Preparation of Vinyl Arenes by Nickel-Catalyzed Reductive Coupling of Aryl Halides with Vinyl Bromides

This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding product...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 128; no. 50; pp. 15773 - 15777
Main Authors Liu, Jiandong, Ren, Qinghua, Zhang, Xinghua, Gong, Hegui
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 12.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols. Ähnlich, doch nicht gleich: Eine nickelkatalysierte reduktive Kreuzkupplung von Elektrophilen verknüpft Arylhalogenide und Vinylbromide zu Vinylarenen. Da das Katalysatorsystem zwischen den beiden C(sp2)‐Halogeniden als Kupplungspartner unterscheidet, muss ein anderer Reaktionsmechanismus vorliegen als bei stufenweisen Umsetzungen.
AbstractList This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy-to-operate nickel-catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional-group tolerance. The nickel-catalytic system displays good chemoselectivity between the two C(sp super(2))-halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.Original Abstract: Aehnlich, doch nicht gleich: Eine nickelkatalysierte reduktive Kreuzkupplung von Elektrophilen verknuepft Arylhalogenide und Vinylbromide zu Vinylarenen. Da das Katalysatorsystem zwischen den beiden C(sp super(2))-Halogeniden als Kupplungspartner unterscheidet, muss ein anderer Reaktionsmechanismus vorliegen als bei stufenweisen Umsetzungen.
Abstract This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp 2 )‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy-to-operate nickel-catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional-group tolerance. The nickel-catalytic system displays good chemoselectivity between the two C(sp2)-halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols.
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate nickel‐catalyzed reaction conditions. A broad range of aryl halides, including heteroaromatics, and vinyl bromides were employed to yielding products in moderate to excellent yields with high functional‐group tolerance. The nickel‐catalytic system displays good chemoselectivity between the two C(sp2)‐halide coupling partners, thus demonstrating a mechanistic pathway distinct from other stepwise protocols. Ähnlich, doch nicht gleich: Eine nickelkatalysierte reduktive Kreuzkupplung von Elektrophilen verknüpft Arylhalogenide und Vinylbromide zu Vinylarenen. Da das Katalysatorsystem zwischen den beiden C(sp2)‐Halogeniden als Kupplungspartner unterscheidet, muss ein anderer Reaktionsmechanismus vorliegen als bei stufenweisen Umsetzungen.
Author Gong, Hegui
Ren, Qinghua
Liu, Jiandong
Zhang, Xinghua
Author_xml – sequence: 1
  givenname: Jiandong
  surname: Liu
  fullname: Liu, Jiandong
  organization: School of Chemical and Environmental Engineering, Shanghai University of Technology, 100 Hai-Quan Road, 201418, Shanghai, China
– sequence: 2
  givenname: Qinghua
  surname: Ren
  fullname: Ren, Qinghua
  email: qinghua.ren@shu.edu.cn
  organization: Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, China
– sequence: 3
  givenname: Xinghua
  surname: Zhang
  fullname: Zhang, Xinghua
  email: xhzhang@sit.edu.cn
  organization: School of Chemical and Environmental Engineering, Shanghai University of Technology, 100 Hai-Quan Road, 201418, Shanghai, China
– sequence: 4
  givenname: Hegui
  surname: Gong
  fullname: Gong, Hegui
  email: hegui_gong@shu.edu.cn
  organization: Center for Supramolecular Materials and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, China
BookMark eNqFkUFvEzEQRi1UpKaFa88rcellg-312vExjUqKCCGqgEq9WN7dcXHr2MHepSy_HkepKsSlp5FG730afXOCjnzwgNAZwVOCMX2v_R1MKSYcC1nLV2hCakrKStTiCE0wZqycUSaP0UlK9xhjToWcILOJsNNR9zb4Ipjiu_WjK-YRPKSiGYu1bR_AlQvdazf-ga64hm5oe_sLikUYds76u702j9m60s52WXu0_Y-noIsYtvvdG_TaaJfg7dM8Rd8-XH5dXJWrL8uPi_mqbGlVyZJw2WFtWFsZSWeSYgYY17URkmnSdNyQtqItkV3FRSeo4R1mpJEcTNNoLqE6ReeH3F0MPwdIvdra1IJz2kMYkiIzzmpGqZhl9N1_6H0Yos_XZYrVIjOcZWp6oNoYUopg1C7arY6jIljta1f72tVz7VmQB-HROhhfoNV8vbz81y0Prk09_H52dXxQXORHqpv1Uq02n_mG3HL1qfoLBv2XTA
CitedBy_id crossref_primary_10_1002_anie_202012614
crossref_primary_10_1093_chemle_upae111
crossref_primary_10_1002_asia_201801542
crossref_primary_10_1002_ange_202012614
crossref_primary_10_1002_asia_201901490
crossref_primary_10_1002_ajoc_202200169
crossref_primary_10_1002_adsc_202301146
crossref_primary_10_1002_ejoc_202100420
crossref_primary_10_1002_ajoc_202000004
crossref_primary_10_1021_acs_orglett_4c00707
crossref_primary_10_1002_ange_201706781
crossref_primary_10_1002_ajoc_202100581
crossref_primary_10_1002_tcr_202100142
crossref_primary_10_1002_asia_201601712
crossref_primary_10_1002_ejoc_201800930
crossref_primary_10_1002_anie_201706781
Cites_doi 10.1002/ange.200804434
10.1021/ol3013342
10.1021/ol0490375
10.1021/ja301769r
10.1021/om00100a019
10.1002/chem.201405223
10.1002/ange.201601206
10.1021/jacs.5b06466
10.1021/acs.accounts.5b00057
10.3233/JBR-130062
10.1021/ja311940s
10.1126/science.1253647
10.1021/ol200617f
10.1039/b506903c
10.1021/ja00519a015
10.1021/ja407589e
10.1002/chem.201601320
10.1021/jo500507s
10.1021/acs.orglett.6b00024
10.1002/anie.201601206
10.1021/ja5029793
10.1038/nature14676
10.1021/acs.macromol.6b00502
10.1002/anie.200704402
10.1021/ja906803t
10.1039/c3sc51098k
10.1002/anie.201503936
10.1016/0022-0728(96)04605-0
10.1021/jo00364a002
10.1002/ange.200803611
10.1126/science.1255525
10.1002/chem.201200190
10.1021/jo3005149
10.1002/ejoc.200400897
10.1039/B809676G
10.1002/ange.200704402
10.1016/S0040-4020(03)00404-6
10.1039/c1cs15129k
10.1002/cber.190103402141
10.1002/ange.201503936
10.1039/c2np20049j
10.1002/cctc.201000276
10.1021/ja00401a016
10.1002/chem.201402302
10.1002/anie.200804434
10.1002/anie.200803611
10.1002/jlac.18550960310
10.1021/ja9093956
10.1021/ja410883p
10.1007/3-540-61454-0_72
10.1002/chem.201402509
10.1021/jo010289i
10.1021/ja508067c
10.1021/jacs.6b04206
10.1039/C5QO00224A
10.1039/c1sc00368b
10.1021/acs.joc.5b00135
10.1021/ol300153f
ContentType Journal Article
Copyright 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.201607959
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 15777
ExternalDocumentID 4269437371
10_1002_ange_201607959
ANGE201607959
ark_67375_WNG_LPM6P1Z6_K
Genre shortCommunication
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2339-169d0af4c3f9289204e0055f794a1bd6f1c32c19d367d72f6d041b96efbba69e3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Sat Aug 17 03:24:05 EDT 2024
Thu Oct 10 15:41:33 EDT 2024
Fri Aug 23 01:52:05 EDT 2024
Sat Aug 24 00:58:36 EDT 2024
Wed Oct 30 09:49:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2339-169d0af4c3f9289204e0055f794a1bd6f1c32c19d367d72f6d041b96efbba69e3
Notes istex:6262E31A0E3D629E83C6CEA670D6BA5CB8B5D5B3
ark:/67375/WNG-LPM6P1Z6-K
ArticleID:ANGE201607959
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1845727864
PQPubID 866336
PageCount 5
ParticipantIDs proquest_miscellaneous_1864542278
proquest_journals_1845727864
crossref_primary_10_1002_ange_201607959
wiley_primary_10_1002_ange_201607959_ANGE201607959
istex_primary_ark_67375_WNG_LPM6P1Z6_K
PublicationCentury 2000
PublicationDate December 12, 2016
PublicationDateYYYYMMDD 2016-12-12
PublicationDate_xml – month: 12
  year: 2016
  text: December 12, 2016
  day: 12
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationTitleAlternate Angew. Chem
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. Krasovskiy, C. Duplais, B. H. Lipshutz, J. Am. Chem. Soc. 2009, 131, 15592
M. F. Semmelhack, P. Helquist, L. D. Jones, L. Keller, L. Mendelson, L. S. Ryono, J. G. Smith, R. D. Stauffer, J. Am. Chem. Soc. 1981, 103, 6461.
N. Kambe, T. Iwasaki, J. Terao, Chem. Soc. Rev. 2011, 40, 4937.
Angew. Chem. 2009, 121, 2694
M. Amatore, C. Gosmini, J. Perichon, Eur. J. Org. Chem. 2005, 989
C. Clarke, C. A. Incerti-Pradillos, H. W. Lam, J. Am. Chem. Soc. 2016, 138, 8068.
Addition of 2 equiv of TEMPO only slightly lowered the yield for 3 (see Table S7), thus indicating a radical-chain mechanism (e.g., S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192) may not operate.
Formation of Ar-NiI from comproportionation of Ni0 and NiII is less likely, since equimolar reaction of (4 a)-Ni0, 2 and Ab did not result in product 3, but dimerization of the vinyl and the aryl groups (e.g., J. Cornella, E. Gómez-Bengoa, R. Martin, J. Am. Chem. Soc. 2013, 135, 1997).
Angew. Chem. 2008, 120, 2119.
A. Wurtz, Ann. Chim. Phys. 1855, 44, 275
T. Moragas, A. Correa, R. Martin, Chem. Eur. J. 2014, 20, 8242
J. Gu, X. Wang, W. C. Xue, H. G. Gong, Org. Chem. Front. 2015, 2, 1411
T. T. Tsou, J. K. Kochi, J. Am. Chem. Soc. 1979, 101, 7547
P. Gomes, C. Gosmini, J. Perichon, Tetrahedron 2003, 59, 2999.
D. A. Everson, D. J. Weix, J. Org. Chem. 2014, 79, 4793
A. Rudolph, M. Lautens, Angew. Chem. Int. Ed. 2009, 48, 2656
For a palladium-catalyzed coupling of 1-bromo-2-nitrobenzene and its derivatives with a range of β-halo-enals, -enones, or -esters using copper as the reductant, see: M. G. Banwell, D. W. Lupton, X. Ma, J. Renner, M. O. Sydnes, Org. Lett. 2004, 6, 2741.
J.-H. Liu, C.-T. Yang, X.-Y. Lu, Z.-Q. Zhang, L. Xu, M. Cui, X. Lu, B. Xiao, Y. Fu, L. Liu, Chem. Eur. J. 2014, 20, 15334.
A. Correa, R. Martin, J. Am. Chem. Soc. 2014, 136, 1062
A. Wurtz, Justus Liebigs Ann. Chem. 1855, 96, 364
Angew. Chem. 2016, 128, 6842
Angew. Chem. 2009, 121, 616
S. E. Denmark, C. R. Butler, Chem. Commun. 2009, 20.
I. Colon, D. R. Kelsey, J. Org. Chem. 1986, 51, 2627
X. Hu, Chem. Sci. 2011, 2, 1867
J.-H. Hsieh, C.-H. Cheng, Chem. Commun. 2005, 4554
D. B. Niesen, C. Hessler, N. P. Seeram, J. Berry Res. 2013, 3, 181
KF suppresses aryl dimerization, see: L. K. G. Ackerman, M. M. Lovell, D. J. Weix, Nature 2015, 524, 454.
D. A. Everson, B. A. Jones, D. J. Weix, J. Am. Chem. Soc. 2012, 134, 6146.
N. T. Kadunce, S. E. Reisman, J. Am. Chem. Soc. 2015, 137, 10480.
A. Moncomble, P. Le Floch, A. Lledos, C. Gosmini, J. Org. Chem. 2012, 77, 5056.
K. M. Arendt, A. G. Doyle, Angew. Chem. Int. Ed. 2015, 54, 9876
C. E. I. Knappke, S. Grupe, D. Gartner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J. 2014, 20, 6828
X. Yu, T. Yang, S. Wang, H. Xu, H. Gong, Org. Lett. 2011, 13, 2138.
G. A. Molander, K. M. Traister, B. T. O'Neill, J. Org. Chem. 2015, 80, 2907
Z. Zhang, Y. Qin, Macromolecules 2016, 49, 3318
Angew. Chem. 2015, 127, 10014
J. C. Tellis, D. N. Primer, G. A. Monlander, Science 2014, 345, 433
A. Correa, R. Martin, J. Am. Chem. Soc. 2014, 136, 7253
C. S. Yan, Y. Peng, X.-B. Xu, Y.-W. Wang, Chem. Eur. J. 2012, 18, 6039
F. Ullmann, J. Bielecki, Chem. Ber. 1901, 34, 2174.
S. Wang, Q. Qian, H. Gong, Org. Lett. 2012, 14, 3352
J.-C. Hsieh, Y.-C. Chen, A.-Y. Cheng, H.-C. Tseng, Org. Lett. 2012, 14, 1282
N. R. Patel, C. B. Kelly, M. Jouffroy, G. A. Molander, Org. Lett. 2016, 18, 764.
M. C. Czaplik, M. Matthias, A. Jacobi von Wangelin, ChemCatChem 2011, 3, 135.
A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365
M. Amatore, C. Gosmini, Angew. Chem. Int. Ed. 2008, 47, 2089
C. Amatore, A. Jutand, Organometallics 1988, 7, 2203.
For mechanistic studies of nickel-catalyzed electrochemical vinyl dimerization, see: W. Cannes, E. Labbé, M. Durandetti, M. Devaud, J. Yves Nédélec, J. Electroanal. Chem. 1996, 412, 85.
H. Xu, C. Zhao, Q. Qian, W. Deng, H. Gong, Chem. Sci. 2013, 4, 4022
W. M. Czaplik, M. Mayer, A. J. von Wangelin, Angew. Chem. Int. Ed. 2009, 48, 607
K. A. Johnson, S. Biswas, D. J. Weix, Chem. Eur. J. 2016, 22, 7399
D. A. Everson, R. Shrestha, D. J. Weix, J. Am. Chem. Soc. 2010, 132, 920
D. J. Weix, Acc. Chem. Res. 2015, 48, 1767
Y.-C. Huang, K.-K. Majumdar, C.-H. Cheng, J. Org. Chem. 2002, 67, 1682.
J. Y. Nédélec, J. Perichon, M. Troupel, Top. Curr. Chem. 1997, 185, 141.
C. Rivière, A. D. Pawlus, J.-M. Mérillon, Nat. Prod. Rep. 2012, 29, 1317
M. O. Konev, L. E. Hanna, E. R. Jarvo, Angew. Chem. Int. Ed. 2016, 55, 6730
Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. MacMillan, Science 2014, 345, 437.
J. M. Huggins, R. G. Bergman, J. Am. Chem. Soc. 1981, 103, 3002
2015; 2
1855; 96
2013; 3
2013; 4
2011; 2
1979; 101
1986; 51
2009 2009; 48 121
1981; 103
2011; 40
2009
2003; 59
2004; 6
2011; 13
2012; 18
2005
2015; 80
2009; 131
2015; 524
2008 2008; 47 120
2012; 14
2016; 18
2011; 3
2012; 77
1901; 34
2014; 136
2014; 20
1855; 44
2015; 48
2016 2016; 55 128
2012; 134
2015; 137
1997; 185
2002; 67
1988; 7
2010; 132
2015 2015; 54 127
2014; 79
2013; 135
2012; 29
2016; 138
1996; 412
2016; 49
2014; 345
2016; 22
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_2_2
Wurtz A. (e_1_2_2_13_2) 1855; 44
e_1_2_2_62_2
e_1_2_2_41_1
e_1_2_2_41_2
e_1_2_2_64_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_66_2
e_1_2_2_8_1
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_24_3
e_1_2_2_68_1
e_1_2_2_60_1
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_38_3
e_1_2_2_51_2
e_1_2_2_30_2
e_1_2_2_19_1
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_55_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_57_2
e_1_2_2_36_1
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_61_2
e_1_2_2_42_1
e_1_2_2_7_2
e_1_2_2_29_1
e_1_2_2_67_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_65_2
e_1_2_2_9_3
e_1_2_2_25_3
e_1_2_2_69_1
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_37_2
e_1_2_2_58_2
e_1_2_2_12_1
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_52_1
e_1_2_2_50_2
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_14_2
e_1_2_2_35_2
e_1_2_2_56_2
Semmelhack M. F. (e_1_2_2_70_1) 1981; 103
References_xml – volume: 22
  start-page: 7399
  year: 2016
  publication-title: Chem. Eur. J.
– start-page: 20
  year: 2009
  publication-title: Chem. Commun.
– volume: 345
  start-page: 433
  year: 2014
  publication-title: Science
– volume: 524
  start-page: 454
  year: 2015
  publication-title: Nature
– volume: 48 121
  start-page: 607 616
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 6039
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 132
  start-page: 920
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 764
  year: 2016
  publication-title: Org. Lett.
– start-page: 989
  year: 2005
  publication-title: Eur. J. Org. Chem.
– volume: 412
  start-page: 85
  year: 1996
  publication-title: J. Electroanal. Chem.
– volume: 49
  start-page: 3318
  year: 2016
  publication-title: Macromolecules
– volume: 6
  start-page: 2741
  year: 2004
  publication-title: Org. Lett.
– volume: 103
  start-page: 6461
  year: 1981
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 135
  year: 2011
  publication-title: ChemCatChem
– volume: 3
  start-page: 181
  year: 2013
  publication-title: J. Berry Res.
– volume: 103
  start-page: 3002
  year: 1981
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3352
  year: 2012
  publication-title: Org. Lett.
– volume: 47 120
  start-page: 2089 2119
  year: 2008 2008
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 4022
  year: 2013
  publication-title: Chem. Sci.
– start-page: 4554
  year: 2005
  publication-title: Chem. Commun.
– volume: 40
  start-page: 4937
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 48 121
  start-page: 2656 2694
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 1282
  year: 2012
  publication-title: Org. Lett.
– volume: 20
  start-page: 6828
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 34
  start-page: 2174
  year: 1901
  publication-title: Chem. Ber.
– volume: 44
  start-page: 275
  year: 1855
  publication-title: Ann. Chim. Phys.
– volume: 138
  start-page: 8068
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 4793
  year: 2014
  publication-title: J. Org. Chem.
– volume: 29
  start-page: 1317
  year: 2012
  publication-title: Nat. Prod. Rep.
– volume: 13
  start-page: 2138
  year: 2011
  publication-title: Org. Lett.
– volume: 55 128
  start-page: 6730 6842
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 9876 10014
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48
  start-page: 1767
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 136
  start-page: 7253
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 15334
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 135
  start-page: 16192
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 15592
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 2999
  year: 2003
  publication-title: Tetrahedron
– volume: 80
  start-page: 2907
  year: 2015
  publication-title: J. Org. Chem.
– volume: 2
  start-page: 1411
  year: 2015
  publication-title: Org. Chem. Front.
– volume: 185
  start-page: 141
  year: 1997
  publication-title: Top. Curr. Chem.
– volume: 77
  start-page: 5056
  year: 2012
  publication-title: J. Org. Chem.
– volume: 134
  start-page: 6146
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 14365
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2203
  year: 1988
  publication-title: Organometallics
– volume: 135
  start-page: 1997
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 10480
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 1682
  year: 2002
  publication-title: J. Org. Chem.
– volume: 101
  start-page: 7547
  year: 1979
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2627
  year: 1986
  publication-title: J. Org. Chem.
– volume: 136
  start-page: 1062
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 345
  start-page: 437
  year: 2014
  publication-title: Science
– volume: 2
  start-page: 1867
  year: 2011
  publication-title: Chem. Sci.
– volume: 20
  start-page: 8242
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 96
  start-page: 364
  year: 1855
  publication-title: Justus Liebigs Ann. Chem.
– ident: e_1_2_2_38_3
  doi: 10.1002/ange.200804434
– ident: e_1_2_2_27_2
  doi: 10.1021/ol3013342
– ident: e_1_2_2_53_1
  doi: 10.1021/ol0490375
– ident: e_1_2_2_21_2
  doi: 10.1021/ja301769r
– ident: e_1_2_2_66_2
  doi: 10.1021/om00100a019
– ident: e_1_2_2_54_1
– ident: e_1_2_2_39_2
  doi: 10.1002/chem.201405223
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201601206
– ident: e_1_2_2_28_2
  doi: 10.1021/jacs.5b06466
– ident: e_1_2_2_5_2
  doi: 10.1021/acs.accounts.5b00057
– ident: e_1_2_2_57_2
  doi: 10.3233/JBR-130062
– ident: e_1_2_2_68_1
  doi: 10.1021/ja311940s
– ident: e_1_2_2_29_1
– ident: e_1_2_2_34_2
  doi: 10.1126/science.1253647
– ident: e_1_2_2_18_2
  doi: 10.1021/ol200617f
– ident: e_1_2_2_45_2
  doi: 10.1039/b506903c
– ident: e_1_2_2_64_2
  doi: 10.1021/ja00519a015
– ident: e_1_2_2_67_1
  doi: 10.1021/ja407589e
– ident: e_1_2_2_36_1
– ident: e_1_2_2_30_2
  doi: 10.1002/chem.201601320
– ident: e_1_2_2_33_1
– ident: e_1_2_2_2_2
  doi: 10.1021/jo500507s
– ident: e_1_2_2_32_2
  doi: 10.1021/acs.orglett.6b00024
– ident: e_1_2_2_22_1
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201601206
– ident: e_1_2_2_43_2
  doi: 10.1021/ja5029793
– ident: e_1_2_2_40_1
  doi: 10.1038/nature14676
– ident: e_1_2_2_55_2
  doi: 10.1021/acs.macromol.6b00502
– ident: e_1_2_2_41_1
  doi: 10.1002/anie.200704402
– ident: e_1_2_2_37_2
  doi: 10.1021/ja906803t
– ident: e_1_2_2_17_2
  doi: 10.1039/c3sc51098k
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201503936
– ident: e_1_2_2_63_1
– ident: e_1_2_2_60_1
– ident: e_1_2_2_69_1
  doi: 10.1016/0022-0728(96)04605-0
– ident: e_1_2_2_65_2
  doi: 10.1021/jo00364a002
– ident: e_1_2_2_9_3
  doi: 10.1002/ange.200803611
– ident: e_1_2_2_35_2
  doi: 10.1126/science.1255525
– ident: e_1_2_2_49_1
– ident: e_1_2_2_23_2
  doi: 10.1002/chem.201200190
– ident: e_1_2_2_1_1
– ident: e_1_2_2_48_1
  doi: 10.1021/jo3005149
– ident: e_1_2_2_50_2
  doi: 10.1002/ejoc.200400897
– ident: e_1_2_2_58_2
  doi: 10.1039/B809676G
– ident: e_1_2_2_12_1
– ident: e_1_2_2_41_2
  doi: 10.1002/ange.200704402
– ident: e_1_2_2_51_2
  doi: 10.1016/S0040-4020(03)00404-6
– ident: e_1_2_2_11_2
  doi: 10.1039/c1cs15129k
– volume: 103
  start-page: 6461
  year: 1981
  ident: e_1_2_2_70_1
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: Semmelhack M. F.
– ident: e_1_2_2_15_2
  doi: 10.1002/cber.190103402141
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201503936
– ident: e_1_2_2_56_2
  doi: 10.1039/c2np20049j
– ident: e_1_2_2_42_1
– ident: e_1_2_2_52_1
  doi: 10.1002/cctc.201000276
– ident: e_1_2_2_61_2
  doi: 10.1021/ja00401a016
– ident: e_1_2_2_4_2
  doi: 10.1002/chem.201402302
– ident: e_1_2_2_38_2
  doi: 10.1002/anie.200804434
– ident: e_1_2_2_9_2
  doi: 10.1002/anie.200803611
– ident: e_1_2_2_14_2
  doi: 10.1002/jlac.18550960310
– ident: e_1_2_2_20_2
  doi: 10.1021/ja9093956
– ident: e_1_2_2_44_2
  doi: 10.1021/ja410883p
– ident: e_1_2_2_7_2
  doi: 10.1007/3-540-61454-0_72
– volume: 44
  start-page: 275
  year: 1855
  ident: e_1_2_2_13_2
  publication-title: Ann. Chim. Phys.
  contributor:
    fullname: Wurtz A.
– ident: e_1_2_2_6_2
  doi: 10.1002/chem.201402509
– ident: e_1_2_2_47_2
  doi: 10.1021/jo010289i
– ident: e_1_2_2_59_1
– ident: e_1_2_2_8_1
– ident: e_1_2_2_31_2
  doi: 10.1021/ja508067c
– ident: e_1_2_2_62_2
  doi: 10.1021/jacs.6b04206
– ident: e_1_2_2_19_1
– ident: e_1_2_2_3_2
  doi: 10.1039/C5QO00224A
– ident: e_1_2_2_16_1
– ident: e_1_2_2_10_2
  doi: 10.1039/c1sc00368b
– ident: e_1_2_2_26_2
  doi: 10.1021/acs.joc.5b00135
– ident: e_1_2_2_46_2
  doi: 10.1021/ol300153f
SSID ssj0006279
Score 2.022411
Snippet This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy‐to‐operate...
Abstract This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and...
This work emphasizes the synthesis of substituted vinyl arenes by reductive coupling of aryl halides with vinyl bromides under mild and easy-to-operate...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 15773
SubjectTerms Alkene
Arene
Aromatic compounds
Bromides
Chemistry
Coupling
Displays
Halides
Kreuzkupplungen
Nickel
Pathways
Reaktionsmechanismen
Tolerances
Title Preparation of Vinyl Arenes by Nickel-Catalyzed Reductive Coupling of Aryl Halides with Vinyl Bromides
URI https://api.istex.fr/ark:/67375/WNG-LPM6P1Z6-K/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201607959
https://www.proquest.com/docview/1845727864
https://search.proquest.com/docview/1864542278
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoALb0SgoCAhOKWNH-ttjsv2sQK6WlUUKi6WHdsFbZugdFdie-In9Df2l3Qm2aRdLkhwy8MTOZ6HP9vjzwBvUspEYJIlQtbLjKlPjPMiUQatmbsgs5qne3-sRofyw1Hv6MYu_oYfoptwI8-o4zU5uLFnm9ekoZR7T6lZKqXjsjEIM9GnnK7tg2v-KMUbsr1UymQLBxota2PKN1fFV3ql29TAv1Yg503gWvc8u_fBtHVuEk6mG_OZ3cjP_6Bz_J-fegD3lrA0HjR29BBu-eIR3Bm2p8E9hu-Tyjc04WURlyH-8qNYUHkKlbFdxGhRU39y-ftiSPNBi3Pv4gNihaVoGg_LOW38PSbBQYVyI0T_DgVpFnj5qfdVeUrPnsDh7s7n4ShZntKQ5FygfpnKXGqCzEXIcPTGU-mJ2CugoxtmnQosFzxnmROq7_o8KJdKZjPlg7VGZV48hbWiLPwziL1Aq7E8VxmiDkSGRvSCxQ9jzPHKuBDBu1ZL-mdDxqEb2mWuqeV013IRvK2V2BUz1ZRS2Po9_XW8pz9N9tWEfVP6YwTrrZb10nvPNI56e4jrtpSM4HX3GhucFlNM4cs5lSEuNNpIHAGvVfqXKunBeG-nu3v-L0Iv4C5dUzYN4-uwNqvm_iViopl9Vdv9FTGcA6I
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH-C7TAu_EdkDAgSglO2xHbd5VjKtsLaqpo2QFwsO7Zh6pag0ErrTvsIfEY-Ce8lTUa5IMExjp-VvH9-fn7-GeBlTJUIiUgiLqptxthF2joeSY3azKwXaYXTPRrLwYl4_6nTVBPSWZgaH6JNuJFlVP6aDJwS0jvXqKFUfE-1WTKm-7JvwjraPKfbG94eXSNISVbD7cVCRLu41GhwG2O2s0q_Mi-tE4svVoLO30PXau7ZvwOm-eq65GS6PZ-Z7ezyD0DH__qtu3B7GZmGvVqV7sENl9-HjX5zIdwD-DopXY0UXuRh4cMPp_mC-pO3DM0iRKWaurOfVz_6lBJaXDobHhEwLDnUsF_M6ezvFyLslUg3wAWARUJKBC-HelMW59T2EE729477g2h5UUOUMY4iTmRqY-1Fxn2KCzgWC0fYXh5tXSfGSp9knGVJarns2i7z0sYiMal03hgtU8cfwVpe5O4xhI6j4hiWyRQDDwwONe94gwOj23FSWx_A60ZM6luNx6Fq5GWmiHOq5VwAryoptt10OaUqtm5HfRwfqOFkJCfJZ6kOA9hqxKyWBvxd4cK3g6HdrhQBvGhfI8NpP0XnrphTH4JDo7PEAbBKpn_5JNUbH-y1T5v_QvQcNgbHo6EavhsfPoFb1E7FNQnbgrVZOXdPMUSamWeVEfwCYNIHug
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFD6CTQJu-EdkGxAkBFfZEtt1l8tS1hW2VdXEYOLGsmN7Q2XJFFpp3RWPwDPyJJyTNNnKDRJcxvGxkvNjf7aPPwO8iikTIRFJxEW1zRi7SFvHI6nRm5n1Iq14ug9GcngkPhx3jq-d4q_5IdoFN4qMqr-mAD-3fuuKNJRy7yk1S8Z0XfZNWBUS4S_BosMrAinJara9WIhoG2caDW1jzLaW5ZeGpVXS8MUS5ryOXKuhZ3APdPPRdcbJZHM2NZvZ5R98jv_zV_fh7gKXhr3akR7ADZc_hNv95jq4R3A6Ll3NE17kYeHDT1_zOdWnvjI08xBdauK-_frxs08LQvNLZ8NDooWl7jTsFzM6-XtCgr0S5YYI_y0K0jLwoqm3ZXFGZY_haLDzsT-MFtc0RBnjaOBEpjbWXmTcpzh9Y7FwxOzlMdJ1Yqz0ScZZlqSWy67tMi9tLBKTSueN0TJ1_Ams5EXunkLoOLqNYZlMEXYgNNS84w02jJ2Ok9r6AN40VlLnNRuHqnmXmSLNqVZzAbyujNhW0-WEcti6HfV5tKv2xwdynHyRai-AjcbKahG-3xVOezsI7LalCOBl-xoVTrspOnfFjOoQGRqdJA6AVSb9yyep3mh3p31a-xehF3Br_G6g9t-P9tbhDhVTZk3CNmBlWs7cM8RHU_O8CoHfQB8GaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Vinyl+Arenes+by+Nickel-Catalyzed+Reductive+Coupling+of+Aryl+Halides+with+Vinyl+Bromides&rft.jtitle=Angewandte+Chemie&rft.au=Liu%2C+Jiandong&rft.au=Ren%2C+Qinghua&rft.au=Zhang%2C+Xinghua&rft.au=Gong%2C+Hegui&rft.date=2016-12-12&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=128&rft.issue=50&rft.spage=15773&rft.epage=15777&rft_id=info:doi/10.1002%2Fange.201607959&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon