Large Language Models and Logical Reasoning
In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiabi...
Saved in:
Published in | Encyclopedia (Basel, Switzerland) Vol. 3; no. 2; pp. 687 - 697 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Naples
MDPI AG
30.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions. |
---|---|
AbstractList | DefinitionIn deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions. In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions. |
Author | Friedman, Robert |
Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0002-1061-4909 surname: Friedman fullname: Friedman, Robert |
BookMark | eNp9UE1LAzEUDKJgrf0FXgoepZqP7W7eUcQvWBFEz-Ft8rKkrEnNbg_9965WQUQ8veExM8zMEduPKRJjJ4KfKwX8gqLd2i6tyQVUXHJewB6byLJSC61A7v_Ah2zW9yvOudSCi0JN2FmNuaV5jbHd4AgekqOun2N08zq1wWI3fyLsUwyxPWYHHrueZl93yl5urp-v7hb14-391WW9sHIMtGi8Eih0ISpPkjdglRUCyQkHmhclCq4EgdcOqNSeHIIVgJqslE3pyaopu9_5uoQrs87hFfPWJAzm85FyazAPwXZk9FJ6D5V1vNQFaGwaqFS5lA2MHYVsRq_Tndc6p7cN9YNZpU2OY3wjtYQKCqjKkQU7ls2p7zN5Y8OAQ0hxyBg6I7j5mNr8MfWoVb-034n_U70DJuCGZg |
CitedBy_id | crossref_primary_10_1016_j_apnr_2025_151923 crossref_primary_10_16995_zygon_10903 crossref_primary_10_3390_encyclopedia4010038 |
Cites_doi | 10.3390/signals3020025 10.1016/j.conb.2016.01.010 10.1145/2699411 10.1038/s41586-021-03819-2 10.1146/annurev-linguist-030514-125312 10.1038/s41524-022-00734-6 10.1146/annurev.en.10.010165.000525 10.1016/0004-3702(89)90049-0 10.1016/j.neunet.2014.09.003 10.1631/FITEE.2100463 10.1017/S0009838800024423 10.1017/S0140525X00081061 10.1145/3340531.3411949 10.1093/nsr/nwac035 10.1016/j.ijar.2011.01.005 10.5840/gfpj200425215 10.1126/science.ade2574 10.24963/ijcai.2020/688 10.1016/S0079-7421(08)60365-5 10.1016/j.tics.2010.06.006 10.1007/s10462-022-10248-8 10.3390/encyclopedia3010024 10.1051/epn/2009303 10.3934/Neuroscience.2020023 10.1140/epjs/s11734-021-00207-9 10.1145/563517.563490 |
ContentType | Journal Article |
Copyright | 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/encyclopedia3020049 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Philosophy |
EISSN | 2673-8392 |
EndPage | 697 |
ExternalDocumentID | oai_doaj_org_article_852ff97cd068498abb973652b900212b 10_3390_encyclopedia3020049 |
GroupedDBID | AAYXX ABDBF AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION GROUPED_DOAJ MODMG OK1 PHGZM PHGZT PIMPY ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c2339-bf31a18417fe20b9c3c11aed1d98046a1031e9f8d9e68feda9c19a8ec22b6fec3 |
IEDL.DBID | BENPR |
ISSN | 2673-8392 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Mon Jun 30 05:23:06 EDT 2025 Tue Jul 01 00:44:44 EDT 2025 Thu Apr 24 23:01:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2339-bf31a18417fe20b9c3c11aed1d98046a1031e9f8d9e68feda9c19a8ec22b6fec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1061-4909 |
OpenAccessLink | https://www.proquest.com/docview/2829794976?pq-origsite=%requestingapplication% |
PQID | 2829794976 |
PQPubID | 5465949 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_852ff97cd068498abb973652b900212b proquest_journals_2829794976 crossref_citationtrail_10_3390_encyclopedia3020049 crossref_primary_10_3390_encyclopedia3020049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-30 |
PublicationDateYYYYMMDD | 2023-05-30 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Naples |
PublicationPlace_xml | – name: Naples |
PublicationTitle | Encyclopedia (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_58 ref_13 ref_57 ref_12 Schmidhuber (ref_47) 2015; 61 ref_56 ref_11 ref_10 Jumper (ref_35) 2021; 596 ref_53 ref_51 ref_18 ref_17 Hitzler (ref_24) 2022; 9 ref_16 ref_15 Choudhary (ref_54) 2022; 8 Fusi (ref_49) 2016; 37 Friedman (ref_43) 2020; 7 Yang (ref_22) 2021; 22 Owen (ref_7) 1960; 10 ref_25 Efstathiou (ref_32) 2011; 52 Saharia (ref_44) 2022; 35 ref_21 Friedman (ref_5) 2023; 3 ref_29 Hinton (ref_46) 1989; 40 ref_26 Liang (ref_23) 2015; 1 Porter (ref_52) 1990; 68 Brown (ref_38) 2020; 33 Meher (ref_55) 2021; 230 Floyd (ref_45) 2004; 25 Friedman (ref_27) 2022; 3 ref_31 Lukins (ref_33) 2002; 34 ref_30 Lin (ref_36) 2023; 379 Ni (ref_34) 2022; 56 Braine (ref_20) 1984; 18 ref_37 Kirby (ref_3) 2010; 14 Chan (ref_39) 2022; 35 Russell (ref_19) 2015; 58 Demortier (ref_50) 2009; 40 Hennig (ref_2) 1965; 10 ref_42 ref_41 ref_40 ref_1 Pinker (ref_4) 1990; 13 ref_48 ref_9 ref_8 Vaswani (ref_28) 2017; 30 ref_6 |
References_xml | – volume: 3 start-page: 410 year: 2022 ident: ref_27 article-title: A Perspective on Information Optimality in a Neural Circuit and Other Biological Systems publication-title: Signals doi: 10.3390/signals3020025 – ident: ref_9 – volume: 37 start-page: 66 year: 2016 ident: ref_49 article-title: Why neurons mix: High dimensionality for higher cognition publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2016.01.010 – ident: ref_26 – ident: ref_51 – volume: 58 start-page: 88 year: 2015 ident: ref_19 article-title: Unifying Logic and Probability publication-title: Commun. ACM doi: 10.1145/2699411 – volume: 596 start-page: 583 year: 2021 ident: ref_35 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 1 start-page: 355 year: 2015 ident: ref_23 article-title: Bringing machine learning and compositional semantics together publication-title: Annu. Rev. Linguist. doi: 10.1146/annurev-linguist-030514-125312 – volume: 8 start-page: 59 year: 2022 ident: ref_54 article-title: Recent advances and applications of deep learning methods in materials science publication-title: NPJ Comput. Mater. doi: 10.1038/s41524-022-00734-6 – volume: 10 start-page: 97 year: 1965 ident: ref_2 article-title: Phylogenetic Systematics publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev.en.10.010165.000525 – volume: 35 start-page: 18878 year: 2022 ident: ref_39 article-title: Data Distributional Properties Drive Emergent In-Context Learning in Transformers publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_16 – volume: 40 start-page: 185 year: 1989 ident: ref_46 article-title: Connectionist learning procedures publication-title: Artif. Intell. doi: 10.1016/0004-3702(89)90049-0 – volume: 61 start-page: 85 year: 2015 ident: ref_47 article-title: Deep learning in neural networks: An overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: ref_42 – ident: ref_1 – volume: 22 start-page: 1551 year: 2021 ident: ref_22 article-title: Multiple knowledge representation for big data artificial intelligence: Framework, applications, and case studies publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2100463 – ident: ref_58 – volume: 35 start-page: 36479 year: 2022 ident: ref_44 article-title: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 84 year: 1960 ident: ref_7 article-title: Eleatic Questions publication-title: Class. Q. doi: 10.1017/S0009838800024423 – volume: 13 start-page: 707 year: 1990 ident: ref_4 article-title: Natural language and natural selection publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X00081061 – ident: ref_13 doi: 10.1145/3340531.3411949 – ident: ref_8 – volume: 33 start-page: 1877 year: 2020 ident: ref_38 article-title: Language Models are Few-Shot Learners publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_31 – ident: ref_56 – volume: 30 start-page: 1 year: 2017 ident: ref_28 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_48 – ident: ref_10 – volume: 9 start-page: nwac035 year: 2022 ident: ref_24 article-title: Neuro-symbolic approaches in artificial intelligence publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwac035 – ident: ref_41 – ident: ref_17 – volume: 52 start-page: 672 year: 2011 ident: ref_32 article-title: Algorithms for generating arguments and counterarguments in propositional logic publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2011.01.005 – ident: ref_53 – ident: ref_30 – ident: ref_11 – ident: ref_40 – ident: ref_37 – ident: ref_14 – ident: ref_18 – volume: 25 start-page: 227 year: 2004 ident: ref_45 article-title: Wittgenstein on Philosophy of Logic and Mathematics publication-title: Grad. Fac. Philos. J. doi: 10.5840/gfpj200425215 – ident: ref_21 – volume: 379 start-page: 1123 year: 2023 ident: ref_36 article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model publication-title: Science doi: 10.1126/science.ade2574 – ident: ref_6 – ident: ref_25 doi: 10.24963/ijcai.2020/688 – ident: ref_29 – volume: 18 start-page: 313 year: 1984 ident: ref_20 article-title: Some Empirical Justification for a Theory of Natural Propositional Logic publication-title: Psychol. Learn. Motiv. doi: 10.1016/S0079-7421(08)60365-5 – ident: ref_12 – volume: 14 start-page: 411 year: 2010 ident: ref_3 article-title: Language evolution in the laboratory publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.06.006 – volume: 56 start-page: 3055 year: 2022 ident: ref_34 article-title: Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10248-8 – volume: 3 start-page: 380 year: 2023 ident: ref_5 article-title: Tokenization in the Theory of Knowledge publication-title: Encyclopedia doi: 10.3390/encyclopedia3010024 – ident: ref_15 – volume: 40 start-page: 27 year: 2009 ident: ref_50 article-title: Revisiting the construction of the Egyptian pyramids publication-title: Europhys. News doi: 10.1051/epn/2009303 – volume: 7 start-page: 373 year: 2020 ident: ref_43 article-title: Themes of advanced information processing in the primate brain publication-title: AIMS Neurosci. doi: 10.3934/Neuroscience.2020023 – volume: 230 start-page: 2285 year: 2021 ident: ref_55 article-title: Deep learning in astronomy: A tutorial perspective publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjs/s11734-021-00207-9 – volume: 34 start-page: 381 year: 2002 ident: ref_33 article-title: A Tutorial Program for Propositional Logic with Human/Computer Interactive Learning publication-title: ACM SIGCSE Bull. doi: 10.1145/563517.563490 – ident: ref_57 – volume: 68 start-page: 73 year: 1990 ident: ref_52 article-title: The Competitive Advantage of Nations publication-title: Harv. Bus. Rev. |
SSID | ssj0002810143 |
Score | 2.221355 |
Snippet | In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an... DefinitionIn deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 687 |
SubjectTerms | Animal communication Boolean Cognition & reasoning Deep learning Knowledge Language large language models Logic logical reasoning Methods Natural language Neural networks Philosophy propositional logic symbolic logic |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtYH1itkoMHRRc3yT6So4qlSPUgFnpb8pgcpLTFrQf_vZnstlQUvXhdsiTMJPPK5PsIOVPeesHxiTIwSDKdykQKmyfe81K6QpXcYUH_8akYjLKHcT5eo_rCnrAGHrgR3LXMufeqtC4tZKakNkaVosi5URGd3KD1DT5vLZl6jSUj5KAVDcyQCHk9Eq192Mlsju8xRIp7Q31xRRGx_5tBjl6mv0O22_CQ3jTL6pANmO6STnsAa3reokRf7JHLIfZw02Fbb6RIajapqZ46OmzMGX0GXcdq6z4Z9e9f7gZJy3yQWB5WmxgvmA65Fys98NQoKyxjGhxzSoaEViM3AygvnYJCenBaWaa0BMu5KTxYcUA2p7MpHBLKlNdaCw-Cp5lhXBc8qCdEQT6FEApBl_ClECrbwoIjO8WkCukBSq76QXJdcrX6ad6gYvw-_BaluxqKkNbxQ1B01Sq6-kvRXdJb6qZqz1ld4T1wsCghpjr6jzmOyRbSycfugLRHNhdv73ASgo6FOY376xP_aNQJ priority: 102 providerName: Directory of Open Access Journals |
Title | Large Language Models and Logical Reasoning |
URI | https://www.proquest.com/docview/2829794976 https://doaj.org/article/852ff97cd068498abb973652b900212b |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULlyMoEYUyQ4eNLq4trC1JyMGQgwSQiThtvTTCwFkeOC_t68UjNF43bpkeX3fff39ELrmVllK4IqywSZuiYTFjKp2bC3JmE55RjQ09F-HaX_Sepm2p6HhVoSxyp1P9I5aLxT0yB_gxM_pjouej8uPGFij4HQ1UGgcorJzwcwVX-VOdzga77ssBPCr_OgcSTMaQzawhR6irtYH8rWNmi2WcEeDJqAv_Ed48ij-v5y0jzy9Y3QUUsboabvHVXRg5jVUGe04CDY1VA0WWkQ3AUb69gTdDWDIOxqEhmQErGezIhJzHQ22_i4aG1H4duwpmvS6b8_9OFAjxIq4X4-lpVi44gxn1pBEckUVxsJorDlzFa8A8gbDLdPcpMwaLbjCXDCjCJGpNYqeodJ8MTfnKMLcCiGoNZQkLYmJSInbP5cm2cS4XMnUEdlJJFcBNxzoK2a5qx9AjPkfYqyj-_1Hyy1sxv_LOyDq_VLAvPYPFqv3PJhQztrEWp4pnaSsxZmQkmc0bRPJPU69rKPGbqPyYIhF_q02F_-_vkQVYJL3gwFJA5XWq09z5fKNtWwGpWr6ev0L9i_VMQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5VAuqFCqLoXiQysVtVFjO5vYB4QKBS0lrBACiVvqJ5fV7pZQVfun-hvxJM6iqogb18ROpPHneXk8H8AH6Y3nDK8oO-qSTKUiEdwMEu9ZIWwuC2YxoX82yodX2Y_rwfUS_O3uwmBZZacTG0VtpwZz5F_xxC9gJ1jP_dmvBFmj8HS1o9BoYXHq5n9CyFbvnXwP6_uRseOjy8NhElkFEsM4l4n2nKoQ19DCO5ZqabihVDlLrRQhWFTIe-CkF1a6XHhnlTRUKuEMYzr3zvDw3RewnPEQyvRg-eBodH6xyOow7JfVlOqxvOAJeh9tq6Pw5xTJ3uZmPJ3hnRCeIj7lP-awYQ34zyg0lu74FaxGF5V8azG1Bktusg4r5x3nwXwd1qJGqMmn2LZ69zV8LrGonJQxAUqQZW1cEzWxpGz1K7lwqm7Svxtw9SxCewO9yXTi3gKh0iuluHecpZmmTOUs4CW4ZT51wTdzfWCdRCoT-5QjXca4CvEKirF6RIx9-LKYNGvbdDw9_ABFvRiKPbabB9Pbmypu2UoMmPeyMDbNRSaF0loWPB8wLZu--LoPW91CVXHj19UDTDeffr0DL4eXZ2VVnoxO38EKstg3RQnpFvTubn-77eDr3On3EWAEfj43pu8BR9wSSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIFVcENBWDYWyh1Zq1VrsI7F3D1VVHhGUNIpQkbi5--QSJSkGVflr_XXs2OugqogbV3ttS7Of57Uz8wG8U8EGwbFF2TOf9TSVmRS2n4XAC-lyVXCHCf0fo_zkovf9sn-5An_bXhgsq2x1Yq2o3cxijnwfT_widqL13A-pLGJ8NPg6_50hgxSetLZ0Gg1EzvziTwzfqi-nR3Gv33M-OP55eJIlhoHMciFUZoJgOsY4rAieU6OssIxp75hTMgaOGjkQvArSKZ_L4J1WliktveXc5MFbEd_7DFaLGBXRDqweHI_G58sMD8fZWXXZHs8LkaEn0ow9il-mSPy2sJPZHPtDBEWsqn9MY80g8J-BqK3eYAPWk7tKvjX42oQVP92CtXHLf7DYgs2kHSryIY2w_vgCPg2xwJwMUzKUIOPapCJ66siw0bXk3OuqTgW_hIsnEdor6ExnU_8aCFNBay2CF5z2DOM65xE70UUL1Ec_zXeBtxIpbZpZjtQZkzLGLijG8gExduHz8qF5M7Lj8eUHKOrlUpy3XV-YXV-V6fctZZ-HoArraC57SmpjVCHyPjeqnpFvurDTblSZlEBV3kN2-_Hbe_A8Yrkcno7O3sAaEtrX9Ql0Bzo317d-N7o9N-ZtwheBX08N6TvPPBZ_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Language+Models+and+Logical+Reasoning&rft.jtitle=Encyclopedia+%28Basel%2C+Switzerland%29&rft.au=Friedman%2C+Robert&rft.date=2023-05-30&rft.pub=MDPI+AG&rft.issn=2673-8392&rft.eissn=2673-8392&rft.volume=3&rft.issue=2&rft.spage=687&rft_id=info:doi/10.3390%2Fencyclopedia3020049&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8392&client=summon |