Nanojunction-Mediated Photocatalytic Enhancement in Heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO Nanocrystals
A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured sem...
Saved in:
Published in | Angewandte Chemie Vol. 126; no. 30; pp. 7972 - 7976 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English German |
Published |
Weinheim
WILEY-VCH Verlag
21.07.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.
Eine Serie von hoch aktiven Halbleiterphotokatalysatoren wurde durch Kristallisation von Wurtzit‐Tetraedern auf CdS‐, CdSe‐ und CdTe‐Quantenpunkten hergestellt. Die heterostrukturierten CdX/ZnO‐Nanokristalle weisen ausgedehnte Typ‐II‐Nanokontakte auf und bewirken die schnelle photokatalytische Zersetzung von organischen Molekülen in wässrigen Medien. |
---|---|
AbstractList | A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis. A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high‐quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type‐II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis. Eine Serie von hoch aktiven Halbleiterphotokatalysatoren wurde durch Kristallisation von Wurtzit‐Tetraedern auf CdS‐, CdSe‐ und CdTe‐Quantenpunkten hergestellt. Die heterostrukturierten CdX/ZnO‐Nanokristalle weisen ausgedehnte Typ‐II‐Nanokontakte auf und bewirken die schnelle photokatalytische Zersetzung von organischen Molekülen in wässrigen Medien. A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite-ZnO tetrahedrons around pre-formed CdS, CdSe, and CdTe quantum dots (QDs). The resulting contact between two small but high-quality crystals creates novel CdX/ZnO heterostructured semiconductor nanocrystals (HSNCs) with extensive type-II nanojunctions that exhibit more efficient photocatalytic decomposition of aqueous organic molecules under UV irradiation. Catalytic testing and characterization indicate that catalytic activity increases as a result of a combination of both the intrinsic chemistry of the chalcogenide anions and the heterojunction structure. Atomic probe tomography (APT) is employed for the first time to probe the spatial characteristics of the nanojunction between cadmium chalcogenide and ZnO crystalline phases, which reveals various degrees of ion exchange between the two crystals to relax large lattice mismatches. In the most extreme case, total encapsulation of CdTe by ZnO as a result of interfacial alloying is observed, with the expected advantage of facilitating hole transport for enhanced exciton separation during catalysis.Original Abstract: Eine Serie von hoch aktiven Halbleiterphotokatalysatoren wurde durch Kristallisation von Wurtzit-Tetraedern auf CdS-, CdSe- und CdTe-Quantenpunkten hergestellt. Die heterostrukturierten CdX/ZnO-Nanokristalle weisen ausgedehnte Typ-II-Nanokontakte auf und bewirken die schnelle photokatalytische Zersetzung von organischen Molekuelen in waessrigen Medien. |
Author | Smith, George Li, Tong Tsang, Shik Chi Edman Fairclough, Simon Michael Smith, Jason M. Liao, Fenglin Eley, Clive |
Author_xml | – sequence: 1 givenname: Clive surname: Eley fullname: Eley, Clive organization: Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR (UK) – sequence: 2 givenname: Tong surname: Li fullname: Li, Tong organization: Department of Material Science, University of Oxford, Oxford OX1 3PH (UK) – sequence: 3 givenname: Fenglin surname: Liao fullname: Liao, Fenglin organization: Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR (UK) – sequence: 4 givenname: Simon Michael surname: Fairclough fullname: Fairclough, Simon Michael organization: Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR (UK) – sequence: 5 givenname: Jason M. surname: Smith fullname: Smith, Jason M. organization: Department of Material Science, University of Oxford, Oxford OX1 3PH (UK) – sequence: 6 givenname: George surname: Smith fullname: Smith, George organization: Department of Material Science, University of Oxford, Oxford OX1 3PH (UK) – sequence: 7 givenname: Shik Chi Edman surname: Tsang fullname: Tsang, Shik Chi Edman email: edman.tsang@chem.ox.ac.uk organization: Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR (UK) |
BookMark | eNqFkcFv0zAUhy00JLrBlXMkLhxI52cns32cStchdd3QhpC4WI7zwlJae7MdQf97HDJNiAun9_z0fc-2fsfkyHmHhLwFOgdK2alx33HOKFS0qiS8IDOoGZRc1OKIzGgelpJV6hU5jnFLKT1jQs3I48Y4vx2cTb135RW2vUnYFjf3PnlrktkdUm-Lpbs3zuIeXSp6V1xiwuBjCoNNQ8j4or09_eauP4wNTp1x4_juz6kYL7HhEPO--Jq87HLBN0_1hHy5WN4tLsv19erT4nxdWsY5lLKTDFmHDWWgJFpBG9Nw1XHsBFqUdVU1LchGNdJIUApAKOhMJyXPSkv5CXk_7X0I_nHAmPS-jxZ3O-PQD1GDoFTJqmYj-u4fdOuH4PLrNNRVLVktFM_UfKJs_nsM2OmH0O9NOGigekxAjwno5wSyoCbhZ7_Dw39ofb5ZLf92y8ntY8Jfz64JP_SZyJnqr5uVXt9IuF18XuuP_DffiZss |
CitedBy_id | crossref_primary_10_1002_ange_201509701 crossref_primary_10_1007_s00339_023_06776_x crossref_primary_10_1021_acsanm_2c00155 crossref_primary_10_1007_s13738_023_02789_8 crossref_primary_10_1007_s10895_023_03242_y crossref_primary_10_1038_s43586_021_00047_w crossref_primary_10_1016_j_cplett_2023_140464 crossref_primary_10_1002_anie_201509701 crossref_primary_10_1002_anie_202106790 crossref_primary_10_1002_ange_202106790 crossref_primary_10_3390_catal12121585 |
Cites_doi | 10.1039/c3nr34327h 10.1039/c2nr33595f 10.1016/S0928-4931(02)00250-3 10.1021/cr00033a004 10.1021/ja9052703 10.1016/j.jphotochem.2008.05.022 10.1021/jp903813h 10.1016/S1010-6030(03)00378-2 10.1166/jnn.2013.6027 10.1016/S0045-6535(02)00787-7 10.1166/jnn.2012.6801 10.1116/1.4816951 10.1002/adma.201102752 10.1007/s11814-007-0114-7 10.1002/anie.201200903 10.1063/1.3567764 10.1021/ja003633m 10.1021/ja111102u 10.1080/15685543.2013.806124 10.1016/j.ultsonch.2011.05.007 10.1063/1.121249 10.1002/ange.201200903 10.1088/0957-4484/23/19/194014 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7QQ |
DOI | 10.1002/ange.201404481 |
DatabaseName | Istex CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Ceramic Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Ceramic Abstracts |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 7976 |
ExternalDocumentID | 3376612521 10_1002_ange_201404481 ANGE201404481 ark_67375_WNG_LP81SCQL_D |
Genre | shortCommunication |
GrantInformation_xml | – fundername: EPRSC – fundername: The Rhodes Trust |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAMNL AAYXX ACRPL CITATION 7SR 7U5 8BQ 8FD JG9 L7M 7QQ |
ID | FETCH-LOGICAL-c2331-8f82e2feb02198ec70bab39f3ef7ece8544bd18b9b8a819911791faf883b02d03 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Wed Dec 04 15:17:58 EST 2024 Thu Oct 10 17:52:18 EDT 2024 Fri Dec 06 04:18:58 EST 2024 Sat Aug 24 00:41:31 EDT 2024 Wed Oct 30 09:53:02 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English German |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2331-8f82e2feb02198ec70bab39f3ef7ece8544bd18b9b8a819911791faf883b02d03 |
Notes | The Rhodes Trust This research was supported by The Rhodes Trust and EPRSC doctoral prize funding. TEM was performed by University of St Andrews (UK) through the EPSRC access scheme. ark:/67375/WNG-LP81SCQL-D ArticleID:ANGE201404481 istex:6C3A8E6457883DF560A11C6155B06D510A905162 EPRSC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1545825793 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1700984520 proquest_journals_1545825793 crossref_primary_10_1002_ange_201404481 wiley_primary_10_1002_ange_201404481_ANGE201404481 istex_primary_ark_67375_WNG_LP81SCQL_D |
PublicationCentury | 2000 |
PublicationDate | July 21, 2014 |
PublicationDateYYYYMMDD | 2014-07-21 |
PublicationDate_xml | – month: 07 year: 2014 text: July 21, 2014 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationTitleAlternate | Angew. Chem |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | A. McLaren, T. Valdes-Solis, G. Li, S. C. Tsang, J. Am. Chem. Soc. 2009, 131, 12540-12541. D. Li, H. Haneda, Chemosphere 2003, 51, 129-137. F. Liao, Z. Zeng, C. Eley, Q. Lu, X. Hong, S. C. E. Tsang, Angew. Chem. 2012, 124, 5934-5938 F. Peng, H. Zhu, H. Wang, H. Yu, Korean J. Chem. Eng. 2008, 24, 1022-1026. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 2012, 24, 229-251. S.-H. Wei, A. Zunger, Appl. Phys. Lett. 1998, 72, 2011-2013. M. Hoffmann, S. Martin, W. Choi, Chem. Rev. 1995, 95, 69-96. P. Banerjee, S. Chakrabarti, S. Maitra, B. K. Dutta, Ultrason. Sonochem. 2012, 19, 85-93. M. Lee, K. Yong, Nanotechnology 2012, 23, 194014. Y. Liao, W. Que, J. Zhang, P. Zhong, Y. Yuan, X. Qiu, F. Shen, J. Nanosci. Nanotechnol. 2013, 13, 959-963. Z. Peng, X. Peng, J. Am. Chem. Soc. 2001, 123, 183-184. J. Jaffe, T. Kaspar, T. Droubay, T. Varga, J. Vac. Sci. Technol. A 2013, 31, 061102-061109. S. Khayyat, M. Abaker, A. Umar, M. Alkattan, N. Alharbi, S. Baskoutas, J. Nanosci. Nanotechnol. 2012, 12, 8453-8458. L. Chen, Y. Tu, Y. Wang, R. Kan, C. Huang, J. Photochem. Photobiol. A 2008, 199, 170-178. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, J. Am. Chem. Soc. 2011, 133, 5660-5663. N. Daneshvar, D. Salari, A. Khataee, J. Photochem. Photobiol. A 2004, 162, 317-322. Angew. Chem. Int. Ed. 2012, 51, 5832-5836. M. Curri, R. Comparelli, P. Cozzoli, G. Mascolo, A. Agostiano, Mater. Sci. Eng. C 2003, 23, 285-289. C. Yu, K. Yang, Y. Xie, Q. Fan, J. C. Yu, Q. Shu, C. Wang, Nanoscale 2013, 5, 2142-2151. X. Huang, L. Shang, S. Chen, J. Xia, X. Qi, X. Wang, T. Zhang, X.-M. Meng, Nanoscale 2013, 5, 3828-3833. Y. Haldorai, J.-J. Shim, Compos. Interfaces 2013, 20, 365-377. V. Consonni, G. Rey, J. Bonaimé, N. Karst, B. Doisneau, H. Roussel, S. Renet, D. Bellet, Appl. Phys. Lett. 2011, 98, 111906. F. Xu, V. Volkov, Y. Zhu, H. Bai, A. Rea, N. V. Valappil, W. Su, X. Gao, I. L. Kuskovsky, H. Matsui, J. Phys. Chem. C 2009, 113, 19419-19423. 1995; 95 2001; 123 2013; 13 2004; 162 2013; 20 2013; 31 2012; 19 2008; 24 2011; 98 2009; 113 2012 2012; 124 51 1998; 72 2009; 131 2012; 24 2008; 199 2012; 12 2013; 5 2003; 51 2012; 23 2011; 133 2003; 23 e_1_2_3_19_2 e_1_2_3_1_2 e_1_2_3_5_2 e_1_2_3_14_3 e_1_2_3_15_2 e_1_2_3_4_2 e_1_2_3_16_2 e_1_2_3_3_2 e_1_2_3_17_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_9_2 e_1_2_3_11_2 e_1_2_3_22_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_7_2 e_1_2_3_13_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_20_2 e_1_2_3_10_2 e_1_2_3_21_2 |
References_xml | – volume: 5 start-page: 2142 year: 2013 end-page: 2151 publication-title: Nanoscale – volume: 98 start-page: 111906 year: 2011 publication-title: Appl. Phys. Lett. – volume: 95 start-page: 69 year: 1995 end-page: 96 publication-title: Chem. Rev. – volume: 19 start-page: 85 year: 2012 end-page: 93 publication-title: Ultrason. Sonochem. – volume: 113 start-page: 19419 year: 2009 end-page: 19423 publication-title: J. Phys. Chem. C – volume: 5 start-page: 3828 year: 2013 end-page: 3833 publication-title: Nanoscale – volume: 13 start-page: 959 year: 2013 end-page: 963 publication-title: J. Nanosci. Nanotechnol. – volume: 23 start-page: 194014 year: 2012 publication-title: Nanotechnology – volume: 24 start-page: 229 year: 2012 end-page: 251 publication-title: Adv. Mater. – volume: 20 start-page: 365 year: 2013 end-page: 377 publication-title: Compos. Interfaces – volume: 24 start-page: 1022 year: 2008 end-page: 1026 publication-title: Korean J. Chem. Eng. – volume: 131 start-page: 12540 year: 2009 end-page: 12541 publication-title: J. Am. Chem. Soc. – volume: 199 start-page: 170 year: 2008 end-page: 178 publication-title: J. Photochem. Photobiol. A – volume: 31 start-page: 061102 year: 2013 end-page: 061109 publication-title: J. Vac. Sci. Technol. A – volume: 23 start-page: 285 year: 2003 end-page: 289 publication-title: Mater. Sci. Eng. C – volume: 133 start-page: 5660 year: 2011 end-page: 5663 publication-title: J. Am. Chem. Soc. – volume: 124 51 start-page: 5934 5832 year: 2012 2012 end-page: 5938 5836 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 51 start-page: 129 year: 2003 end-page: 137 publication-title: Chemosphere – volume: 72 start-page: 2011 year: 1998 end-page: 2013 publication-title: Appl. Phys. Lett. – volume: 162 start-page: 317 year: 2004 end-page: 322 publication-title: J. Photochem. Photobiol. A – volume: 12 start-page: 8453 year: 2012 end-page: 8458 publication-title: J. Nanosci. Nanotechnol. – volume: 123 start-page: 183 year: 2001 end-page: 184 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_16_2 doi: 10.1039/c3nr34327h – ident: e_1_2_3_10_2 doi: 10.1039/c2nr33595f – ident: e_1_2_3_1_2 doi: 10.1016/S0928-4931(02)00250-3 – ident: e_1_2_3_3_2 doi: 10.1021/cr00033a004 – ident: e_1_2_3_12_2 doi: 10.1021/ja9052703 – ident: e_1_2_3_7_2 doi: 10.1016/j.jphotochem.2008.05.022 – ident: e_1_2_3_19_2 doi: 10.1021/jp903813h – ident: e_1_2_3_4_2 doi: 10.1016/S1010-6030(03)00378-2 – ident: e_1_2_3_18_2 doi: 10.1166/jnn.2013.6027 – ident: e_1_2_3_13_2 doi: 10.1016/S0045-6535(02)00787-7 – ident: e_1_2_3_6_2 doi: 10.1166/jnn.2012.6801 – ident: e_1_2_3_22_2 doi: 10.1116/1.4816951 – ident: e_1_2_3_5_2 doi: 10.1002/adma.201102752 – ident: e_1_2_3_8_2 doi: 10.1007/s11814-007-0114-7 – ident: e_1_2_3_14_3 doi: 10.1002/anie.201200903 – ident: e_1_2_3_17_2 doi: 10.1063/1.3567764 – ident: e_1_2_3_20_2 doi: 10.1021/ja003633m – ident: e_1_2_3_9_2 doi: 10.1021/ja111102u – ident: e_1_2_3_11_2 doi: 10.1080/15685543.2013.806124 – ident: e_1_2_3_2_2 doi: 10.1016/j.ultsonch.2011.05.007 – ident: e_1_2_3_21_2 doi: 10.1063/1.121249 – ident: e_1_2_3_14_2 doi: 10.1002/ange.201200903 – ident: e_1_2_3_15_2 doi: 10.1088/0957-4484/23/19/194014 |
SSID | ssj0006279 |
Score | 1.9302012 |
Snippet | A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite‐ZnO tetrahedrons around pre‐formed CdS,... A series of highly efficient semiconductor nanocrystal (NC) photocatalysts have been synthesized by growing wurtzite-ZnO tetrahedrons around pre-formed CdS,... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 7972 |
SubjectTerms | Cadmium Cadmium selenides Cadmium tellurides Chalcogenides Chemistry Halbleiter Intermetallics Nanocrystals Nanokristalle Nanostructure Photocatalysis Photokatalyse Quantum dots Rastersondentomographie Semiconductors Zinc oxide |
Title | Nanojunction-Mediated Photocatalytic Enhancement in Heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO Nanocrystals |
URI | https://api.istex.fr/ark:/67375/WNG-LP81SCQL-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.201404481 https://www.proquest.com/docview/1545825793 https://search.proquest.com/docview/1700984520 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9lAu9AcQoQWlEoIL6SZONvYeq-22K1SWQltRcbFsx1FLq6TaH6ntiUfgGXkSZuxN2uWCBDc7mVGcmYw9Hk--AXjDtNbc5DYqc2uijBsWKcNsZFItYoUOOS9dlu8oH55mH866Zw_-4vf4EG3AjSzDzddk4EpPOvegoZR7T6lZWYw7DNr_JCmnnL69L_f4UTnzYHtIEgncaDSojTHrLLIvrErLJOCbBZfzoePqVp79VVDNmH3CyeXObKp3zN0fcI7_81Jr8GTuloa7_jtah0e22oCVflMN7ilMcBquv-MiSIr89ePnR1fiwxbh0Xk9rV0Q6BZ5w0F1Tt8RxRzDiyocUrZN7UFqZ2Mk7xfHnW_Vp_fUsL6lKrp84nohPcaMb9FnvZo8g9P9wUl_GM0LNkSGpWkSiVIwy0qr0XHoCWt4rJVOe2VqS26pPmqW6SIRuqeFEpRzRdiopSqFSJGliNPnsFTVlX0BoVWiMJlRyBxnBc8VSyyuqIqhw5P0uAngXaMwee1xOaRHYGaShChbIQbw1umzJVPjS8pm4135dXQgD49Ectz_fCj3AthqFC7nhjyR_mCxi7NYANvtbZQ9nauoytYzpOGEypp1WRwAc9r9y5Dk7uhg0PZe_gvTJjymNkWZWbIFS6hH-wrdo6l-7UzgN2aVCGk |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6h9lAuQPkRgVKChOBCuomTjb3HarvtAtul0K1AvVi246hQlKD9kSgnHqHP2Cdhxt6kLBckuNmOR3E8Hns8_vIZ4DnTWnOT26jMrYkyblikDLORSbWIFTrkvHQo33E-PMnefOo2aEL6F8bzQ7QBN7IMN1-TgVNAunPNGkrge8JmZTFuMXADtI42nxCqa-_DNYNUzjzdHtaJBG41Gt7GmHVW5VfWpXXq4u8rTufvrqtbe_Zvg25a7SEn5zuLud4xP_4gdPyvz7oDt5aeabjrh9Im3LDVXdjoNxfC3YMZzsT1F1wHSZdXPy8P3S0ftgiPzup57eJAFygbDqozGkoUdgw_V-GQADe156ldTLF6vzjunFbvXlHC-pSqqHjiciG9xkwv0G39OrsPJ_uDSX8YLe9siAxL0yQSpWCWlVaj79AT1vBYK532ytSW3NIVqVmmi0TonhZKEOyK6FFLVQqRokgRpw9graor-xBCq0RhMqNQOM4KniuWWFxUFUOfJ-lxE8DLRmPym6fmkJ6EmUnqRNl2YgAvnELbamp6ToA23pUfxwdydCSS4_77kdwLYKvRuFza8kz6s8UuTmQBPGsfY9_T0YqqbL3AOpyIWbMuiwNgTr1_aZLcHR8M2tyjfxF6ChvDyeFIjl6P3z6Gm1ROQWeWbMEa6tQ-QW9prredPfwC-oAMig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwEX3oiUAkFCcCHdxPEmzrHaRxdYloW2ourFsh1bhVZJtQ-JcuIn8Bv5JczYm7TLBQlutuNRnBmPZ2xPviHkBVVK5Tozkc2MjliuaSQ1NZFOFY8lOOS5dVG-k2x0yN4edY-u_MXv8SHaAzfUDLdeo4Kfl7ZzCRqKsfcYmsVi2GHA_meTZbRA9Pz-p0sAqYx6tD3oE3HYaTSwjTHtrNOvmaVN5PC3NZ_zqufqTM_wNpHNoH3EyenOcqF29Pc_8Bz_56vukFsrvzTc9RPpLrlmqnvkRq9JB3efzGEdrr-CFURJ_vrx873L8WHKcHpSL2p3CnQBtOGgOsGJhIeO4ZcqHGG4Te1Rapcz6N4r9zvH1YfXWDC-JCtsPnC1EF-jZxfgtJ7NH5DD4eCgN4pWGRsiTdM0ibjl1FBrFHgOBTc6j5VUaWFTY3ODCVIZU2XCVaG45Bh0heCoVlrOUyAp4_Qh2ajqyjwioZG81ExLII5ZmWeSJgZMqqTg8SRFrgPyqhGYOPfAHMJDMFOBTBQtEwPy0smz7SZnpxjOlnfF58meGE95st_7OBb9gGw3AhcrTZ4Lf7PYhWUsIM_bx8B7vFiRlamX0CdHWFbWpXFAqJPuX4Ykdid7g7a29S9Ez8j1aX8oxm8m7x6Tm9iMJ8402SYbIFLzBFylhXrqtOE3yK0LOQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanojunction-Mediated+Photocatalytic+Enhancement+in+Heterostructured+CdS%2FZnO%2C+CdSe%2FZnO%2C+and+CdTe%2FZnO+Nanocrystals&rft.jtitle=Angewandte+Chemie&rft.au=Eley%2C+Clive&rft.au=Li%2C+Tong&rft.au=Liao%2C+Fenglin&rft.au=Fairclough%2C+Simon+Michael&rft.date=2014-07-21&rft.pub=WILEY-VCH+Verlag&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=126&rft.issue=30&rft.spage=7972&rft.epage=7976&rft_id=info:doi/10.1002%2Fange.201404481&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_LP81SCQL_D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |