Hybrid brain-machine interface to palliate the motor handicap caused by duchenne muscular dystrophy: A case report

We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement...

Full description

Saved in:
Bibliographic Details
Published inAnnals of physical and rehabilitation medicine Vol. 61; p. e494
Main Authors Duprès, A., Cabestaing, F., Rouillard, J., Tiffreau, V., Pradeau, C.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.07.2018
Subjects
Online AccessGet full text
ISSN1877-0657
1877-0665
DOI10.1016/j.rehab.2018.05.1150

Cover

Loading…
Abstract We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement (real or intentional) detection by processing signals from electroencephalography (EEG), electromyography (EMG), and joysticks. It allows using different applications, by controlling an object (real or virtual) trajectory through movements of right hand, left hand, or both hands simultaneously. Right and left hand movements result in respectively a left and right rotation, whereas both hands movements move the object forward. Patients (men, 20/28 years) realized home-based experiments, using a portable equipment, thanks to a collaboration with Lille University Hospital and Centre Hélène Borel (Lille, France). As shown in Fig. 2 (Left) patient is seating in front of a computer displaying the task and recording 12 EEG signals from the primary motor cortex. Fig. 2 (Right) shows EMG electrodes location over each hand. Patients instruction was to make 2 laps, by making hands movements detected in real time by processing EMG signals in OpenVIBE software. Fig. 3 compares patients performing times (inseconds) to those of 10 healthy subjects performing the same task. Patients performances look quite similar to those of healthy subjects, suggesting that our hBMI is relevant for DMD patients. Moreover, we observe a learning effect between the two laps, expecting improvement with training. After this conclusive preliminary study, we plan further experiments including more DMD patients. Offline EEG processing enables to identify motor-related patterns, necessary to detect movements at the cerebral level, and to propose an interface adapting to patient motricity.
AbstractList We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement (real or intentional) detection by processing signals from electroencephalography (EEG), electromyography (EMG), and joysticks. It allows using different applications, by controlling an object (real or virtual) trajectory through movements of right hand, left hand, or both hands simultaneously. Right and left hand movements result in respectively a left and right rotation, whereas both hands movements move the object forward. Patients (men, 20/28 years) realized home-based experiments, using a portable equipment, thanks to a collaboration with Lille University Hospital and Centre Hélène Borel (Lille, France). As shown in Fig. 2 (Left) patient is seating in front of a computer displaying the task and recording 12 EEG signals from the primary motor cortex. Fig. 2 (Right) shows EMG electrodes location over each hand. Patients instruction was to make 2 laps, by making hands movements detected in real time by processing EMG signals in OpenVIBE software. Fig. 3 compares patients performing times (inseconds) to those of 10 healthy subjects performing the same task. Patients performances look quite similar to those of healthy subjects, suggesting that our hBMI is relevant for DMD patients. Moreover, we observe a learning effect between the two laps, expecting improvement with training. After this conclusive preliminary study, we plan further experiments including more DMD patients. Offline EEG processing enables to identify motor-related patterns, necessary to detect movements at the cerebral level, and to propose an interface adapting to patient motricity.
Author Pradeau, C.
Cabestaing, F.
Tiffreau, V.
Rouillard, J.
Duprès, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Duprès
  fullname: Duprès, A.
  email: alban.dupres@isae-supaero.fr
  organization: ISAE-SUPAERO, DCAS, Toulouse, France
– sequence: 2
  givenname: F.
  surname: Cabestaing
  fullname: Cabestaing, F.
  organization: Université Lille1, CRIStAL, Villeneuve-d’Ascq, France
– sequence: 3
  givenname: J.
  surname: Rouillard
  fullname: Rouillard, J.
  organization: Université Lille1, CRIStAL, Villeneuve-d’Ascq, France
– sequence: 4
  givenname: V.
  surname: Tiffreau
  fullname: Tiffreau, V.
  organization: University Hospital of Lille, Physical Medicine and Rehabilitation Unit, Lille, France
– sequence: 5
  givenname: C.
  surname: Pradeau
  fullname: Pradeau, C.
  organization: University Hospital of Lille, Physical Medicine and Rehabilitation Unit, Lille, France
BookMark eNqFkMtKxTAURYMo-PwDB_mB1qRN01ZEEPEFF5zoOCQnpzTXNi1JK_Tv7VVx4OSOzh6ctdmsU3LoB4-EXHKWcsbl1TYN2GqTZoxXKStSzgt2QE54VZYJk7I4_MtFeUxOY9wyJkUtxAkJz4sJzlITtPNJr6F1HqnzE4ZGA9JpoKPuOqenNbdI-2EaAm21tw70SEHPEVd6oXaGFv3K9nOEudOB2iVOYRjb5ZrerY8RacBxCNM5OWp0F_Hi956R98eHt_vnZPP69HJ_t0kgy3OW2LKRVS5LgDpHAFY0ZW2FMbXmllcMWIaa2aLJrMCKScy15AJMbaQRWpg8PyPipxfCEGPARo3B9TosijO186a26tub2nlTrFA7byt2-4Phuu3TYVARHHpA6wLCpOzg9hXc_CuAzvlVV_eBy378C6i7kCQ
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.rehab.2018.05.1150
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physical Therapy
EISSN 1877-0665
EndPage e494
ExternalDocumentID 10_1016_j_rehab_2018_05_1150
S1877065718312247
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BAWUL
BKOJK
BLXMC
BNPGV
DIK
EBS
EFJIC
EFKBS
EJD
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IXB
J1W
KOM
LN9
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OK1
OT.
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SEM
SES
SPCBC
SSH
SSZ
T5K
Z5R
~G-
0SF
6I.
AAFTH
AAIAV
ABLVK
ABVKL
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
ID FETCH-LOGICAL-c2330-d7f68367cc93ecc05f79d4bb9a1d180c02ea0d5f2d4e806e3a614cb9b6b4a4b33
IEDL.DBID IXB
ISSN 1877-0657
IngestDate Tue Jul 01 03:13:09 EDT 2025
Fri Feb 23 02:35:38 EST 2024
Tue Aug 26 16:36:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Duchenne muscular dystrophy
Hybrid Brain-Machine Interface
EMG/EEG signals processing
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2330-d7f68367cc93ecc05f79d4bb9a1d180c02ea0d5f2d4e806e3a614cb9b6b4a4b33
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877065718312247
ParticipantIDs crossref_primary_10_1016_j_rehab_2018_05_1150
elsevier_sciencedirect_doi_10_1016_j_rehab_2018_05_1150
elsevier_clinicalkey_doi_10_1016_j_rehab_2018_05_1150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationTitle Annals of physical and rehabilitation medicine
PublicationYear 2018
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
SSID ssj0064944
Score 2.1085007
Snippet We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage e494
SubjectTerms Duchenne muscular dystrophy
EMG/EEG signals processing
Hybrid Brain-Machine Interface
Title Hybrid brain-machine interface to palliate the motor handicap caused by duchenne muscular dystrophy: A case report
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1877065718312247
https://dx.doi.org/10.1016/j.rehab.2018.05.1150
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-Ll58i88lB69xs03apt5WcVkVRdCFvZW8iivsg273sBd_uzN9iIKw4K0pmVLmC9-E5JsZQi4lkGLgwojFXmVMJloyDYGLZYY7zzOeuLJ7w9Nz1B_Ih2E4XCO3TS4Myipr7q84vWTr-k279mZ7Nhq1Xzsqxjs6IFeB10OYUS6kKpP4hjcNG0cyKRu64mSGs5v0uVLjlWM1bNR3KSzfiZujv8PTj5DT2yXb9V6Rdqvf2SNrfrJPdl5qz9K3qiDAAcn7S8y7ogbbPbBxKY_0FAtB5Jm2nhZTOtN4rFLA87ungM40p3hkDt-ZUasXcw_WS-oWACEQLx0vKn0qdct5kU8BimvahYlzT6tLhkMy6N293fZZ3UuB2UAIzlycRUpEsbWJANR4mMUAgzGJ7riO4pYHXnMXZoGTXvHICw1x25rEREZqaYQ4IhuT6cQfE2pNIJ0F7HVsJddKKxNkwmMxJwGoyxPCGhems6pkRtpoyT7S0uUpujzlYYouPyFh4-e0SQcFAkuB01fYxd92v5bMSsvTf1uekS0cVnrdc7JR5At_AbuSwrTI-tVnp0U2u_eP_edWuQi_AH-Y5A4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLb7NwWvYbJM2rTcVZX0iuMLeQl7FFdxdut3D_ntn-hAFQfBW2kwp84VvhuabGULOJJBi5OOEqZDmTGZGMgOBi-WW-8BznvlqesPjU9J7lXeDeLBArtpaGJRVNtxfc3rF1s2dTuPNzmQ47Lx0U4VndECuAo-H1CJZhmxA4fyG28FlS8eJzKqJrria4fK2fq4SeRXYDhsFXin278Ts6Pf49C3m3GyQtSZZpBf192yShTDaIuvPjWtpv-4IsE2K3hwLr6jFeQ_so9JHBoqdIIrcuEDLMZ0Y_K9SwvVboADPuKD4zxzeM6HOzKYBrOfUzwBDYF76MasFqtTPp2UxBizO6QUsnAZanzLskNeb6_5VjzXDFJiLhODMqzxJRaKcywTAxuNcAQ7WZqbruyl3PAqG-ziPvAwpT4IwELidzWxipZFWiF2yNBqPwh6hzkbSOwDfKCe5SU1qo1wE7OYkAHa5T1jrQj2pe2boVkz2riuXa3S55rFGl--TuPWzbutBgcE0kPofdurL7see-dPy4N-Wp2Sl13980A-3T_eHZBUf1eLdI7JUFrNwDClKaU-qLfgJdqnkoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+brain-machine+interface+to+palliate+the+motor+handicap+caused+by+duchenne+muscular+dystrophy%3A+A+case+report&rft.jtitle=Annals+of+physical+and+rehabilitation+medicine&rft.au=Dupr%C3%A8s%2C+A.&rft.au=Cabestaing%2C+F.&rft.au=Rouillard%2C+J.&rft.au=Tiffreau%2C+V.&rft.date=2018-07-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1877-0657&rft.volume=61&rft.spage=e494&rft.epage=e494&rft_id=info:doi/10.1016%2Fj.rehab.2018.05.1150&rft.externalDocID=S1877065718312247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0657&client=summon