Large Language Models and Logical Reasoning

In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiabi...

Full description

Saved in:
Bibliographic Details
Published inEncyclopedia (Basel, Switzerland) Vol. 3; no. 2; pp. 687 - 697
Main Author Friedman, Robert
Format Journal Article
LanguageEnglish
Published Naples MDPI AG 30.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions.
AbstractList DefinitionIn deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions.
In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an ideal form for the reliable communication of concepts. Instead, formal logical statements are preferable since they are subject to verifiability, reliability, and applicability. Another reason for this preference is that natural language is not designed for an efficient and reliable flow of information and knowledge, but is instead designed as an evolutionary adaptation as formed from a prior set of natural constraints. As a formally structured language, logical statements are also more interpretable. They may be informally constructed in the form of a natural language statement, but a formalized logical statement is expected to follow a stricter set of rules, such as with the use of symbols for representing the logic-based operators that connect multiple simple statements and form verifiable propositions.
Author Friedman, Robert
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0002-1061-4909
  surname: Friedman
  fullname: Friedman, Robert
BookMark eNp9UE1LAzEUDKJgrf0FXgoepZqP7W7eUcQvWBFEz-Ft8rKkrEnNbg_9965WQUQ8veExM8zMEduPKRJjJ4KfKwX8gqLd2i6tyQVUXHJewB6byLJSC61A7v_Ah2zW9yvOudSCi0JN2FmNuaV5jbHd4AgekqOun2N08zq1wWI3fyLsUwyxPWYHHrueZl93yl5urp-v7hb14-391WW9sHIMtGi8Eih0ISpPkjdglRUCyQkHmhclCq4EgdcOqNSeHIIVgJqslE3pyaopu9_5uoQrs87hFfPWJAzm85FyazAPwXZk9FJ6D5V1vNQFaGwaqFS5lA2MHYVsRq_Tndc6p7cN9YNZpU2OY3wjtYQKCqjKkQU7ls2p7zN5Y8OAQ0hxyBg6I7j5mNr8MfWoVb-034n_U70DJuCGZg
CitedBy_id crossref_primary_10_1016_j_apnr_2025_151923
crossref_primary_10_16995_zygon_10903
crossref_primary_10_3390_encyclopedia4010038
Cites_doi 10.3390/signals3020025
10.1016/j.conb.2016.01.010
10.1145/2699411
10.1038/s41586-021-03819-2
10.1146/annurev-linguist-030514-125312
10.1038/s41524-022-00734-6
10.1146/annurev.en.10.010165.000525
10.1016/0004-3702(89)90049-0
10.1016/j.neunet.2014.09.003
10.1631/FITEE.2100463
10.1017/S0009838800024423
10.1017/S0140525X00081061
10.1145/3340531.3411949
10.1093/nsr/nwac035
10.1016/j.ijar.2011.01.005
10.5840/gfpj200425215
10.1126/science.ade2574
10.24963/ijcai.2020/688
10.1016/S0079-7421(08)60365-5
10.1016/j.tics.2010.06.006
10.1007/s10462-022-10248-8
10.3390/encyclopedia3010024
10.1051/epn/2009303
10.3934/Neuroscience.2020023
10.1140/epjs/s11734-021-00207-9
10.1145/563517.563490
ContentType Journal Article
Copyright 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/encyclopedia3020049
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Philosophy
EISSN 2673-8392
EndPage 697
ExternalDocumentID oai_doaj_org_article_852ff97cd068498abb973652b900212b
10_3390_encyclopedia3020049
GroupedDBID AAYXX
ABDBF
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
GROUPED_DOAJ
MODMG
OK1
PHGZM
PHGZT
PIMPY
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c2339-bf31a18417fe20b9c3c11aed1d98046a1031e9f8d9e68feda9c19a8ec22b6fec3
IEDL.DBID BENPR
ISSN 2673-8392
IngestDate Wed Aug 27 01:25:49 EDT 2025
Mon Jun 30 05:23:06 EDT 2025
Tue Jul 01 00:44:44 EDT 2025
Thu Apr 24 23:01:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2339-bf31a18417fe20b9c3c11aed1d98046a1031e9f8d9e68feda9c19a8ec22b6fec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1061-4909
OpenAccessLink https://www.proquest.com/docview/2829794976?pq-origsite=%requestingapplication%
PQID 2829794976
PQPubID 5465949
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_852ff97cd068498abb973652b900212b
proquest_journals_2829794976
crossref_citationtrail_10_3390_encyclopedia3020049
crossref_primary_10_3390_encyclopedia3020049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Naples
PublicationPlace_xml – name: Naples
PublicationTitle Encyclopedia (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_58
ref_13
ref_57
ref_12
Schmidhuber (ref_47) 2015; 61
ref_56
ref_11
ref_10
Jumper (ref_35) 2021; 596
ref_53
ref_51
ref_18
ref_17
Hitzler (ref_24) 2022; 9
ref_16
ref_15
Choudhary (ref_54) 2022; 8
Fusi (ref_49) 2016; 37
Friedman (ref_43) 2020; 7
Yang (ref_22) 2021; 22
Owen (ref_7) 1960; 10
ref_25
Efstathiou (ref_32) 2011; 52
Saharia (ref_44) 2022; 35
ref_21
Friedman (ref_5) 2023; 3
ref_29
Hinton (ref_46) 1989; 40
ref_26
Liang (ref_23) 2015; 1
Porter (ref_52) 1990; 68
Brown (ref_38) 2020; 33
Meher (ref_55) 2021; 230
Floyd (ref_45) 2004; 25
Friedman (ref_27) 2022; 3
ref_31
Lukins (ref_33) 2002; 34
ref_30
Lin (ref_36) 2023; 379
Ni (ref_34) 2022; 56
Braine (ref_20) 1984; 18
ref_37
Kirby (ref_3) 2010; 14
Chan (ref_39) 2022; 35
Russell (ref_19) 2015; 58
Demortier (ref_50) 2009; 40
Hennig (ref_2) 1965; 10
ref_42
ref_41
ref_40
ref_1
Pinker (ref_4) 1990; 13
ref_48
ref_9
ref_8
Vaswani (ref_28) 2017; 30
ref_6
References_xml – volume: 3
  start-page: 410
  year: 2022
  ident: ref_27
  article-title: A Perspective on Information Optimality in a Neural Circuit and Other Biological Systems
  publication-title: Signals
  doi: 10.3390/signals3020025
– ident: ref_9
– volume: 37
  start-page: 66
  year: 2016
  ident: ref_49
  article-title: Why neurons mix: High dimensionality for higher cognition
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2016.01.010
– ident: ref_26
– ident: ref_51
– volume: 58
  start-page: 88
  year: 2015
  ident: ref_19
  article-title: Unifying Logic and Probability
  publication-title: Commun. ACM
  doi: 10.1145/2699411
– volume: 596
  start-page: 583
  year: 2021
  ident: ref_35
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 1
  start-page: 355
  year: 2015
  ident: ref_23
  article-title: Bringing machine learning and compositional semantics together
  publication-title: Annu. Rev. Linguist.
  doi: 10.1146/annurev-linguist-030514-125312
– volume: 8
  start-page: 59
  year: 2022
  ident: ref_54
  article-title: Recent advances and applications of deep learning methods in materials science
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/s41524-022-00734-6
– volume: 10
  start-page: 97
  year: 1965
  ident: ref_2
  article-title: Phylogenetic Systematics
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev.en.10.010165.000525
– volume: 35
  start-page: 18878
  year: 2022
  ident: ref_39
  article-title: Data Distributional Properties Drive Emergent In-Context Learning in Transformers
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_16
– volume: 40
  start-page: 185
  year: 1989
  ident: ref_46
  article-title: Connectionist learning procedures
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(89)90049-0
– volume: 61
  start-page: 85
  year: 2015
  ident: ref_47
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref_42
– ident: ref_1
– volume: 22
  start-page: 1551
  year: 2021
  ident: ref_22
  article-title: Multiple knowledge representation for big data artificial intelligence: Framework, applications, and case studies
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.2100463
– ident: ref_58
– volume: 35
  start-page: 36479
  year: 2022
  ident: ref_44
  article-title: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 84
  year: 1960
  ident: ref_7
  article-title: Eleatic Questions
  publication-title: Class. Q.
  doi: 10.1017/S0009838800024423
– volume: 13
  start-page: 707
  year: 1990
  ident: ref_4
  article-title: Natural language and natural selection
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00081061
– ident: ref_13
  doi: 10.1145/3340531.3411949
– ident: ref_8
– volume: 33
  start-page: 1877
  year: 2020
  ident: ref_38
  article-title: Language Models are Few-Shot Learners
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_31
– ident: ref_56
– volume: 30
  start-page: 1
  year: 2017
  ident: ref_28
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_48
– ident: ref_10
– volume: 9
  start-page: nwac035
  year: 2022
  ident: ref_24
  article-title: Neuro-symbolic approaches in artificial intelligence
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwac035
– ident: ref_41
– ident: ref_17
– volume: 52
  start-page: 672
  year: 2011
  ident: ref_32
  article-title: Algorithms for generating arguments and counterarguments in propositional logic
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2011.01.005
– ident: ref_53
– ident: ref_30
– ident: ref_11
– ident: ref_40
– ident: ref_37
– ident: ref_14
– ident: ref_18
– volume: 25
  start-page: 227
  year: 2004
  ident: ref_45
  article-title: Wittgenstein on Philosophy of Logic and Mathematics
  publication-title: Grad. Fac. Philos. J.
  doi: 10.5840/gfpj200425215
– ident: ref_21
– volume: 379
  start-page: 1123
  year: 2023
  ident: ref_36
  article-title: Evolutionary-scale prediction of atomic-level protein structure with a language model
  publication-title: Science
  doi: 10.1126/science.ade2574
– ident: ref_6
– ident: ref_25
  doi: 10.24963/ijcai.2020/688
– ident: ref_29
– volume: 18
  start-page: 313
  year: 1984
  ident: ref_20
  article-title: Some Empirical Justification for a Theory of Natural Propositional Logic
  publication-title: Psychol. Learn. Motiv.
  doi: 10.1016/S0079-7421(08)60365-5
– ident: ref_12
– volume: 14
  start-page: 411
  year: 2010
  ident: ref_3
  article-title: Language evolution in the laboratory
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2010.06.006
– volume: 56
  start-page: 3055
  year: 2022
  ident: ref_34
  article-title: Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10248-8
– volume: 3
  start-page: 380
  year: 2023
  ident: ref_5
  article-title: Tokenization in the Theory of Knowledge
  publication-title: Encyclopedia
  doi: 10.3390/encyclopedia3010024
– ident: ref_15
– volume: 40
  start-page: 27
  year: 2009
  ident: ref_50
  article-title: Revisiting the construction of the Egyptian pyramids
  publication-title: Europhys. News
  doi: 10.1051/epn/2009303
– volume: 7
  start-page: 373
  year: 2020
  ident: ref_43
  article-title: Themes of advanced information processing in the primate brain
  publication-title: AIMS Neurosci.
  doi: 10.3934/Neuroscience.2020023
– volume: 230
  start-page: 2285
  year: 2021
  ident: ref_55
  article-title: Deep learning in astronomy: A tutorial perspective
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjs/s11734-021-00207-9
– volume: 34
  start-page: 381
  year: 2002
  ident: ref_33
  article-title: A Tutorial Program for Propositional Logic with Human/Computer Interactive Learning
  publication-title: ACM SIGCSE Bull.
  doi: 10.1145/563517.563490
– ident: ref_57
– volume: 68
  start-page: 73
  year: 1990
  ident: ref_52
  article-title: The Competitive Advantage of Nations
  publication-title: Harv. Bus. Rev.
SSID ssj0002810143
Score 2.221355
Snippet In deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language is not an...
DefinitionIn deep learning, large language models are typically trained on data from a corpus as representative of current knowledge. However, natural language...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 687
SubjectTerms Animal communication
Boolean
Cognition & reasoning
Deep learning
Knowledge
Language
large language models
Logic
logical reasoning
Methods
Natural language
Neural networks
Philosophy
propositional logic
symbolic logic
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iyYtYH1itkoMHRRc3yT6So4qlSPUgFnpb8pgcpLTFrQf_vZnstlQUvXhdsiTMJPPK5PsIOVPeesHxiTIwSDKdykQKmyfe81K6QpXcYUH_8akYjLKHcT5eo_rCnrAGHrgR3LXMufeqtC4tZKakNkaVosi5URGd3KD1DT5vLZl6jSUj5KAVDcyQCHk9Eq192Mlsju8xRIp7Q31xRRGx_5tBjl6mv0O22_CQ3jTL6pANmO6STnsAa3reokRf7JHLIfZw02Fbb6RIajapqZ46OmzMGX0GXcdq6z4Z9e9f7gZJy3yQWB5WmxgvmA65Fys98NQoKyxjGhxzSoaEViM3AygvnYJCenBaWaa0BMu5KTxYcUA2p7MpHBLKlNdaCw-Cp5lhXBc8qCdEQT6FEApBl_ClECrbwoIjO8WkCukBSq76QXJdcrX6ad6gYvw-_BaluxqKkNbxQ1B01Sq6-kvRXdJb6qZqz1ld4T1wsCghpjr6jzmOyRbSycfugLRHNhdv73ASgo6FOY376xP_aNQJ
  priority: 102
  providerName: Directory of Open Access Journals
Title Large Language Models and Logical Reasoning
URI https://www.proquest.com/docview/2829794976
https://doaj.org/article/852ff97cd068498abb973652b900212b
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULlyMoEYUyQ4eNLq4trC1JyMGQgwSQiThtvTTCwFkeOC_t68UjNF43bpkeX3fff39ELrmVllK4IqywSZuiYTFjKp2bC3JmE55RjQ09F-HaX_Sepm2p6HhVoSxyp1P9I5aLxT0yB_gxM_pjouej8uPGFij4HQ1UGgcorJzwcwVX-VOdzga77ssBPCr_OgcSTMaQzawhR6irtYH8rWNmi2WcEeDJqAv_Ed48ij-v5y0jzy9Y3QUUsboabvHVXRg5jVUGe04CDY1VA0WWkQ3AUb69gTdDWDIOxqEhmQErGezIhJzHQ22_i4aG1H4duwpmvS6b8_9OFAjxIq4X4-lpVi44gxn1pBEckUVxsJorDlzFa8A8gbDLdPcpMwaLbjCXDCjCJGpNYqeodJ8MTfnKMLcCiGoNZQkLYmJSInbP5cm2cS4XMnUEdlJJFcBNxzoK2a5qx9AjPkfYqyj-_1Hyy1sxv_LOyDq_VLAvPYPFqv3PJhQztrEWp4pnaSsxZmQkmc0bRPJPU69rKPGbqPyYIhF_q02F_-_vkQVYJL3gwFJA5XWq09z5fKNtWwGpWr6ev0L9i_VMQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5VAuqFCqLoXiQysVtVFjO5vYB4QKBS0lrBACiVvqJ5fV7pZQVfun-hvxJM6iqogb18ROpPHneXk8H8AH6Y3nDK8oO-qSTKUiEdwMEu9ZIWwuC2YxoX82yodX2Y_rwfUS_O3uwmBZZacTG0VtpwZz5F_xxC9gJ1jP_dmvBFmj8HS1o9BoYXHq5n9CyFbvnXwP6_uRseOjy8NhElkFEsM4l4n2nKoQ19DCO5ZqabihVDlLrRQhWFTIe-CkF1a6XHhnlTRUKuEMYzr3zvDw3RewnPEQyvRg-eBodH6xyOow7JfVlOqxvOAJeh9tq6Pw5xTJ3uZmPJ3hnRCeIj7lP-awYQ34zyg0lu74FaxGF5V8azG1Bktusg4r5x3nwXwd1qJGqMmn2LZ69zV8LrGonJQxAUqQZW1cEzWxpGz1K7lwqm7Svxtw9SxCewO9yXTi3gKh0iuluHecpZmmTOUs4CW4ZT51wTdzfWCdRCoT-5QjXca4CvEKirF6RIx9-LKYNGvbdDw9_ABFvRiKPbabB9Pbmypu2UoMmPeyMDbNRSaF0loWPB8wLZu--LoPW91CVXHj19UDTDeffr0DL4eXZ2VVnoxO38EKstg3RQnpFvTubn-77eDr3On3EWAEfj43pu8BR9wSSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RIFVcENBWDYWyh1Zq1VrsI7F3D1VVHhGUNIpQkbi5--QSJSkGVflr_XXs2OugqogbV3ttS7Of57Uz8wG8U8EGwbFF2TOf9TSVmRS2n4XAC-lyVXCHCf0fo_zkovf9sn-5An_bXhgsq2x1Yq2o3cxijnwfT_widqL13A-pLGJ8NPg6_50hgxSetLZ0Gg1EzvziTwzfqi-nR3Gv33M-OP55eJIlhoHMciFUZoJgOsY4rAieU6OssIxp75hTMgaOGjkQvArSKZ_L4J1WliktveXc5MFbEd_7DFaLGBXRDqweHI_G58sMD8fZWXXZHs8LkaEn0ow9il-mSPy2sJPZHPtDBEWsqn9MY80g8J-BqK3eYAPWk7tKvjX42oQVP92CtXHLf7DYgs2kHSryIY2w_vgCPg2xwJwMUzKUIOPapCJ66siw0bXk3OuqTgW_hIsnEdor6ExnU_8aCFNBay2CF5z2DOM65xE70UUL1Ec_zXeBtxIpbZpZjtQZkzLGLijG8gExduHz8qF5M7Lj8eUHKOrlUpy3XV-YXV-V6fctZZ-HoArraC57SmpjVCHyPjeqnpFvurDTblSZlEBV3kN2-_Hbe_A8Yrkcno7O3sAaEtrX9Ql0Bzo317d-N7o9N-ZtwheBX08N6TvPPBZ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Language+Models+and+Logical+Reasoning&rft.jtitle=Encyclopedia+%28Basel%2C+Switzerland%29&rft.au=Friedman%2C+Robert&rft.date=2023-05-30&rft.pub=MDPI+AG&rft.issn=2673-8392&rft.eissn=2673-8392&rft.volume=3&rft.issue=2&rft.spage=687&rft_id=info:doi/10.3390%2Fencyclopedia3020049&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-8392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-8392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-8392&client=summon