Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure
The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplifica...
Saved in:
Published in | Mechanical systems and signal processing Vol. 181; p. 109499 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplification and directivity acoustic systems remains a slippery subject. Here, we propose a gradient acoustic metamaterial (GAM) coupled with space-coiling structure (GAM-SCS) for the detection and localization of weak sound sources. The GAM-SCS is evaluated both numerically and experimentally. Compared with the GAM without space-coiling structure, the GAM-SCS has a better pressure amplification performance which enables the sound signals to be pre-amplified. Meanwhile, the induced space-coiling structure, making use of subwavelength features, also enables the GAM-SCS to work in a lower frequency. Furthermore, the directivity of the GAM-SCS also shines lights on directional acoustic sensing to resist noise interference. We believe that this work opens up a new vista to realize the detection and localization of weak sound sources based on acoustic metamaterials. |
---|---|
AbstractList | The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplification and directivity acoustic systems remains a slippery subject. Here, we propose a gradient acoustic metamaterial (GAM) coupled with space-coiling structure (GAM-SCS) for the detection and localization of weak sound sources. The GAM-SCS is evaluated both numerically and experimentally. Compared with the GAM without space-coiling structure, the GAM-SCS has a better pressure amplification performance which enables the sound signals to be pre-amplified. Meanwhile, the induced space-coiling structure, making use of subwavelength features, also enables the GAM-SCS to work in a lower frequency. Furthermore, the directivity of the GAM-SCS also shines lights on directional acoustic sensing to resist noise interference. We believe that this work opens up a new vista to realize the detection and localization of weak sound sources based on acoustic metamaterials. |
ArticleNumber | 109499 |
Author | Chen, Tinggui Yu, Dejie Wang, Chengyong |
Author_xml | – sequence: 1 givenname: Tinggui surname: Chen fullname: Chen, Tinggui – sequence: 2 givenname: Chengyong surname: Wang fullname: Wang, Chengyong – sequence: 3 givenname: Dejie surname: Yu fullname: Yu, Dejie email: djyu@hnu.edu.cn |
BookMark | eNqFkLtOwzAUhi1UJFrgCVj8Aim-pE48MKCKm1QJBpgtxz4prnKT7YI68O44DRMDTMfH-j9b_7dAs67vAKErSpaUUHG9Wx7aEIYlI4ylG5lLeYLm6SAyyqiYoTkpyzLjrCBnaBHCjpAUImKOvl48hLD3gHU7NK52RkfXd1h3FlvnwYybbrA2_T5EZ3CALrhuiysdwOIxibdeWwddxC1E3eoI3iUiAUOTIp8uvuMwaAOZ6V0zsiH6vYnp0wt0WusmwOXPPEdv93ev68ds8_zwtL7dZIZxHjMqbE2klVVuNFkVuuRGrGRZMqikoDnPISfAKSe2YMA4KQzUoqJU8iKvADQ_R3J61_g-BA-1Mi4ei0avXaMoUaNHtVNHj2r0qCaPieW_2MG7VvvDP9TNREGq9eHAq2CSIwOTVGV79yf_DSDPk6k |
CitedBy_id | crossref_primary_10_1016_j_ijmecsci_2024_109752 crossref_primary_10_3390_cryst15030216 crossref_primary_10_1016_j_apacoust_2023_109246 crossref_primary_10_3390_s24092908 crossref_primary_10_1016_j_apacoust_2023_109374 crossref_primary_10_1002_adfm_202425815 crossref_primary_10_1109_OJUFFC_2023_3317363 crossref_primary_10_1109_TCI_2023_3321994 crossref_primary_10_1016_j_apacoust_2025_110532 crossref_primary_10_1016_j_compstruct_2023_117798 crossref_primary_10_1016_j_ymssp_2024_111849 crossref_primary_10_1016_j_ijmecsci_2024_108978 crossref_primary_10_1016_j_engstruct_2023_116971 crossref_primary_10_1016_j_ymssp_2023_111077 crossref_primary_10_3390_cryst13081191 crossref_primary_10_1016_j_jsv_2024_118856 crossref_primary_10_1016_j_sna_2024_116114 crossref_primary_10_1016_j_ymssp_2025_112346 crossref_primary_10_1080_15376494_2025_2471029 crossref_primary_10_1016_j_ijmecsci_2024_109131 crossref_primary_10_1016_j_physleta_2023_129242 |
Cites_doi | 10.1002/advs.201902271 10.1103/PhysRevLett.108.114301 10.1073/pnas.1502276112 10.1016/j.ymssp.2017.04.018 10.1063/1.5107464 10.1063/1.4769984 10.1063/1.5041731 10.1002/adma.201803229 10.1038/srep29957 10.1016/j.ymssp.2019.06.034 10.1002/advs.201903101 10.1103/PhysRevApplied.13.014023 10.1038/s41598-020-67454-z 10.1063/1.4979105 10.1103/PhysRevApplied.5.054015 10.1016/j.jsv.2022.116911 10.1038/ncomms6247 10.1038/s41467-021-23991-3 10.1109/TWC.2020.3006230 10.1038/srep07038 10.1038/s41586-018-0421-7 10.1103/PhysRevLett.116.028101 10.1016/j.eml.2019.100623 10.1103/PhysRevLett.118.214301 10.1109/TVT.2019.2945007 10.1126/science.289.5485.1734 10.1063/5.0012316 10.1038/s41467-020-15950-1 10.1088/1367-2630/ab8cae 10.1016/j.nanoen.2020.105693 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ymssp.2022.109499 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2022_109499 S0888327022006100 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ |
ID | FETCH-LOGICAL-c233t-16df09d9b4ca057a83c659882eb961434e40e3130d72e2307cef6b119374beea3 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Tue Jul 01 04:30:14 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Fri Feb 23 02:38:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Directivity Coupled acoustic metamaterials Acoustic sensing Pressure amplification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c233t-16df09d9b4ca057a83c659882eb961434e40e3130d72e2307cef6b119374beea3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ymssp_2022_109499 crossref_primary_10_1016_j_ymssp_2022_109499 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Hyun, Cho, Park, Chang, Kim (b0115) 2020; 116 Xie, Tsai, Konneker, Popa, Brady, Cummer (b0025) 2015; 112 Jiang, Li, He, Peng (b0080) 2020; 11 Liu, Peng, Liu, Zou, Cheng (b0100) 2018; 113 Chen, Jiao, Yu (b0150) 2022; 529 Ni, Wu, Chen, Zheng, Xu, Nayar, Liu, Lu, Chen (b0140) 2014; 4 Cardenas Cabada, Leclere, Antoni, Hamzaoui (b0035) 2017; 97 Zhu, Liang, Kan, Peng, Cheng (b0145) 2016; 5 Miniaci, Gliozzi, Morvan, Krushynska, Bosia, Scalerandi, Pugno (b0005) 2017; 118 Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (b0055) 2000; 289 Laureti, Hutchins, Astolfi, Watson, Thomas, Burrascano, Nie, Freear, Askari, Clare, Ricci (b0070) 2020; 10 Ma, Gao, Cheng, Liu (b0090) 2019; 115 Wilmott, Alves, Karunasiri (b0050) 2016; 6 Danawe, Okudan, Ozevin, Tol (b0010) 2020; 117 Huang, Diamant (b0020) 2020; 19 Lee, Nomura, Su, Iizuka (b0045) 2020; 7 Xia, Erturk, Ruzzene (b0125) 2020; 13 Sun, Jia, Zhang, Yang, Sun, Yang (b0085) 2020; 7 Chaplain, Pajer, De Ponti, Craster (b0065) 2020; 22 Zhang, Tian, Wang, Gao, Cheng, Liu, Christensen (b0095) 2018; 30 Cheben, Halir, Schmid, Atwater, Smith (b0060) 2018; 560 Li, Wang, Wang, Qiao, Luo, Gulliver (b0015) 2019; 68 Ning, Yang, Luo, Liu, Zhuang (b0120) 2020; 35 Lu, Ding, Wang, Peng, Cui, Liu, Liu (b0155) 2017; 110 Ma, Tan, Yan, Liu, Liao, Zhang (b0105) 2021; 82 Ji, Liang, Qiu, Cheng, Wu (b0075) 2019; 132 Chen, Liu, Reilly, Bae, Yu (b0110) 2014; 5 Zhang, Rui, Ma, Cheng, Liu, Christensen (b0030) 2021; 12 Liang, Li (b0135) 2012; 108 Li, Liang, Tao, Zhu, Zou, Cheng (b0130) 2012; 101 Vedurmudi, Goulet, Christensen-Dalsgaard, Young, Williams, van Hemmen (b0040) 2016; 116 Danawe (10.1016/j.ymssp.2022.109499_b0010) 2020; 117 Miniaci (10.1016/j.ymssp.2022.109499_b0005) 2017; 118 Ma (10.1016/j.ymssp.2022.109499_b0105) 2021; 82 Chaplain (10.1016/j.ymssp.2022.109499_b0065) 2020; 22 Jiang (10.1016/j.ymssp.2022.109499_b0080) 2020; 11 Xie (10.1016/j.ymssp.2022.109499_b0025) 2015; 112 Li (10.1016/j.ymssp.2022.109499_b0130) 2012; 101 Ma (10.1016/j.ymssp.2022.109499_b0090) 2019; 115 Wilmott (10.1016/j.ymssp.2022.109499_b0050) 2016; 6 Chen (10.1016/j.ymssp.2022.109499_b0150) 2022; 529 Cardenas Cabada (10.1016/j.ymssp.2022.109499_b0035) 2017; 97 Vedurmudi (10.1016/j.ymssp.2022.109499_b0040) 2016; 116 Sun (10.1016/j.ymssp.2022.109499_b0085) 2020; 7 Laureti (10.1016/j.ymssp.2022.109499_b0070) 2020; 10 Ning (10.1016/j.ymssp.2022.109499_b0120) 2020; 35 Huang (10.1016/j.ymssp.2022.109499_b0020) 2020; 19 Chen (10.1016/j.ymssp.2022.109499_b0110) 2014; 5 Li (10.1016/j.ymssp.2022.109499_b0015) 2019; 68 Hyun (10.1016/j.ymssp.2022.109499_b0115) 2020; 116 Liang (10.1016/j.ymssp.2022.109499_b0135) 2012; 108 Zhu (10.1016/j.ymssp.2022.109499_b0145) 2016; 5 Xia (10.1016/j.ymssp.2022.109499_b0125) 2020; 13 Lu (10.1016/j.ymssp.2022.109499_b0155) 2017; 110 Ji (10.1016/j.ymssp.2022.109499_b0075) 2019; 132 Lee (10.1016/j.ymssp.2022.109499_b0045) 2020; 7 Ni (10.1016/j.ymssp.2022.109499_b0140) 2014; 4 Zhang (10.1016/j.ymssp.2022.109499_b0030) 2021; 12 Liu (10.1016/j.ymssp.2022.109499_b0055) 2000; 289 Zhang (10.1016/j.ymssp.2022.109499_b0095) 2018; 30 Cheben (10.1016/j.ymssp.2022.109499_b0060) 2018; 560 Liu (10.1016/j.ymssp.2022.109499_b0100) 2018; 113 |
References_xml | – volume: 113 year: 2018 ident: b0100 article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators publication-title: Appl. Phys. Lett. – volume: 82 year: 2021 ident: b0105 article-title: Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting publication-title: Nano Energy – volume: 5 start-page: 5247 year: 2014 ident: b0110 article-title: Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials publication-title: Nat. Commun. – volume: 110 year: 2017 ident: b0155 article-title: Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure publication-title: Appl. Phys. Lett. – volume: 108 year: 2012 ident: b0135 article-title: Extreme acoustic metamaterial by coiling up space publication-title: Phys. Rev. Lett. – volume: 5 year: 2016 ident: b0145 article-title: Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances publication-title: Phys. Rev. Appl – volume: 116 year: 2016 ident: b0040 article-title: How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization publication-title: Phys. Rev. Lett. – volume: 30 start-page: 1803229 year: 2018 ident: b0095 article-title: Directional Acoustic Antennas Based on Valley-Hall Topological Insulators publication-title: Adv. Mater. – volume: 97 start-page: 33 year: 2017 end-page: 43 ident: b0035 article-title: Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features publication-title: Mech. Syst. Signal. Process. – volume: 289 start-page: 1734 year: 2000 end-page: 1736 ident: b0055 article-title: Locally Resonant Sonic Materials publication-title: Science – volume: 35 year: 2020 ident: b0120 article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation publication-title: Extreme Mech. Lett. – volume: 4 start-page: 7038 year: 2014 ident: b0140 article-title: Acoustic rainbow trapping by coiling up space publication-title: Sci. Rep. – volume: 13 year: 2020 ident: b0125 article-title: Topological Edge States in Quasiperiodic Locally Resonant Metastructures publication-title: Phys. Rev. Appl – volume: 7 start-page: 1903101 year: 2020 ident: b0045 article-title: Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0–360 Degree Measurement publication-title: Adv. Sci. – volume: 12 start-page: 3670 year: 2021 ident: b0030 article-title: Remote whispering metamaterial for non-radiative transceiving of ultra-weak sound publication-title: Nat. Commun. – volume: 19 start-page: 6844 year: 2020 end-page: 6857 ident: b0020 article-title: Adaptive Modulation for Long-Range Underwater Acoustic Communication publication-title: IEEE Trans. Wirel. Commun. – volume: 7 start-page: 1902271 year: 2020 ident: b0085 article-title: Sound Localization and Separation in 3D Space Using a Single Microphone with a Metamaterial Enclosure publication-title: Adv. Sci. – volume: 118 year: 2017 ident: b0005 article-title: Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals publication-title: Phys. Rev. Lett. – volume: 22 year: 2020 ident: b0065 article-title: Delineating rainbow reflection and trapping with applications for energy harvesting publication-title: New J. Phys. – volume: 10 start-page: 10601 year: 2020 ident: b0070 article-title: Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water publication-title: Sci. Rep. – volume: 115 year: 2019 ident: b0090 article-title: Acoustic metamaterial antennas for combined highly directive-sensitive detection publication-title: Appl. Phys. Lett. – volume: 132 start-page: 441 year: 2019 end-page: 456 ident: b0075 article-title: Enhancement of vibration based energy harvesting using compound acoustic black holes publication-title: Mech. Syst. Signal. Process. – volume: 112 start-page: 10595 year: 2015 end-page: 10598 ident: b0025 article-title: Single-sensor multispeaker listening with acoustic metamaterials publication-title: Proc. Natl. Acad. Sci. U S A – volume: 68 start-page: 12381 year: 2019 end-page: 12386 ident: b0015 article-title: Optimal Beamforming Design for Underwater Acoustic Communication With Multiple Unsteady Sub-Gaussian Interferers publication-title: IEEE Trans. Veh. Technol. – volume: 116 year: 2020 ident: b0115 article-title: Achromatic acoustic gradient-index phononic crystal lens for broadband focusing publication-title: Appl. Phys. Lett. – volume: 529 start-page: 116911 year: 2022 ident: b0150 article-title: Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing publication-title: J. Sound Vib. – volume: 11 start-page: 2353 year: 2020 ident: b0080 article-title: Randomized resonant metamaterials for single-sensor identification of elastic vibrations publication-title: Nat. Commun. – volume: 117 year: 2020 ident: b0010 article-title: Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures publication-title: Appl. Phys. Lett. – volume: 6 start-page: 29957 year: 2016 ident: b0050 article-title: Bio-Inspired Miniature Direction Finding Acoustic Sensor publication-title: Sci. Rep. – volume: 560 start-page: 565 year: 2018 end-page: 572 ident: b0060 article-title: Subwavelength integrated photonics publication-title: Nature – volume: 101 year: 2012 ident: b0130 article-title: Acoustic focusing by coiling up space publication-title: Appl. Phys. Lett. – volume: 7 start-page: 1902271 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0085 article-title: Sound Localization and Separation in 3D Space Using a Single Microphone with a Metamaterial Enclosure publication-title: Adv. Sci. doi: 10.1002/advs.201902271 – volume: 108 year: 2012 ident: 10.1016/j.ymssp.2022.109499_b0135 article-title: Extreme acoustic metamaterial by coiling up space publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.114301 – volume: 112 start-page: 10595 year: 2015 ident: 10.1016/j.ymssp.2022.109499_b0025 article-title: Single-sensor multispeaker listening with acoustic metamaterials publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1502276112 – volume: 97 start-page: 33 year: 2017 ident: 10.1016/j.ymssp.2022.109499_b0035 article-title: Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2017.04.018 – volume: 115 year: 2019 ident: 10.1016/j.ymssp.2022.109499_b0090 article-title: Acoustic metamaterial antennas for combined highly directive-sensitive detection publication-title: Appl. Phys. Lett. doi: 10.1063/1.5107464 – volume: 101 year: 2012 ident: 10.1016/j.ymssp.2022.109499_b0130 article-title: Acoustic focusing by coiling up space publication-title: Appl. Phys. Lett. doi: 10.1063/1.4769984 – volume: 113 year: 2018 ident: 10.1016/j.ymssp.2022.109499_b0100 article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.5041731 – volume: 30 start-page: 1803229 issue: 36 year: 2018 ident: 10.1016/j.ymssp.2022.109499_b0095 article-title: Directional Acoustic Antennas Based on Valley-Hall Topological Insulators publication-title: Adv. Mater. doi: 10.1002/adma.201803229 – volume: 6 start-page: 29957 year: 2016 ident: 10.1016/j.ymssp.2022.109499_b0050 article-title: Bio-Inspired Miniature Direction Finding Acoustic Sensor publication-title: Sci. Rep. doi: 10.1038/srep29957 – volume: 132 start-page: 441 year: 2019 ident: 10.1016/j.ymssp.2022.109499_b0075 article-title: Enhancement of vibration based energy harvesting using compound acoustic black holes publication-title: Mech. Syst. Signal. Process. doi: 10.1016/j.ymssp.2019.06.034 – volume: 7 start-page: 1903101 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0045 article-title: Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0–360 Degree Measurement publication-title: Adv. Sci. doi: 10.1002/advs.201903101 – volume: 13 issue: 1 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0125 article-title: Topological Edge States in Quasiperiodic Locally Resonant Metastructures publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.13.014023 – volume: 10 start-page: 10601 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0070 article-title: Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water publication-title: Sci. Rep. doi: 10.1038/s41598-020-67454-z – volume: 110 year: 2017 ident: 10.1016/j.ymssp.2022.109499_b0155 article-title: Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979105 – volume: 5 year: 2016 ident: 10.1016/j.ymssp.2022.109499_b0145 article-title: Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances publication-title: Phys. Rev. Appl doi: 10.1103/PhysRevApplied.5.054015 – volume: 529 start-page: 116911 year: 2022 ident: 10.1016/j.ymssp.2022.109499_b0150 article-title: Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.116911 – volume: 5 start-page: 5247 year: 2014 ident: 10.1016/j.ymssp.2022.109499_b0110 article-title: Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms6247 – volume: 12 start-page: 3670 year: 2021 ident: 10.1016/j.ymssp.2022.109499_b0030 article-title: Remote whispering metamaterial for non-radiative transceiving of ultra-weak sound publication-title: Nat. Commun. doi: 10.1038/s41467-021-23991-3 – volume: 19 start-page: 6844 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0020 article-title: Adaptive Modulation for Long-Range Underwater Acoustic Communication publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3006230 – volume: 4 start-page: 7038 year: 2014 ident: 10.1016/j.ymssp.2022.109499_b0140 article-title: Acoustic rainbow trapping by coiling up space publication-title: Sci. Rep. doi: 10.1038/srep07038 – volume: 560 start-page: 565 year: 2018 ident: 10.1016/j.ymssp.2022.109499_b0060 article-title: Subwavelength integrated photonics publication-title: Nature doi: 10.1038/s41586-018-0421-7 – volume: 116 year: 2016 ident: 10.1016/j.ymssp.2022.109499_b0040 article-title: How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.028101 – volume: 35 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0120 article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation publication-title: Extreme Mech. Lett. doi: 10.1016/j.eml.2019.100623 – volume: 118 year: 2017 ident: 10.1016/j.ymssp.2022.109499_b0005 article-title: Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.214301 – volume: 68 start-page: 12381 year: 2019 ident: 10.1016/j.ymssp.2022.109499_b0015 article-title: Optimal Beamforming Design for Underwater Acoustic Communication With Multiple Unsteady Sub-Gaussian Interferers publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2945007 – volume: 289 start-page: 1734 year: 2000 ident: 10.1016/j.ymssp.2022.109499_b0055 article-title: Locally Resonant Sonic Materials publication-title: Science doi: 10.1126/science.289.5485.1734 – volume: 117 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0010 article-title: Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures publication-title: Appl. Phys. Lett. doi: 10.1063/5.0012316 – volume: 11 start-page: 2353 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0080 article-title: Randomized resonant metamaterials for single-sensor identification of elastic vibrations publication-title: Nat. Commun. doi: 10.1038/s41467-020-15950-1 – volume: 116 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0115 article-title: Achromatic acoustic gradient-index phononic crystal lens for broadband focusing publication-title: Appl. Phys. Lett. – volume: 22 year: 2020 ident: 10.1016/j.ymssp.2022.109499_b0065 article-title: Delineating rainbow reflection and trapping with applications for energy harvesting publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8cae – volume: 82 year: 2021 ident: 10.1016/j.ymssp.2022.109499_b0105 article-title: Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105693 |
SSID | ssj0009406 |
Score | 2.4990687 |
Snippet | The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109499 |
SubjectTerms | Acoustic sensing Coupled acoustic metamaterials Directivity Pressure amplification |
Title | Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure |
URI | https://dx.doi.org/10.1016/j.ymssp.2022.109499 |
Volume | 181 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwEtrarpOMVUVVQOoClbpFju1URW1atVkY4LdzZydQJNSBMdadklwud2fru-8IuTWGKa4UOK8xMhBK8yCVsEtRXAsjY-STcWyfIzkci6dJd1Ij_aoXBmGVZez3Md1F63KlVVqztZrNWi_wf4A7htgqCkmpjft2IUL08vvPH5hHLNx8TRQOULpiHnIYr_fFZoOklYwhrZJwBLB_ZKetjDM4IodlqUh7_mmOSc3mJ-Rgi0DwlHz47r61pQqR4Vl5AEdVbqh_MXfSRyHsualddIN49XxKMXkZipJ0unaor4IubKGgfnUuSUFhNQcRPKelEHW0DfRyhr3r1FPOwk3PyHjw8NofBuVAhUAzzougI03Wjk2cCq2gTlMR17IbQ41t0xjSNBdWtC2HrGZCZhEhrm0m0w7UeKFIrVX8nNTzZW4vCI1YBgspR4ZHqMHCKI25lBnECAs7pIg1CKsMmeiSbRyHXsyTClb2ljjrJ2j9xFu_Qe6-lVaebGO3uKy-UPLLZxJIB7sUL_-reEX28crDWa5JHextb6AoKdKm87om2es9Pg9HXxNZ4_4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG2Hqk-VPj10bATExklGhIpCoSwFiS1ybAdRQUCQpUP_e--cpKVSxdDVuVOSy-XubH33HSGPWruSSQnOq7VwuFTMiQXsUiRTXIsA-WQs2-dIhBP-Mm1PK6Rb9sIgrLKI_XlMt9G6WGkU1mys5_PGG_wf4I4etopCUmrCvr2G7FTtKql1-oNw9MO9y-2ITZR3UKEkH7Iwr4_ldou8la6LzErccsD-kaB2kk7vhBwX1SLt5A90SiomPSNHOxyC5-Qzb_DbGCoRHJ4UZ3BUpprm72YP-yhEPju4i24Rsp7OKOYvTVGSzjYW-JXRpckklLDWKykorBcggke1FAKPMo5azbF9neass3DTCzLpPY-7oVPMVHCUy1jmtIROmoEOYq4klGrSZ0q0AyizTRxApmbc8KZhkNi05xoEiSuTiLgFZZ7HY2MkuyTVdJWaK0J9N4GFmCHJI5Rhnh8HTIgEwoSBTZLv1olbGjJSBeE4zr1YRCWy7D2y1o_Q-lFu_Tp5-lZa53wb-8VF-YWiX24TQUbYp3j9X8UHchCOX4fRsD8a3JBDvJKjW25JFWxv7qBGyeL7wge_AOT35q8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+amplification+and+directional+acoustic+sensing+based+on+a+gradient+metamaterial+coupled+with+space-coiling+structure&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Chen%2C+Tinggui&rft.au=Wang%2C+Chengyong&rft.au=Yu%2C+Dejie&rft.date=2022-12-01&rft.issn=0888-3270&rft.volume=181&rft.spage=109499&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2022_109499 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |