Hybrid brain-machine interface to palliate the motor handicap caused by duchenne muscular dystrophy: A case report
We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement...
Saved in:
Published in | Annals of physical and rehabilitation medicine Vol. 61; p. e494 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0657 1877-0665 |
DOI | 10.1016/j.rehab.2018.05.1150 |
Cover
Loading…
Abstract | We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement (real or intentional) detection by processing signals from electroencephalography (EEG), electromyography (EMG), and joysticks. It allows using different applications, by controlling an object (real or virtual) trajectory through movements of right hand, left hand, or both hands simultaneously. Right and left hand movements result in respectively a left and right rotation, whereas both hands movements move the object forward.
Patients (men, 20/28 years) realized home-based experiments, using a portable equipment, thanks to a collaboration with Lille University Hospital and Centre Hélène Borel (Lille, France). As shown in Fig. 2 (Left) patient is seating in front of a computer displaying the task and recording 12 EEG signals from the primary motor cortex. Fig. 2 (Right) shows EMG electrodes location over each hand. Patients instruction was to make 2 laps, by making hands movements detected in real time by processing EMG signals in OpenVIBE software.
Fig. 3 compares patients performing times (inseconds) to those of 10 healthy subjects performing the same task. Patients performances look quite similar to those of healthy subjects, suggesting that our hBMI is relevant for DMD patients. Moreover, we observe a learning effect between the two laps, expecting improvement with training.
After this conclusive preliminary study, we plan further experiments including more DMD patients. Offline EEG processing enables to identify motor-related patterns, necessary to detect movements at the cerebral level, and to propose an interface adapting to patient motricity. |
---|---|
AbstractList | We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our hBMI with 2 DMD patients performing the virtual driving task shown in Fig. 1. To adapt our hBMI to patients’ motricity, it allows hand movement (real or intentional) detection by processing signals from electroencephalography (EEG), electromyography (EMG), and joysticks. It allows using different applications, by controlling an object (real or virtual) trajectory through movements of right hand, left hand, or both hands simultaneously. Right and left hand movements result in respectively a left and right rotation, whereas both hands movements move the object forward.
Patients (men, 20/28 years) realized home-based experiments, using a portable equipment, thanks to a collaboration with Lille University Hospital and Centre Hélène Borel (Lille, France). As shown in Fig. 2 (Left) patient is seating in front of a computer displaying the task and recording 12 EEG signals from the primary motor cortex. Fig. 2 (Right) shows EMG electrodes location over each hand. Patients instruction was to make 2 laps, by making hands movements detected in real time by processing EMG signals in OpenVIBE software.
Fig. 3 compares patients performing times (inseconds) to those of 10 healthy subjects performing the same task. Patients performances look quite similar to those of healthy subjects, suggesting that our hBMI is relevant for DMD patients. Moreover, we observe a learning effect between the two laps, expecting improvement with training.
After this conclusive preliminary study, we plan further experiments including more DMD patients. Offline EEG processing enables to identify motor-related patterns, necessary to detect movements at the cerebral level, and to propose an interface adapting to patient motricity. |
Author | Pradeau, C. Cabestaing, F. Tiffreau, V. Rouillard, J. Duprès, A. |
Author_xml | – sequence: 1 givenname: A. surname: Duprès fullname: Duprès, A. email: alban.dupres@isae-supaero.fr organization: ISAE-SUPAERO, DCAS, Toulouse, France – sequence: 2 givenname: F. surname: Cabestaing fullname: Cabestaing, F. organization: Université Lille1, CRIStAL, Villeneuve-d’Ascq, France – sequence: 3 givenname: J. surname: Rouillard fullname: Rouillard, J. organization: Université Lille1, CRIStAL, Villeneuve-d’Ascq, France – sequence: 4 givenname: V. surname: Tiffreau fullname: Tiffreau, V. organization: University Hospital of Lille, Physical Medicine and Rehabilitation Unit, Lille, France – sequence: 5 givenname: C. surname: Pradeau fullname: Pradeau, C. organization: University Hospital of Lille, Physical Medicine and Rehabilitation Unit, Lille, France |
BookMark | eNqFkMtKxTAURYMo-PwDB_mB1qRN01ZEEPEFF5zoOCQnpzTXNi1JK_Tv7VVx4OSOzh6ctdmsU3LoB4-EXHKWcsbl1TYN2GqTZoxXKStSzgt2QE54VZYJk7I4_MtFeUxOY9wyJkUtxAkJz4sJzlITtPNJr6F1HqnzE4ZGA9JpoKPuOqenNbdI-2EaAm21tw70SEHPEVd6oXaGFv3K9nOEudOB2iVOYRjb5ZrerY8RacBxCNM5OWp0F_Hi956R98eHt_vnZPP69HJ_t0kgy3OW2LKRVS5LgDpHAFY0ZW2FMbXmllcMWIaa2aLJrMCKScy15AJMbaQRWpg8PyPipxfCEGPARo3B9TosijO186a26tub2nlTrFA7byt2-4Phuu3TYVARHHpA6wLCpOzg9hXc_CuAzvlVV_eBy378C6i7kCQ |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.rehab.2018.05.1150 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physical Therapy |
EISSN | 1877-0665 |
EndPage | e494 |
ExternalDocumentID | 10_1016_j_rehab_2018_05_1150 S1877065718312247 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEUPX AEVXI AEXQZ AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BAWUL BKOJK BLXMC BNPGV DIK EBS EFJIC EFKBS EJD EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IXB J1W KOM LN9 M41 MO0 N9A O-L O9- OAUVE OH. OK1 OT. OZT P-8 P-9 P2P PC. Q38 ROL SDF SEM SES SPCBC SSH SSZ T5K Z5R ~G- 0SF 6I. AAFTH AAIAV ABLVK ABVKL ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION |
ID | FETCH-LOGICAL-c2330-d7f68367cc93ecc05f79d4bb9a1d180c02ea0d5f2d4e806e3a614cb9b6b4a4b33 |
IEDL.DBID | IXB |
ISSN | 1877-0657 |
IngestDate | Tue Jul 01 03:13:09 EDT 2025 Fri Feb 23 02:35:38 EST 2024 Tue Aug 26 16:36:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Duchenne muscular dystrophy Hybrid Brain-Machine Interface EMG/EEG signals processing |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2330-d7f68367cc93ecc05f79d4bb9a1d180c02ea0d5f2d4e806e3a614cb9b6b4a4b33 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877065718312247 |
ParticipantIDs | crossref_primary_10_1016_j_rehab_2018_05_1150 elsevier_sciencedirect_doi_10_1016_j_rehab_2018_05_1150 elsevier_clinicalkey_doi_10_1016_j_rehab_2018_05_1150 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 2018-07-00 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationTitle | Annals of physical and rehabilitation medicine |
PublicationYear | 2018 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
SSID | ssj0064944 |
Score | 2.1085007 |
Snippet | We describe a hybrid Brain-Machine Interface (hBMI), designed for improving DMD (Duchenne Muscular Dystrophy) patients’ autonomy. We assess relevance of our... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | e494 |
SubjectTerms | Duchenne muscular dystrophy EMG/EEG signals processing Hybrid Brain-Machine Interface |
Title | Hybrid brain-machine interface to palliate the motor handicap caused by duchenne muscular dystrophy: A case report |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1877065718312247 https://dx.doi.org/10.1016/j.rehab.2018.05.1150 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-Ll58i88lB69xs03apt5WcVkVRdCFvZW8iivsg273sBd_uzN9iIKw4K0pmVLmC9-E5JsZQi4lkGLgwojFXmVMJloyDYGLZYY7zzOeuLJ7w9Nz1B_Ih2E4XCO3TS4Myipr7q84vWTr-k279mZ7Nhq1Xzsqxjs6IFeB10OYUS6kKpP4hjcNG0cyKRu64mSGs5v0uVLjlWM1bNR3KSzfiZujv8PTj5DT2yXb9V6Rdqvf2SNrfrJPdl5qz9K3qiDAAcn7S8y7ogbbPbBxKY_0FAtB5Jm2nhZTOtN4rFLA87ungM40p3hkDt-ZUasXcw_WS-oWACEQLx0vKn0qdct5kU8BimvahYlzT6tLhkMy6N293fZZ3UuB2UAIzlycRUpEsbWJANR4mMUAgzGJ7riO4pYHXnMXZoGTXvHICw1x25rEREZqaYQ4IhuT6cQfE2pNIJ0F7HVsJddKKxNkwmMxJwGoyxPCGhems6pkRtpoyT7S0uUpujzlYYouPyFh4-e0SQcFAkuB01fYxd92v5bMSsvTf1uekS0cVnrdc7JR5At_AbuSwrTI-tVnp0U2u_eP_edWuQi_AH-Y5A4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-DnrxLb7NwWvYbJM2rTcVZX0iuMLeQl7FFdxdut3D_ntn-hAFQfBW2kwp84VvhuabGULOJJBi5OOEqZDmTGZGMgOBi-WW-8BznvlqesPjU9J7lXeDeLBArtpaGJRVNtxfc3rF1s2dTuPNzmQ47Lx0U4VndECuAo-H1CJZhmxA4fyG28FlS8eJzKqJrria4fK2fq4SeRXYDhsFXin278Ts6Pf49C3m3GyQtSZZpBf192yShTDaIuvPjWtpv-4IsE2K3hwLr6jFeQ_so9JHBoqdIIrcuEDLMZ0Y_K9SwvVboADPuKD4zxzeM6HOzKYBrOfUzwBDYF76MasFqtTPp2UxBizO6QUsnAZanzLskNeb6_5VjzXDFJiLhODMqzxJRaKcywTAxuNcAQ7WZqbruyl3PAqG-ziPvAwpT4IwELidzWxipZFWiF2yNBqPwh6hzkbSOwDfKCe5SU1qo1wE7OYkAHa5T1jrQj2pe2boVkz2riuXa3S55rFGl--TuPWzbutBgcE0kPofdurL7see-dPy4N-Wp2Sl13980A-3T_eHZBUf1eLdI7JUFrNwDClKaU-qLfgJdqnkoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+brain-machine+interface+to+palliate+the+motor+handicap+caused+by+duchenne+muscular+dystrophy%3A+A+case+report&rft.jtitle=Annals+of+physical+and+rehabilitation+medicine&rft.au=Dupr%C3%A8s%2C+A.&rft.au=Cabestaing%2C+F.&rft.au=Rouillard%2C+J.&rft.au=Tiffreau%2C+V.&rft.date=2018-07-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1877-0657&rft.volume=61&rft.spage=e494&rft.epage=e494&rft_id=info:doi/10.1016%2Fj.rehab.2018.05.1150&rft.externalDocID=S1877065718312247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0657&client=summon |