Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method

This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 26; no. 9; pp. 95502 - 95510
Main Authors HAN, Weiwei, SUN, Duixiong, ZHANG, Guoding, WANG, Honglin, GUO, Kai, ZHANG, Yuzhuo, WANG, Haoliang, ZHANG, Denghong, DONG, Chenzhong, SU, Maogen
Format Journal Article
LanguageEnglish
Published Plasma Science and Technology 01.09.2024
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/2058-6272/ad5119

Cover

Abstract This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number of samples, namely, SC-assisted CF-LIBS. Al alloy standard samples, divided into calibration and test samples, were applied to validate the proposed method. SC was built based on the characteristic line of Pb and Cr in the calibration sample, and the contents of Pb and Cr in the test sample were calculated with relative errors of 6% and 4%, respectively. SC built using Cr with multiple characteristic lines yielded better calculation results. The relative contents of ten elements in the test sample were calculated using CF-LIBS. Subsequently, the SC-assisted CF-LIBS was executed, with the majority of the calculation relative errors falling within the range of 2%–5%. Finally, the Al and Na contents of the Al alloy were predicted. The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples. Furthermore, this quantitative analysis method was successfully applied to soil and Astragalus samples, realizing an accurate calculation of the contents of multiple elements. Thus, it is important to advance the LIBS quantitative analysis and its related applications.
AbstractList This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free laser-induced breakdown spectroscopy (CF-LIBS) technology to achieve synchronous, rapid, and accurate measurement of elements in a large number of samples, namely, SC-assisted CF-LIBS. Al alloy standard samples, divided into calibration and test samples, were applied to validate the proposed method. SC was built based on the characteristic line of Pb and Cr in the calibration sample, and the contents of Pb and Cr in the test sample were calculated with relative errors of 6% and 4%, respectively. SC built using Cr with multiple characteristic lines yielded better calculation results. The relative contents of ten elements in the test sample were calculated using CF-LIBS. Subsequently, the SC-assisted CF-LIBS was executed, with the majority of the calculation relative errors falling within the range of 2%–5%. Finally, the Al and Na contents of the Al alloy were predicted. The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples. Furthermore, this quantitative analysis method was successfully applied to soil and Astragalus samples, realizing an accurate calculation of the contents of multiple elements. Thus, it is important to advance the LIBS quantitative analysis and its related applications.
Author ZHANG, Guoding
ZHANG, Denghong
GUO, Kai
ZHANG, Yuzhuo
WANG, Haoliang
SU, Maogen
DONG, Chenzhong
HAN, Weiwei
SUN, Duixiong
WANG, Honglin
Author_xml – sequence: 1
  givenname: Weiwei
  surname: HAN
  fullname: HAN, Weiwei
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 2
  givenname: Duixiong
  surname: SUN
  fullname: SUN, Duixiong
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 3
  givenname: Guoding
  surname: ZHANG
  fullname: ZHANG, Guoding
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 4
  givenname: Honglin
  surname: WANG
  fullname: WANG, Honglin
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 5
  givenname: Kai
  surname: GUO
  fullname: GUO, Kai
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 6
  givenname: Yuzhuo
  surname: ZHANG
  fullname: ZHANG, Yuzhuo
  organization: Key Laboratory of Atomic and Molecular Physics & Functional Material of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
– sequence: 7
  givenname: Haoliang
  surname: WANG
  fullname: WANG, Haoliang
  organization: Gansu Digital Herb Testing Center, Dingxi 743000, People’s Republic of China
– sequence: 8
  givenname: Denghong
  surname: ZHANG
  fullname: ZHANG, Denghong
  organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China
– sequence: 9
  givenname: Chenzhong
  surname: DONG
  fullname: DONG, Chenzhong
  organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China
– sequence: 10
  givenname: Maogen
  surname: SU
  fullname: SU, Maogen
  organization: Gansu International Scientific and Technological Cooperation Base of Laser Plasma Spectroscopy, Lanzhou 730070, People’s Republic of China
BookMark eNp1kMtOwzAQRb0oEm1hz9IfQKjztpeo4iVVQkKwjib2RHVJ7GA7Rf0XPhZHZctqRpp7ZjRnRRbGGiTkJmV3KeN8k7GSJ1VWZxtQZZqKBVmmjImEVTm7JCvvD4yVheD5kvy8oUdwck-toS2E2AxTHzT2OKAJ1MGoFf2awAQdIOgjUjDQn7z2Me5RzVzYI_UBjAKnqJzcERPwMRHiWEKvWxdJa5LOIdI-Ui7RRk0yjluH8Knst6F-RBmc9dKOJzpg2Ft1RS466D1e_9U1-Xh8eN8-J7vXp5ft_S6RWZ6HJGOtELlqa8GFhA6LIj6LWVcBr6qWFULUwAWoosK2ZkXKoRNK5GWdiYpDmedrws57ZbzvHXbN6PQA7tSkrJmNNrPRZjbanI1G5PaMaDs2Bzu5KMX_H_8Faed_cA
Cites_doi 10.1177/00037028176915
10.1070/RCR4538
10.1016/j.sab.2012.06.034
10.1155/2022/3887038
10.1016/j.culher.2022.04.012
10.1016/j.optlastec.2019.105689
10.1016/j.sab.2017.09.011
10.1016/j.sab.2010.03.018
10.1364/AO.56.008196
10.1016/j.sab.2016.06.008
10.1088/2058-6272/aa97ce
10.1039/C9AY00890J
10.1016/j.sab.2016.08.022
10.5402/2012/285240
10.1007/s00340-018-6909-x
10.1016/j.trac.2022.116618
10.1039/C1JA10164A
10.1016/j.apsusc.2007.02.037
10.1366/12-06639R
10.1016/j.sab.2014.07.003
10.1016/j.trac.2020.116113
10.1366/000370299194761
10.1021/acs.analchem.2c04910
10.1016/j.sab.2012.07.003
10.1039/b400355c
10.1023/B:JAPS.0000049638.55151.80
10.1039/D3AY00280B
10.1016/j.sab.2009.11.006
10.1016/j.sab.2004.06.006
10.1039/C9AY01030K
10.1016/j.cofs.2019.10.002
10.46770/AS.2021.608
10.1088/2058-6272/aaef6e
10.1016/j.sab.2013.05.016
10.1088/2058-6272/ab861b
10.1039/C9JA00059C
ContentType Journal Article
Copyright 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
Copyright_xml – notice: 2024, Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing. All rights reserved
DBID AAYXX
CITATION
DOI 10.1088/2058-6272/ad5119
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1088_2058_6272_ad5119
pstad5119
GroupedDBID -SA
-S~
123
1JI
4.4
5B3
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
CW9
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
W28
AAYXX
ADEQX
CITATION
Q--
ID FETCH-LOGICAL-c233t-20b993db7989cafe44009e2f6a866b04997a89ad46eb70418af9d93572968a533
IEDL.DBID IOP
ISSN 1009-0630
IngestDate Tue Jul 01 03:44:44 EDT 2025
Wed Sep 25 08:11:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-20b993db7989cafe44009e2f6a866b04997a89ad46eb70418af9d93572968a533
PageCount 9
ParticipantIDs crossref_primary_10_1088_2058_6272_ad5119
iop_journals_10_1088_2058_6272_ad5119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240901
  day: 01
PublicationDecade 2020
PublicationTitle Plasma science & technology
PublicationTitleAlternate Plasma Sci. Technol
PublicationYear 2024
Publisher Plasma Science and Technology
Publisher_xml – name: Plasma Science and Technology
References Rauschenbach (pst_26_9_095502_bib37) 2010; 65
De Giacomo (pst_26_9_095502_bib20) 2007; 253
Lu (pst_26_9_095502_bib18) 2019; 21
Bauer (pst_26_9_095502_bib36) 2017; 71
Gardette (pst_26_9_095502_bib7) 2023; 95
Grifoni (pst_26_9_095502_bib23) 2016; 124
Anabitarte (pst_26_9_095502_bib1) 2012; 2012
Lee (pst_26_9_095502_bib26) 2012; 66
pst_26_9_095502_bib6
Khan (pst_26_9_095502_bib25) 2022; 2022
Hu (pst_26_9_095502_bib14) 2022; 152
Spizzichino (pst_26_9_095502_bib3) 2014; 99
Chen (pst_26_9_095502_bib5) 2020; 133
Guo (pst_26_9_095502_bib15) 2019; 11
Zhao (pst_26_9_095502_bib28) 2018; 20
Bennett (pst_26_9_095502_bib24) 2018; 124
Gaudiuso (pst_26_9_095502_bib22) 2012; 74
Hornácková (pst_26_9_095502_bib13) 2012; 74
Zorov (pst_26_9_095502_bib38) 2015; 84
Sun (pst_26_9_095502_bib32) 2022; 55
Wan (pst_26_9_095502_bib11) 2021; 42
Guo (pst_26_9_095502_bib10) 2017; 56
Ding (pst_26_9_095502_bib17) 2019; 11
Markiewicz-Keszycka (pst_26_9_095502_bib8) 2019; 28
Han (pst_26_9_095502_bib30) 2020; 22
Meng (pst_26_9_095502_bib4) 2017; 137
Burakov (pst_26_9_095502_bib29) 2004; 71
pst_26_9_095502_bib33
Ling (pst_26_9_095502_bib34) 2023; 15
Wu (pst_26_9_095502_bib31) 2019; 34
Yin (pst_26_9_095502_bib9) 2019; 120
Tognoni (pst_26_9_095502_bib35) 2010; 65
Yaroshchyk (pst_26_9_095502_bib16) 2012; 27
Ciucci (pst_26_9_095502_bib19) 1999; 53
Sallé (pst_26_9_095502_bib12) 2004; 59
Ahamer (pst_26_9_095502_bib27) 2016; 122
Cavalcanti (pst_26_9_095502_bib21) 2013; 87
Winefordner (pst_26_9_095502_bib2) 2004; 19
References_xml – volume: 71
  start-page: 553
  year: 2017
  ident: pst_26_9_095502_bib36
  publication-title: Appl. Spectrosc.
  doi: 10.1177/00037028176915
– volume: 84
  start-page: 1021
  year: 2015
  ident: pst_26_9_095502_bib38
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR4538
– volume: 74
  start-page: 38
  year: 2012
  ident: pst_26_9_095502_bib22
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2012.06.034
– volume: 2022
  start-page: 3887038
  year: 2022
  ident: pst_26_9_095502_bib25
  publication-title: J. Spectrosc.
  doi: 10.1155/2022/3887038
– volume: 55
  start-page: 399
  year: 2022
  ident: pst_26_9_095502_bib32
  publication-title: J. Cult. Heritage
  doi: 10.1016/j.culher.2022.04.012
– volume: 120
  start-page: 105689
  year: 2019
  ident: pst_26_9_095502_bib9
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.105689
– volume: 137
  start-page: 39
  year: 2017
  ident: pst_26_9_095502_bib4
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2017.09.011
– volume: 65
  start-page: 758
  year: 2010
  ident: pst_26_9_095502_bib37
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2010.03.018
– volume: 56
  start-page: 8196
  year: 2017
  ident: pst_26_9_095502_bib10
  publication-title: Appl. Opt.
  doi: 10.1364/AO.56.008196
– volume: 122
  start-page: 157
  year: 2016
  ident: pst_26_9_095502_bib27
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2016.06.008
– volume: 20
  start-page: 035502
  year: 2018
  ident: pst_26_9_095502_bib28
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aa97ce
– volume: 11
  start-page: 3006
  year: 2019
  ident: pst_26_9_095502_bib15
  publication-title: Anal. Methods
  doi: 10.1039/C9AY00890J
– volume: 124
  start-page: 40
  year: 2016
  ident: pst_26_9_095502_bib23
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2016.08.022
– volume: 2012
  start-page: 285240
  year: 2012
  ident: pst_26_9_095502_bib1
  publication-title: ISRN Spectrosc.
  doi: 10.5402/2012/285240
– ident: pst_26_9_095502_bib6
– volume: 124
  start-page: 42
  year: 2018
  ident: pst_26_9_095502_bib24
  publication-title: Appl. Phys. B
  doi: 10.1007/s00340-018-6909-x
– volume: 152
  start-page: 116618
  year: 2022
  ident: pst_26_9_095502_bib14
  publication-title: TRAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2022.116618
– volume: 27
  start-page: 92
  year: 2012
  ident: pst_26_9_095502_bib16
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C1JA10164A
– volume: 253
  start-page: 7677
  year: 2007
  ident: pst_26_9_095502_bib20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.02.037
– volume: 66
  start-page: 1385
  year: 2012
  ident: pst_26_9_095502_bib26
  publication-title: Appl. Spectrosc.
  doi: 10.1366/12-06639R
– volume: 99
  start-page: 201
  year: 2014
  ident: pst_26_9_095502_bib3
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2014.07.003
– volume: 133
  start-page: 116113
  year: 2020
  ident: pst_26_9_095502_bib5
  publication-title: TRAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116113
– volume: 53
  start-page: 960
  year: 1999
  ident: pst_26_9_095502_bib19
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370299194761
– volume: 95
  start-page: 49
  year: 2023
  ident: pst_26_9_095502_bib7
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.2c04910
– volume: 74
  start-page: 119
  year: 2012
  ident: pst_26_9_095502_bib13
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2012.07.003
– volume: 19
  start-page: 1061
  year: 2004
  ident: pst_26_9_095502_bib2
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/b400355c
– volume: 71
  start-page: 740
  year: 2004
  ident: pst_26_9_095502_bib29
  publication-title: J. Appl. Spectrosc.
  doi: 10.1023/B:JAPS.0000049638.55151.80
– ident: pst_26_9_095502_bib33
– volume: 15
  start-page: 1812
  year: 2023
  ident: pst_26_9_095502_bib34
  publication-title: Anal. Methods
  doi: 10.1039/D3AY00280B
– volume: 65
  start-page: 1
  year: 2010
  ident: pst_26_9_095502_bib35
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2009.11.006
– volume: 59
  start-page: 1413
  year: 2004
  ident: pst_26_9_095502_bib12
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2004.06.006
– volume: 11
  start-page: 3657
  year: 2019
  ident: pst_26_9_095502_bib17
  publication-title: Anal. Methods
  doi: 10.1039/C9AY01030K
– volume: 28
  start-page: 96
  year: 2019
  ident: pst_26_9_095502_bib8
  publication-title: Curr. Opin. Food Sci.
  doi: 10.1016/j.cofs.2019.10.002
– volume: 42
  start-page: 294
  year: 2021
  ident: pst_26_9_095502_bib11
  publication-title: At. Spectrosc.
  doi: 10.46770/AS.2021.608
– volume: 21
  start-page: 034014
  year: 2019
  ident: pst_26_9_095502_bib18
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/aaef6e
– volume: 87
  start-page: 51
  year: 2013
  ident: pst_26_9_095502_bib21
  publication-title: Spectrochim. Acta B
  doi: 10.1016/j.sab.2013.05.016
– volume: 22
  start-page: 085501
  year: 2020
  ident: pst_26_9_095502_bib30
  publication-title: Plasma Sci. Technol.
  doi: 10.1088/2058-6272/ab861b
– volume: 34
  start-page: 1478
  year: 2019
  ident: pst_26_9_095502_bib31
  publication-title: J. Anal. At. Spectrom.
  doi: 10.1039/C9JA00059C
SSID ssj0054983
Score 2.3141587
Snippet This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve (SC) and calibration-free...
SourceID crossref
iop
SourceType Index Database
Publisher
StartPage 95502
SubjectTerms laser-induced breakdown spectroscopy
multielement
quantitative analysis
standard curve
Title Research on batch multielement rapid quantitative analysis based on the standard curve-assisted calibration-free laser-induced breakdown spectroscopy method
URI https://iopscience.iop.org/article/10.1088/2058-6272/ad5119
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zIvjiXZw38qAPPmRubZqm-CTimIKXBwd7EErSJDgG7exWRX-LP9aTphUVBfGthfTCycnJ9-V8OUHoQACk9jjzSWgiRSiNJBGaRiRMZNc3mgWmzJheXbP-gF4Og2EDnXzshckmVehvw6UrFOxMWAniOND1gBPmhd6xUDYLNofm7cGV1r0vbm7rMAy8hzt1vV39Z36nylH-9IYvc9IcfPfTFNNbRvf1zzllybhdzGQ7ef1Wt_Gff7-CliroiU9d01XU0OkaWigloMl0Hb3VIjycpVhChH7ApdpQO4E5zsVkpPBjIdJyXxpESSyqiibYzoXKPgdwEterEzgp8idNAJ1bV4JbUXJz6wnE5FpjAO46J6NUgXspDNxcjFX2nOJy96etsplNXrA74noDDXrnd2d9Up3dQBLP92cw-CQgHyXDiEeJMJpCrIi0Z5jgjEnLs0LBI6Eo0zLs0C4X4CuRHwDWZ1wABt1EzTRL9RbC1DDtd2kgDVC7jlEyUIkOmZIQniQwsBY6qnsvnrgSHXGZWuc8ttaOrbVjZ-0WOoSOiatxOv213fYf2-2gRQ9QjhOd7aLmLC_0HqCUmdwvvfEdiHLiKA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66onjxLb7NQQ8esu62aZoeRV18rh4UvNWkSVCEttZdRX-LP9ZJ0oKKguCthfQ1mUy-r_NlgtCWAEgdcBaS2CSKUJpIIjRNSJzJbmg0i4zLmJ732dE1PbmJbup9Tt1amKKsQ38bDn2hYG_CWhDHga5HnLAgDnaFslmw3VKZUTQWQSi2mq7ji8smFAP34V5hbzMALOzUecqf7vJlXhqFZ3-aZnrT6LZ5Qa8ueWgPB7KdvX2r3fiPL5hBUzUExXu--Swa0fkcGndS0OxpHr03Yjxc5FhCpL7DTnWovdAcV6K8V_hxKHK3Pg2iJRZ1ZRNs50RlrwNYiZu_FDgbVs-aAEq3LgWnwnF06xHEVFpjAPC6Ive5AjdTGDi6eFDFS47dKlBbbbMoX7Hf6noBXfcOr_aPSL2HA8mCMBzAIJSAgJSME55kwmgKMSPRgWGCMyYt34oFT4SiTMu4Q7tcgM8kYQSYn3EBWHQRtfIi10sIU8N02KWRNEDxOkbJSGU6ZkpCmJLAxJbRTtODaelLdaQuxc55ai2eWoun3uLLaBs6J63H69Ov7Vb-2G4TTVwe9NKz4_7pKpoMAPh4Hdoaag2qoV4H4DKQG845PwCW8eeM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+batch+multielement+rapid+quantitative+analysis+based+on+the+standard+curve-assisted+calibration-free+laser-induced+breakdown+spectroscopy+method&rft.jtitle=Plasma+science+%26+technology&rft.au=HAN%2C+Weiwei&rft.au=SUN%2C+Duixiong&rft.au=ZHANG%2C+Guoding&rft.au=WANG%2C+Honglin&rft.date=2024-09-01&rft.pub=Plasma+Science+and+Technology&rft.issn=1009-0630&rft.volume=26&rft.issue=9&rft_id=info:doi/10.1088%2F2058-6272%2Fad5119&rft.externalDocID=pstad5119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1009-0630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1009-0630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1009-0630&client=summon