Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure

The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplifica...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 181; p. 109499
Main Authors Chen, Tinggui, Wang, Chengyong, Yu, Dejie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplification and directivity acoustic systems remains a slippery subject. Here, we propose a gradient acoustic metamaterial (GAM) coupled with space-coiling structure (GAM-SCS) for the detection and localization of weak sound sources. The GAM-SCS is evaluated both numerically and experimentally. Compared with the GAM without space-coiling structure, the GAM-SCS has a better pressure amplification performance which enables the sound signals to be pre-amplified. Meanwhile, the induced space-coiling structure, making use of subwavelength features, also enables the GAM-SCS to work in a lower frequency. Furthermore, the directivity of the GAM-SCS also shines lights on directional acoustic sensing to resist noise interference. We believe that this work opens up a new vista to realize the detection and localization of weak sound sources based on acoustic metamaterials.
AbstractList The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure amplification and directivity acoustic system. Although acoustic technologies have been advanced in recent years, the realization of pressure amplification and directivity acoustic systems remains a slippery subject. Here, we propose a gradient acoustic metamaterial (GAM) coupled with space-coiling structure (GAM-SCS) for the detection and localization of weak sound sources. The GAM-SCS is evaluated both numerically and experimentally. Compared with the GAM without space-coiling structure, the GAM-SCS has a better pressure amplification performance which enables the sound signals to be pre-amplified. Meanwhile, the induced space-coiling structure, making use of subwavelength features, also enables the GAM-SCS to work in a lower frequency. Furthermore, the directivity of the GAM-SCS also shines lights on directional acoustic sensing to resist noise interference. We believe that this work opens up a new vista to realize the detection and localization of weak sound sources based on acoustic metamaterials.
ArticleNumber 109499
Author Chen, Tinggui
Yu, Dejie
Wang, Chengyong
Author_xml – sequence: 1
  givenname: Tinggui
  surname: Chen
  fullname: Chen, Tinggui
– sequence: 2
  givenname: Chengyong
  surname: Wang
  fullname: Wang, Chengyong
– sequence: 3
  givenname: Dejie
  surname: Yu
  fullname: Yu, Dejie
  email: djyu@hnu.edu.cn
BookMark eNqFkLtOwzAUhi1UJFrgCVj8Aim-pE48MKCKm1QJBpgtxz4prnKT7YI68O44DRMDTMfH-j9b_7dAs67vAKErSpaUUHG9Wx7aEIYlI4ylG5lLeYLm6SAyyqiYoTkpyzLjrCBnaBHCjpAUImKOvl48hLD3gHU7NK52RkfXd1h3FlvnwYybbrA2_T5EZ3CALrhuiysdwOIxibdeWwddxC1E3eoI3iUiAUOTIp8uvuMwaAOZ6V0zsiH6vYnp0wt0WusmwOXPPEdv93ev68ds8_zwtL7dZIZxHjMqbE2klVVuNFkVuuRGrGRZMqikoDnPISfAKSe2YMA4KQzUoqJU8iKvADQ_R3J61_g-BA-1Mi4ei0avXaMoUaNHtVNHj2r0qCaPieW_2MG7VvvDP9TNREGq9eHAq2CSIwOTVGV79yf_DSDPk6k
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109752
crossref_primary_10_3390_cryst15030216
crossref_primary_10_1016_j_apacoust_2023_109246
crossref_primary_10_3390_s24092908
crossref_primary_10_1016_j_apacoust_2023_109374
crossref_primary_10_1002_adfm_202425815
crossref_primary_10_1109_OJUFFC_2023_3317363
crossref_primary_10_1109_TCI_2023_3321994
crossref_primary_10_1016_j_apacoust_2025_110532
crossref_primary_10_1016_j_compstruct_2023_117798
crossref_primary_10_1016_j_ymssp_2024_111849
crossref_primary_10_1016_j_ijmecsci_2024_108978
crossref_primary_10_1016_j_engstruct_2023_116971
crossref_primary_10_1016_j_ymssp_2023_111077
crossref_primary_10_3390_cryst13081191
crossref_primary_10_1016_j_jsv_2024_118856
crossref_primary_10_1016_j_sna_2024_116114
crossref_primary_10_1016_j_ymssp_2025_112346
crossref_primary_10_1080_15376494_2025_2471029
crossref_primary_10_1016_j_ijmecsci_2024_109131
crossref_primary_10_1016_j_physleta_2023_129242
Cites_doi 10.1002/advs.201902271
10.1103/PhysRevLett.108.114301
10.1073/pnas.1502276112
10.1016/j.ymssp.2017.04.018
10.1063/1.5107464
10.1063/1.4769984
10.1063/1.5041731
10.1002/adma.201803229
10.1038/srep29957
10.1016/j.ymssp.2019.06.034
10.1002/advs.201903101
10.1103/PhysRevApplied.13.014023
10.1038/s41598-020-67454-z
10.1063/1.4979105
10.1103/PhysRevApplied.5.054015
10.1016/j.jsv.2022.116911
10.1038/ncomms6247
10.1038/s41467-021-23991-3
10.1109/TWC.2020.3006230
10.1038/srep07038
10.1038/s41586-018-0421-7
10.1103/PhysRevLett.116.028101
10.1016/j.eml.2019.100623
10.1103/PhysRevLett.118.214301
10.1109/TVT.2019.2945007
10.1126/science.289.5485.1734
10.1063/5.0012316
10.1038/s41467-020-15950-1
10.1088/1367-2630/ab8cae
10.1016/j.nanoen.2020.105693
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ymssp.2022.109499
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_109499
S0888327022006100
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
ID FETCH-LOGICAL-c233t-16df09d9b4ca057a83c659882eb961434e40e3130d72e2307cef6b119374beea3
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Tue Jul 01 04:30:14 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Fri Feb 23 02:38:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Directivity
Coupled acoustic metamaterials
Acoustic sensing
Pressure amplification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c233t-16df09d9b4ca057a83c659882eb961434e40e3130d72e2307cef6b119374beea3
ParticipantIDs crossref_citationtrail_10_1016_j_ymssp_2022_109499
crossref_primary_10_1016_j_ymssp_2022_109499
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hyun, Cho, Park, Chang, Kim (b0115) 2020; 116
Xie, Tsai, Konneker, Popa, Brady, Cummer (b0025) 2015; 112
Jiang, Li, He, Peng (b0080) 2020; 11
Liu, Peng, Liu, Zou, Cheng (b0100) 2018; 113
Chen, Jiao, Yu (b0150) 2022; 529
Ni, Wu, Chen, Zheng, Xu, Nayar, Liu, Lu, Chen (b0140) 2014; 4
Cardenas Cabada, Leclere, Antoni, Hamzaoui (b0035) 2017; 97
Zhu, Liang, Kan, Peng, Cheng (b0145) 2016; 5
Miniaci, Gliozzi, Morvan, Krushynska, Bosia, Scalerandi, Pugno (b0005) 2017; 118
Liu, Zhang, Mao, Zhu, Yang, Chan, Sheng (b0055) 2000; 289
Laureti, Hutchins, Astolfi, Watson, Thomas, Burrascano, Nie, Freear, Askari, Clare, Ricci (b0070) 2020; 10
Ma, Gao, Cheng, Liu (b0090) 2019; 115
Wilmott, Alves, Karunasiri (b0050) 2016; 6
Danawe, Okudan, Ozevin, Tol (b0010) 2020; 117
Huang, Diamant (b0020) 2020; 19
Lee, Nomura, Su, Iizuka (b0045) 2020; 7
Xia, Erturk, Ruzzene (b0125) 2020; 13
Sun, Jia, Zhang, Yang, Sun, Yang (b0085) 2020; 7
Chaplain, Pajer, De Ponti, Craster (b0065) 2020; 22
Zhang, Tian, Wang, Gao, Cheng, Liu, Christensen (b0095) 2018; 30
Cheben, Halir, Schmid, Atwater, Smith (b0060) 2018; 560
Li, Wang, Wang, Qiao, Luo, Gulliver (b0015) 2019; 68
Ning, Yang, Luo, Liu, Zhuang (b0120) 2020; 35
Lu, Ding, Wang, Peng, Cui, Liu, Liu (b0155) 2017; 110
Ma, Tan, Yan, Liu, Liao, Zhang (b0105) 2021; 82
Ji, Liang, Qiu, Cheng, Wu (b0075) 2019; 132
Chen, Liu, Reilly, Bae, Yu (b0110) 2014; 5
Zhang, Rui, Ma, Cheng, Liu, Christensen (b0030) 2021; 12
Liang, Li (b0135) 2012; 108
Li, Liang, Tao, Zhu, Zou, Cheng (b0130) 2012; 101
Vedurmudi, Goulet, Christensen-Dalsgaard, Young, Williams, van Hemmen (b0040) 2016; 116
Danawe (10.1016/j.ymssp.2022.109499_b0010) 2020; 117
Miniaci (10.1016/j.ymssp.2022.109499_b0005) 2017; 118
Ma (10.1016/j.ymssp.2022.109499_b0105) 2021; 82
Chaplain (10.1016/j.ymssp.2022.109499_b0065) 2020; 22
Jiang (10.1016/j.ymssp.2022.109499_b0080) 2020; 11
Xie (10.1016/j.ymssp.2022.109499_b0025) 2015; 112
Li (10.1016/j.ymssp.2022.109499_b0130) 2012; 101
Ma (10.1016/j.ymssp.2022.109499_b0090) 2019; 115
Wilmott (10.1016/j.ymssp.2022.109499_b0050) 2016; 6
Chen (10.1016/j.ymssp.2022.109499_b0150) 2022; 529
Cardenas Cabada (10.1016/j.ymssp.2022.109499_b0035) 2017; 97
Vedurmudi (10.1016/j.ymssp.2022.109499_b0040) 2016; 116
Sun (10.1016/j.ymssp.2022.109499_b0085) 2020; 7
Laureti (10.1016/j.ymssp.2022.109499_b0070) 2020; 10
Ning (10.1016/j.ymssp.2022.109499_b0120) 2020; 35
Huang (10.1016/j.ymssp.2022.109499_b0020) 2020; 19
Chen (10.1016/j.ymssp.2022.109499_b0110) 2014; 5
Li (10.1016/j.ymssp.2022.109499_b0015) 2019; 68
Hyun (10.1016/j.ymssp.2022.109499_b0115) 2020; 116
Liang (10.1016/j.ymssp.2022.109499_b0135) 2012; 108
Zhu (10.1016/j.ymssp.2022.109499_b0145) 2016; 5
Xia (10.1016/j.ymssp.2022.109499_b0125) 2020; 13
Lu (10.1016/j.ymssp.2022.109499_b0155) 2017; 110
Ji (10.1016/j.ymssp.2022.109499_b0075) 2019; 132
Lee (10.1016/j.ymssp.2022.109499_b0045) 2020; 7
Ni (10.1016/j.ymssp.2022.109499_b0140) 2014; 4
Zhang (10.1016/j.ymssp.2022.109499_b0030) 2021; 12
Liu (10.1016/j.ymssp.2022.109499_b0055) 2000; 289
Zhang (10.1016/j.ymssp.2022.109499_b0095) 2018; 30
Cheben (10.1016/j.ymssp.2022.109499_b0060) 2018; 560
Liu (10.1016/j.ymssp.2022.109499_b0100) 2018; 113
References_xml – volume: 113
  year: 2018
  ident: b0100
  article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators
  publication-title: Appl. Phys. Lett.
– volume: 82
  year: 2021
  ident: b0105
  article-title: Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting
  publication-title: Nano Energy
– volume: 5
  start-page: 5247
  year: 2014
  ident: b0110
  article-title: Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
  publication-title: Nat. Commun.
– volume: 110
  year: 2017
  ident: b0155
  article-title: Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure
  publication-title: Appl. Phys. Lett.
– volume: 108
  year: 2012
  ident: b0135
  article-title: Extreme acoustic metamaterial by coiling up space
  publication-title: Phys. Rev. Lett.
– volume: 5
  year: 2016
  ident: b0145
  article-title: Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances
  publication-title: Phys. Rev. Appl
– volume: 116
  year: 2016
  ident: b0040
  article-title: How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 1803229
  year: 2018
  ident: b0095
  article-title: Directional Acoustic Antennas Based on Valley-Hall Topological Insulators
  publication-title: Adv. Mater.
– volume: 97
  start-page: 33
  year: 2017
  end-page: 43
  ident: b0035
  article-title: Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features
  publication-title: Mech. Syst. Signal. Process.
– volume: 289
  start-page: 1734
  year: 2000
  end-page: 1736
  ident: b0055
  article-title: Locally Resonant Sonic Materials
  publication-title: Science
– volume: 35
  year: 2020
  ident: b0120
  article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation
  publication-title: Extreme Mech. Lett.
– volume: 4
  start-page: 7038
  year: 2014
  ident: b0140
  article-title: Acoustic rainbow trapping by coiling up space
  publication-title: Sci. Rep.
– volume: 13
  year: 2020
  ident: b0125
  article-title: Topological Edge States in Quasiperiodic Locally Resonant Metastructures
  publication-title: Phys. Rev. Appl
– volume: 7
  start-page: 1903101
  year: 2020
  ident: b0045
  article-title: Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0–360 Degree Measurement
  publication-title: Adv. Sci.
– volume: 12
  start-page: 3670
  year: 2021
  ident: b0030
  article-title: Remote whispering metamaterial for non-radiative transceiving of ultra-weak sound
  publication-title: Nat. Commun.
– volume: 19
  start-page: 6844
  year: 2020
  end-page: 6857
  ident: b0020
  article-title: Adaptive Modulation for Long-Range Underwater Acoustic Communication
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 7
  start-page: 1902271
  year: 2020
  ident: b0085
  article-title: Sound Localization and Separation in 3D Space Using a Single Microphone with a Metamaterial Enclosure
  publication-title: Adv. Sci.
– volume: 118
  year: 2017
  ident: b0005
  article-title: Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals
  publication-title: Phys. Rev. Lett.
– volume: 22
  year: 2020
  ident: b0065
  article-title: Delineating rainbow reflection and trapping with applications for energy harvesting
  publication-title: New J. Phys.
– volume: 10
  start-page: 10601
  year: 2020
  ident: b0070
  article-title: Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water
  publication-title: Sci. Rep.
– volume: 115
  year: 2019
  ident: b0090
  article-title: Acoustic metamaterial antennas for combined highly directive-sensitive detection
  publication-title: Appl. Phys. Lett.
– volume: 132
  start-page: 441
  year: 2019
  end-page: 456
  ident: b0075
  article-title: Enhancement of vibration based energy harvesting using compound acoustic black holes
  publication-title: Mech. Syst. Signal. Process.
– volume: 112
  start-page: 10595
  year: 2015
  end-page: 10598
  ident: b0025
  article-title: Single-sensor multispeaker listening with acoustic metamaterials
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 68
  start-page: 12381
  year: 2019
  end-page: 12386
  ident: b0015
  article-title: Optimal Beamforming Design for Underwater Acoustic Communication With Multiple Unsteady Sub-Gaussian Interferers
  publication-title: IEEE Trans. Veh. Technol.
– volume: 116
  year: 2020
  ident: b0115
  article-title: Achromatic acoustic gradient-index phononic crystal lens for broadband focusing
  publication-title: Appl. Phys. Lett.
– volume: 529
  start-page: 116911
  year: 2022
  ident: b0150
  article-title: Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing
  publication-title: J. Sound Vib.
– volume: 11
  start-page: 2353
  year: 2020
  ident: b0080
  article-title: Randomized resonant metamaterials for single-sensor identification of elastic vibrations
  publication-title: Nat. Commun.
– volume: 117
  year: 2020
  ident: b0010
  article-title: Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 29957
  year: 2016
  ident: b0050
  article-title: Bio-Inspired Miniature Direction Finding Acoustic Sensor
  publication-title: Sci. Rep.
– volume: 560
  start-page: 565
  year: 2018
  end-page: 572
  ident: b0060
  article-title: Subwavelength integrated photonics
  publication-title: Nature
– volume: 101
  year: 2012
  ident: b0130
  article-title: Acoustic focusing by coiling up space
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 1902271
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0085
  article-title: Sound Localization and Separation in 3D Space Using a Single Microphone with a Metamaterial Enclosure
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201902271
– volume: 108
  year: 2012
  ident: 10.1016/j.ymssp.2022.109499_b0135
  article-title: Extreme acoustic metamaterial by coiling up space
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.114301
– volume: 112
  start-page: 10595
  year: 2015
  ident: 10.1016/j.ymssp.2022.109499_b0025
  article-title: Single-sensor multispeaker listening with acoustic metamaterials
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1502276112
– volume: 97
  start-page: 33
  year: 2017
  ident: 10.1016/j.ymssp.2022.109499_b0035
  article-title: Fault detection in rotating machines with beamforming: Spatial visualization of diagnosis features
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2017.04.018
– volume: 115
  year: 2019
  ident: 10.1016/j.ymssp.2022.109499_b0090
  article-title: Acoustic metamaterial antennas for combined highly directive-sensitive detection
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5107464
– volume: 101
  year: 2012
  ident: 10.1016/j.ymssp.2022.109499_b0130
  article-title: Acoustic focusing by coiling up space
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4769984
– volume: 113
  year: 2018
  ident: 10.1016/j.ymssp.2022.109499_b0100
  article-title: Broadband acoustic energy harvesting metasurface with coupled Helmholtz resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5041731
– volume: 30
  start-page: 1803229
  issue: 36
  year: 2018
  ident: 10.1016/j.ymssp.2022.109499_b0095
  article-title: Directional Acoustic Antennas Based on Valley-Hall Topological Insulators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803229
– volume: 6
  start-page: 29957
  year: 2016
  ident: 10.1016/j.ymssp.2022.109499_b0050
  article-title: Bio-Inspired Miniature Direction Finding Acoustic Sensor
  publication-title: Sci. Rep.
  doi: 10.1038/srep29957
– volume: 132
  start-page: 441
  year: 2019
  ident: 10.1016/j.ymssp.2022.109499_b0075
  article-title: Enhancement of vibration based energy harvesting using compound acoustic black holes
  publication-title: Mech. Syst. Signal. Process.
  doi: 10.1016/j.ymssp.2019.06.034
– volume: 7
  start-page: 1903101
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0045
  article-title: Fano-Like Acoustic Resonance for Subwavelength Directional Sensing: 0–360 Degree Measurement
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201903101
– volume: 13
  issue: 1
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0125
  article-title: Topological Edge States in Quasiperiodic Locally Resonant Metastructures
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.13.014023
– volume: 10
  start-page: 10601
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0070
  article-title: Trapped air metamaterial concept for ultrasonic sub-wavelength imaging in water
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67454-z
– volume: 110
  year: 2017
  ident: 10.1016/j.ymssp.2022.109499_b0155
  article-title: Realization of acoustic wave directivity at low frequencies with a subwavelength Mie resonant structure
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4979105
– volume: 5
  year: 2016
  ident: 10.1016/j.ymssp.2022.109499_b0145
  article-title: Deep-Subwavelength-Scale Directional Sensing Based on Highly Localized Dipolar Mie Resonances
  publication-title: Phys. Rev. Appl
  doi: 10.1103/PhysRevApplied.5.054015
– volume: 529
  start-page: 116911
  year: 2022
  ident: 10.1016/j.ymssp.2022.109499_b0150
  article-title: Strongly coupled phononic crystals resonator with high energy density for acoustic enhancement and directional sensing
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.116911
– volume: 5
  start-page: 5247
  year: 2014
  ident: 10.1016/j.ymssp.2022.109499_b0110
  article-title: Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6247
– volume: 12
  start-page: 3670
  year: 2021
  ident: 10.1016/j.ymssp.2022.109499_b0030
  article-title: Remote whispering metamaterial for non-radiative transceiving of ultra-weak sound
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23991-3
– volume: 19
  start-page: 6844
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0020
  article-title: Adaptive Modulation for Long-Range Underwater Acoustic Communication
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3006230
– volume: 4
  start-page: 7038
  year: 2014
  ident: 10.1016/j.ymssp.2022.109499_b0140
  article-title: Acoustic rainbow trapping by coiling up space
  publication-title: Sci. Rep.
  doi: 10.1038/srep07038
– volume: 560
  start-page: 565
  year: 2018
  ident: 10.1016/j.ymssp.2022.109499_b0060
  article-title: Subwavelength integrated photonics
  publication-title: Nature
  doi: 10.1038/s41586-018-0421-7
– volume: 116
  year: 2016
  ident: 10.1016/j.ymssp.2022.109499_b0040
  article-title: How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.028101
– volume: 35
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0120
  article-title: Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation
  publication-title: Extreme Mech. Lett.
  doi: 10.1016/j.eml.2019.100623
– volume: 118
  year: 2017
  ident: 10.1016/j.ymssp.2022.109499_b0005
  article-title: Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.214301
– volume: 68
  start-page: 12381
  year: 2019
  ident: 10.1016/j.ymssp.2022.109499_b0015
  article-title: Optimal Beamforming Design for Underwater Acoustic Communication With Multiple Unsteady Sub-Gaussian Interferers
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2945007
– volume: 289
  start-page: 1734
  year: 2000
  ident: 10.1016/j.ymssp.2022.109499_b0055
  article-title: Locally Resonant Sonic Materials
  publication-title: Science
  doi: 10.1126/science.289.5485.1734
– volume: 117
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0010
  article-title: Conformal gradient-index phononic crystal lens for ultrasonic wave focusing in pipe-like structures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0012316
– volume: 11
  start-page: 2353
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0080
  article-title: Randomized resonant metamaterials for single-sensor identification of elastic vibrations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15950-1
– volume: 116
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0115
  article-title: Achromatic acoustic gradient-index phononic crystal lens for broadband focusing
  publication-title: Appl. Phys. Lett.
– volume: 22
  year: 2020
  ident: 10.1016/j.ymssp.2022.109499_b0065
  article-title: Delineating rainbow reflection and trapping with applications for energy harvesting
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8cae
– volume: 82
  year: 2021
  ident: 10.1016/j.ymssp.2022.109499_b0105
  article-title: Metamaterial and Helmholtz coupled resonator for high-density acoustic energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105693
SSID ssj0009406
Score 2.4990687
Snippet The detection and localization of weak sound sources are a topic of great interest in a wide range of applications, but generally require a pressure...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109499
SubjectTerms Acoustic sensing
Coupled acoustic metamaterials
Directivity
Pressure amplification
Title Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure
URI https://dx.doi.org/10.1016/j.ymssp.2022.109499
Volume 181
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwEtrarpOMVUVVQOoClbpFju1URW1atVkY4LdzZydQJNSBMdadklwud2fru-8IuTWGKa4UOK8xMhBK8yCVsEtRXAsjY-STcWyfIzkci6dJd1Ij_aoXBmGVZez3Md1F63KlVVqztZrNWi_wf4A7htgqCkmpjft2IUL08vvPH5hHLNx8TRQOULpiHnIYr_fFZoOklYwhrZJwBLB_ZKetjDM4IodlqUh7_mmOSc3mJ-Rgi0DwlHz47r61pQqR4Vl5AEdVbqh_MXfSRyHsualddIN49XxKMXkZipJ0unaor4IubKGgfnUuSUFhNQcRPKelEHW0DfRyhr3r1FPOwk3PyHjw8NofBuVAhUAzzougI03Wjk2cCq2gTlMR17IbQ41t0xjSNBdWtC2HrGZCZhEhrm0m0w7UeKFIrVX8nNTzZW4vCI1YBgspR4ZHqMHCKI25lBnECAs7pIg1CKsMmeiSbRyHXsyTClb2ljjrJ2j9xFu_Qe6-lVaebGO3uKy-UPLLZxJIB7sUL_-reEX28crDWa5JHextb6AoKdKm87om2es9Pg9HXxNZ4_4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDG2Hqk-VPj10bATExklGhIpCoSwFiS1ybAdRQUCQpUP_e--cpKVSxdDVuVOSy-XubH33HSGPWruSSQnOq7VwuFTMiQXsUiRTXIsA-WQs2-dIhBP-Mm1PK6Rb9sIgrLKI_XlMt9G6WGkU1mys5_PGG_wf4I4etopCUmrCvr2G7FTtKql1-oNw9MO9y-2ITZR3UKEkH7Iwr4_ldou8la6LzErccsD-kaB2kk7vhBwX1SLt5A90SiomPSNHOxyC5-Qzb_DbGCoRHJ4UZ3BUpprm72YP-yhEPju4i24Rsp7OKOYvTVGSzjYW-JXRpckklLDWKykorBcggke1FAKPMo5azbF9neass3DTCzLpPY-7oVPMVHCUy1jmtIROmoEOYq4klGrSZ0q0AyizTRxApmbc8KZhkNi05xoEiSuTiLgFZZ7HY2MkuyTVdJWaK0J9N4GFmCHJI5Rhnh8HTIgEwoSBTZLv1olbGjJSBeE4zr1YRCWy7D2y1o_Q-lFu_Tp5-lZa53wb-8VF-YWiX24TQUbYp3j9X8UHchCOX4fRsD8a3JBDvJKjW25JFWxv7qBGyeL7wge_AOT35q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pressure+amplification+and+directional+acoustic+sensing+based+on+a+gradient+metamaterial+coupled+with+space-coiling+structure&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Chen%2C+Tinggui&rft.au=Wang%2C+Chengyong&rft.au=Yu%2C+Dejie&rft.date=2022-12-01&rft.issn=0888-3270&rft.volume=181&rft.spage=109499&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2022_109499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon