kai organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 6 givenname: Yuzhuo surname: ZHANG fullname: ZHANG, Yuzhuo organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China – sequence: 7 givenname: Haoliang surname: WANG fullname: WANG, Haoliang organization: Gansu Digital Herb Testing Center, Dingxi 743000, People’s Republic of China – sequence: 8 givenname: Denghong surname: ZHANG fullname: ZHANG, Denghong organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China – sequence: 9 givenname: Chenzhong surname: DONG fullname: DONG, Chenzhong organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China – sequence: 10 givenname: Maogen surname: SU fullname: SU, Maogen organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China |
BookMark | eNp1kMtOwzAQRb0oEm1hz9IfQKjztpeo4iVVQkKwjib2RHVJ7GA7Rf0XPhZHZctqRpp7ZjRnRRbGGiTkJmV3KeN8k7GSJ1VWZxtQZZqKBVmmjImEVTm7JCvvD4yVheD5kvy8oUdwck-toS2E2AxTHzT2OKAJ1MGoFf2awAQdIOgjUjDQn7z2Me5RzVzYI_UBjAKnqJzcERPwMRHiWEKvWxdJa5LOIdI-Ui7RRk0yjluH8Knst6F-RBmc9dKOJzpg2Ft1RS466D1e_9U1-Xh8eN8-J7vXp5ft_S6RWZ6HJGOtELlqa8GFhA6LIj6LWVcBr6qWFULUwAWoosK2ZkXKoRNK5GWdiYpDmedrws57ZbzvHXbN6PQA7tSkrJmNNrPRZjbanI1G5PaMaDs2Bzu5KMX_H_8Faed_cA |
Cites_doi | 10.1177/00037028176915 10.1070/RCR4538 10.1016/j.sab.2012.06.034 10.1155/2022/3887038 10.1016/j.culher.2022.04.012 10.1016/j.optlastec.2019.105689 10.1016/j.sab.2017.09.011 10.1016/j.sab.2010.03.018 10.1364/AO.56.008196 10.1016/j.sab.2016.06.008 10.1088/2058-6272/aa97ce 10.1039/C9AY00890J 10.1016/j.sab.2016.08.022 10.5402/2012/285240 10.1007/s00340-018-6909-x 10.1016/j.trac.2022.116618 10.1039/C1JA10164A 10.1016/j.apsusc.2007.02.037 10.1366/12-06639R 10.1016/j.sab.2014.07.003 10.1016/j.trac.2020.116113 10.1366/000370299194761 10.1021/acs.analchem.2c04910 10.1016/j.sab.2012.07.003 10.1039/b400355c 10.1023/B:JAPS.0000049638.55151.80 10.1039/D3AY00280B 10.1016/j.sab.2009.11.006 10.1016/j.sab.2004.06.006 10.1039/C9AY01030K 10.1016/j.cofs.2019.10.002 10.46770/AS.2021.608 10.1088/2058-6272/aaef6e 10.1016/j.sab.2013.05.016 10.1088/2058-6272/ab861b 10.1039/C9JA00059C |
ContentType | Journal Article |
Copyright | 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
Copyright_xml | – notice: 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved |
DBID | AAYXX CITATION |
DOI | 10.1088/2058-6272/ad5119 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1088_2058_6272_ad5119 pstad5119 |
GroupedDBID | -SA -S~ 123 1JI 4.4 5B3 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 CW9 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K W28 AAYXX ADEQX CITATION Q-- |
ID | FETCH-LOGICAL-c233t-20b993db7989cafe44009e2f6a866b04997a89ad46eb70418af9d93572968a533 |
IEDL.DBID | IOP |
ISSN | 1009-0630 |
IngestDate | Tue Jul 01 03:44:44 EDT 2025 Wed Sep 25 08:11:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-20b993db7989cafe44009e2f6a866b04997a89ad46eb70418af9d93572968a533 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1088_2058_6272_ad5119 iop_journals_10_1088_2058_6272_ad5119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240901 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Plasma science & technology |
PublicationTitleAlternate | Plasma Sci. Technol |
PublicationYear | 2024 |
Publisher | Plasma Science and Technology |
Publisher_xml | – name: Plasma Science and Technology |
References | Rauschenbach (pst_26_9_095502_bib37) 2010; 65 De Giacomo (pst_26_9_095502_bib20) 2007; 253 Lu (pst_26_9_095502_bib18) 2019; 21 Bauer (pst_26_9_095502_bib36) 2017; 71 Gardette (pst_26_9_095502_bib7) 2023; 95 Grifoni (pst_26_9_095502_bib23) 2016; 124 Anabitarte (pst_26_9_095502_bib1) 2012; 2012 Lee (pst_26_9_095502_bib26) 2012; 66 pst_26_9_095502_bib6 Khan (pst_26_9_095502_bib25) 2022; 2022 Hu (pst_26_9_095502_bib14) 2022; 152 Spizzichino (pst_26_9_095502_bib3) 2014; 99 Chen (pst_26_9_095502_bib5) 2020; 133 Guo (pst_26_9_095502_bib15) 2019; 11 Zhao (pst_26_9_095502_bib28) 2018; 20 Bennett (pst_26_9_095502_bib24) 2018; 124 Gaudiuso (pst_26_9_095502_bib22) 2012; 74 Hornácková (pst_26_9_095502_bib13) 2012; 74 Zorov (pst_26_9_095502_bib38) 2015; 84 Sun (pst_26_9_095502_bib32) 2022; 55 Wan (pst_26_9_095502_bib11) 2021; 42 Guo (pst_26_9_095502_bib10) 2017; 56 Ding (pst_26_9_095502_bib17) 2019; 11 Markiewicz-Keszycka (pst_26_9_095502_bib8) 2019; 28 Han (pst_26_9_095502_bib30) 2020; 22 Meng (pst_26_9_095502_bib4) 2017; 137 Burakov (pst_26_9_095502_bib29) 2004; 71 pst_26_9_095502_bib33 Ling (pst_26_9_095502_bib34) 2023; 15 Wu (pst_26_9_095502_bib31) 2019; 34 Yin (pst_26_9_095502_bib9) 2019; 120 Tognoni (pst_26_9_095502_bib35) 2010; 65 Yaroshchyk (pst_26_9_095502_bib16) 2012; 27 Ciucci (pst_26_9_095502_bib19) 1999; 53 Sallé (pst_26_9_095502_bib12) 2004; 59 Ahamer (pst_26_9_095502_bib27) 2016; 122 Cavalcanti (pst_26_9_095502_bib21) 2013; 87 Winefordner (pst_26_9_095502_bib2) 2004; 19 |
References_xml | – volume: 71 start-page: 553 year: 2017 ident: pst_26_9_095502_bib36 publication-title: Appl. Spectrosc. doi: 10.1177/00037028176915 – volume: 84 start-page: 1021 year: 2015 ident: pst_26_9_095502_bib38 publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4538 – volume: 74 start-page: 38 year: 2012 ident: pst_26_9_095502_bib22 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2012.06.034 – volume: 2022 start-page: 3887038 year: 2022 ident: pst_26_9_095502_bib25 publication-title: J. Spectrosc. doi: 10.1155/2022/3887038 – volume: 55 start-page: 399 year: 2022 ident: pst_26_9_095502_bib32 publication-title: J. Cult. Heritage doi: 10.1016/j.culher.2022.04.012 – volume: 120 start-page: 105689 year: 2019 ident: pst_26_9_095502_bib9 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.105689 – volume: 137 start-page: 39 year: 2017 ident: pst_26_9_095502_bib4 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2017.09.011 – volume: 65 start-page: 758 year: 2010 ident: pst_26_9_095502_bib37 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2010.03.018 – volume: 56 start-page: 8196 year: 2017 ident: pst_26_9_095502_bib10 publication-title: Appl. Opt. doi: 10.1364/AO.56.008196 – volume: 122 start-page: 157 year: 2016 ident: pst_26_9_095502_bib27 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2016.06.008 – volume: 20 start-page: 035502 year: 2018 ident: pst_26_9_095502_bib28 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aa97ce – volume: 11 start-page: 3006 year: 2019 ident: pst_26_9_095502_bib15 publication-title: Anal. Methods doi: 10.1039/C9AY00890J – volume: 124 start-page: 40 year: 2016 ident: pst_26_9_095502_bib23 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2016.08.022 – volume: 2012 start-page: 285240 year: 2012 ident: pst_26_9_095502_bib1 publication-title: ISRN Spectrosc. doi: 10.5402/2012/285240 – ident: pst_26_9_095502_bib6 – volume: 124 start-page: 42 year: 2018 ident: pst_26_9_095502_bib24 publication-title: Appl. Phys. B doi: 10.1007/s00340-018-6909-x – volume: 152 start-page: 116618 year: 2022 ident: pst_26_9_095502_bib14 publication-title: TRAC Trends Anal. Chem. doi: 10.1016/j.trac.2022.116618 – volume: 27 start-page: 92 year: 2012 ident: pst_26_9_095502_bib16 publication-title: J. Anal. At. Spectrom. doi: 10.1039/C1JA10164A – volume: 253 start-page: 7677 year: 2007 ident: pst_26_9_095502_bib20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.02.037 – volume: 66 start-page: 1385 year: 2012 ident: pst_26_9_095502_bib26 publication-title: Appl. Spectrosc. doi: 10.1366/12-06639R – volume: 99 start-page: 201 year: 2014 ident: pst_26_9_095502_bib3 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2014.07.003 – volume: 133 start-page: 116113 year: 2020 ident: pst_26_9_095502_bib5 publication-title: TRAC Trends Anal. Chem. doi: 10.1016/j.trac.2020.116113 – volume: 53 start-page: 960 year: 1999 ident: pst_26_9_095502_bib19 publication-title: Appl. Spectrosc. doi: 10.1366/000370299194761 – volume: 95 start-page: 49 year: 2023 ident: pst_26_9_095502_bib7 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04910 – volume: 74 start-page: 119 year: 2012 ident: pst_26_9_095502_bib13 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2012.07.003 – volume: 19 start-page: 1061 year: 2004 ident: pst_26_9_095502_bib2 publication-title: J. Anal. At. Spectrom. doi: 10.1039/b400355c – volume: 71 start-page: 740 year: 2004 ident: pst_26_9_095502_bib29 publication-title: J. Appl. Spectrosc. doi: 10.1023/B:JAPS.0000049638.55151.80 – ident: pst_26_9_095502_bib33 – volume: 15 start-page: 1812 year: 2023 ident: pst_26_9_095502_bib34 publication-title: Anal. Methods doi: 10.1039/D3AY00280B – volume: 65 start-page: 1 year: 2010 ident: pst_26_9_095502_bib35 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2009.11.006 – volume: 59 start-page: 1413 year: 2004 ident: pst_26_9_095502_bib12 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2004.06.006 – volume: 11 start-page: 3657 year: 2019 ident: pst_26_9_095502_bib17 publication-title: Anal. Methods doi: 10.1039/C9AY01030K – volume: 28 start-page: 96 year: 2019 ident: pst_26_9_095502_bib8 publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2019.10.002 – volume: 42 start-page: 294 year: 2021 ident: pst_26_9_095502_bib11 publication-title: At. Spectrosc. doi: 10.46770/AS.2021.608 – volume: 21 start-page: 034014 year: 2019 ident: pst_26_9_095502_bib18 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/aaef6e – volume: 87 start-page: 51 year: 2013 ident: pst_26_9_095502_bib21 publication-title: Spectrochim. Acta B doi: 10.1016/j.sab.2013.05.016 – volume: 22 start-page: 085501 year: 2020 ident: pst_26_9_095502_bib30 publication-title: Plasma Sci. Technol. doi: 10.1088/2058-6272/ab861b – volume: 34 start-page: 1478 year: 2019 ident: pst_26_9_095502_bib31 publication-title: J. Anal. At. Spectrom. doi: 10.1039/C9JA00059C |
SSID | ssj0054983 |
Score | 2.3141587 |
Snippet | This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 95502 |
SubjectTerms | laser-induced breakdown spectroscopy multielement quantitative analysis standard curve |
Title | Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method |
URI | https://iopscience.iop.org/article/10.1088/2058-6272/ad5119 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPmRubZqm-CTimIKXBwd7EErSJDgG7exWRX-LP9aTphUVBfGthfTCycnJ9-V8OUHoQACk9jjzSWgiRSiNJBGaRiRMZNc3mgWmzJheXbP-gF4Og2EDnXzshckmVehvw6UrFOxMWAniOND1gBPmhd6xUDYLNofm7cGV1r0vbm7rMAy8hzt1vV39Z36nylH-9IYvc9IcfPfTFNNbRvf1zzllybhdzGQ7ef1Wt_Gff7-CliroiU9d01XU0OkaWigloMl0Hb3VIjycpVhChH7ApdpQO4E5zsVkpPBjIdJyXxpESSyqiibYzoXKPgdwEterEzgp8idNAJ1bV4JbUXJz6wnE5FpjAO46J6NUgXspDNxcjFX2nOJy96etsplNXrA74noDDXrnd2d9Up3dQBLP92cw-CQgHyXDiEeJMJpCrIi0Z5jgjEnLs0LBI6Eo0zLs0C4X4CuRHwDWZ1wABt1EzTRL9RbC1DDtd2kgDVC7jlEyUIkOmZIQniQwsBY6qnsvnrgSHXGZWuc8ttaOrbVjZ-0WOoSOiatxOv213fYf2-2gRQ9QjhOd7aLmLC_0HqCUmdwvvfEdiHLiKA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66onjxLb7NQQ8esu62aZoeRV18rh4UvNWkSVCEttZdRX-LP9ZJ0oKKguCthfQ1mUy-r_NlgtCWAEgdcBaS2CSKUJpIIjRNSJzJbmg0i4zLmJ732dE1PbmJbup9Tt1amKKsQ38bDn2hYG_CWhDHga5HnLAgDnaFslmw3VKZUTQWQSi2mq7ji8smFAP34V5hbzMALOzUecqf7vJlXhqFZ3-aZnrT6LZ5Qa8ueWgPB7KdvX2r3fiPL5hBUzUExXu--Swa0fkcGndS0OxpHr03Yjxc5FhCpL7DTnWovdAcV6K8V_hxKHK3Pg2iJRZ1ZRNs50RlrwNYiZu_FDgbVs-aAEq3LgWnwnF06xHEVFpjAPC6Ive5AjdTGDi6eFDFS47dKlBbbbMoX7Hf6noBXfcOr_aPSL2HA8mCMBzAIJSAgJSME55kwmgKMSPRgWGCMyYt34oFT4SiTMu4Q7tcgM8kYQSYn3EBWHQRtfIi10sIU8N02KWRNEDxOkbJSGU6ZkpCmJLAxJbRTtODaelLdaQuxc55ai2eWoun3uLLaBs6J63H69Ov7Vb-2G4TTVwe9NKz4_7pKpoMAPh4Hdoaag2qoV4H4DKQG845PwCW8eeM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+batch+multielement+rapid+quantitative+analysis+based+on+the+standard+curve-assisted+calibration-free+laser-induced+breakdown+spectroscopy+method&rft.jtitle=Plasma+science+%26+technology&rft.au=HAN%2C+Weiwei&rft.au=SUN%2C+Duixiong&rft.au=ZHANG%2C+Guoding&rft.au=WANG%2C+Honglin&rft.date=2024-09-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=9&rft_id=info:doi/10.1088%2F2058-6272%2Fad5119&rft.externalDocID=pstad5119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon |