Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials
Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking i...
Saved in:
Published in | Angewandte Chemie Vol. 132; no. 37; pp. 16195 - 16202 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
07.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping.
Dual‐stress and thermally responsive crystalline metal–organic materials (MOMs) based on molecular spring‐like triple‐helix coordination polymers are presented. As the first example of thermosalient effect in elastic MOMs, these compounds undergo elastic flexure upon external stress as well as cracking and jumping after thermal treatment. |
---|---|
AbstractList | Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping.
Dual‐stress and thermally responsive crystalline metal–organic materials (MOMs) based on molecular spring‐like triple‐helix coordination polymers are presented. As the first example of thermosalient effect in elastic MOMs, these compounds undergo elastic flexure upon external stress as well as cracking and jumping after thermal treatment. Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping. |
Author | Shi, Wei‐qun Hu, Kong‐qiu Yu, Ji‐pan Mei, Lei Xia, Chuan‐qin An, Shu‐wen Huang, Zhi‐wei Kong, Xiang‐he Wang, Lin Chai, Zhi‐fang |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-2926-7265 surname: Mei fullname: Mei, Lei organization: Chinese Academy of Sciences – sequence: 2 givenname: Shu‐wen surname: An fullname: An, Shu‐wen organization: Sichuan University – sequence: 3 givenname: Kong‐qiu surname: Hu fullname: Hu, Kong‐qiu organization: Chinese Academy of Sciences – sequence: 4 givenname: Lin surname: Wang fullname: Wang, Lin organization: Chinese Academy of Sciences – sequence: 5 givenname: Ji‐pan surname: Yu fullname: Yu, Ji‐pan organization: Chinese Academy of Sciences – sequence: 6 givenname: Zhi‐wei surname: Huang fullname: Huang, Zhi‐wei organization: Chinese Academy of Sciences – sequence: 7 givenname: Xiang‐he surname: Kong fullname: Kong, Xiang‐he organization: Chinese Academy of Sciences – sequence: 8 givenname: Chuan‐qin surname: Xia fullname: Xia, Chuan‐qin organization: Sichuan University – sequence: 9 givenname: Zhi‐fang surname: Chai fullname: Chai, Zhi‐fang organization: Chinese Academy of Sciences – sequence: 10 givenname: Wei‐qun orcidid: 0000-0001-9929-9732 surname: Shi fullname: Shi, Wei‐qun email: shiwq@ihep.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkE1vEzEQhi1UJNKWK2dLnDcdf6zXe6xCaZEaWtFwXhnvJLg4drA3LXvrD-gBiX_IL8EhCCQkxGk0r95nRnoOyUGIAQl5wWDKAPiJCSuccuAAQoN-Qias5qwSTd0ckAmAlJXmsn1GDnO-BQDFm3ZCHufRo916k-jNJrmw-v7w1btPSBfJbTyW7QK9-0JnMabeBTO4GOh19OMaU6Ym01db40vrZkiYSxB6uviIaW28H-k7zJsYsrtDOktjHkroAtI5Djvm21VameAsnZsBkzM-H5OnyzLw-a95RN6_PlvMLqrLq_M3s9PLynLBdSU1KMVQgTUfllYboWqmFWt5bZeCm0boXnMrG64b00oOqhcCZK9qi0b1kokj8nJ_d5Pi5y3mobuN2xTKy45LWUypVsnSmu5bNsWcEy67Imht0tgx6HbGu53x7rfxAsi_AOuGn8aGZJz_N9busXvncfzPk-707fnZH_YHksudoQ |
CitedBy_id | crossref_primary_10_1002_anie_202115359 crossref_primary_10_1021_acsami_1c07812 crossref_primary_10_1002_ange_202115359 crossref_primary_10_1039_D4DT01050G |
Cites_doi | 10.1002/anie.201802785 10.1002/ange.201705325 10.1002/ange.201311014 10.1002/anie.201204604 10.1126/science.1230444 10.1002/anie.201006913 10.1039/b807080f 10.1038/nchem.649 10.1039/C9SC04249K 10.1002/anie.201000048 10.1021/jacs.7b13605 10.1021/acs.inorgchem.9b00452 10.1002/anie.201905075 10.1021/cr300503r 10.1039/b500712g 10.1038/natrevmats.2015.18 10.1021/cr3002824 10.1002/ange.201204604 10.1002/ange.201810514 10.1039/C7CP08609A 10.1002/anie.201705325 10.1002/ange.201006913 10.1002/anie.201914798 10.1039/C0CS00042F 10.1002/ange.201914931 10.1039/C8SC05563G 10.1021/cr200324t 10.1039/C5CC02646F 10.1002/ange.201909048 10.1021/cr200190s 10.1002/anie.201802020 10.1039/C4CS00010B 10.1002/anie.201810514 10.1021/cr2003147 10.1038/nchem.2848 10.1002/ange.201914798 10.1002/ange.201905075 10.1002/anie.200300636 10.1021/jacs.8b11527 10.1021/cm402136z 10.1002/ange.201808687 10.1002/anie.201914931 10.1002/ange.201914954 10.1002/anie.201909048 10.1021/jacs.6b00787 10.1002/ange.201800137 10.1038/nchem.2123 10.1002/adma.201606134 10.1039/C6CS00930A 10.1002/ange.201802785 10.1002/ange.201802020 10.1002/anie.201311014 10.1021/cr1004293 10.1002/anie.201808687 10.1038/nchem.676 10.1002/ange.201000048 10.1039/b305705b 10.1021/acs.chemrev.5b00398 10.1038/s41467-018-06431-7 10.1002/anie.201800137 10.1002/anie.201914954 10.1016/j.cplett.2006.08.092 10.1021/jacs.8b11357 10.1021/jacs.5b05324 10.1524/zkri.220.1.50.58886 10.1039/c0cs00163e |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202003808 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 16202 |
ExternalDocumentID | 10_1002_ange_202003808 ANGE202003808 |
Genre | article |
GrantInformation_xml | – fundername: National Science Fund for Distinguished Young Scholars funderid: 21925603 – fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences funderid: 2020014 – fundername: National Natural Science Foundation of China funderid: 11875057, 21671191, 21701178 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2328-480661e60cabfc8a3651861925cf32a738d82c47287a94206d3304d65cea6d413 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:29:21 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Tue Jul 01 01:48:37 EDT 2025 Wed Jan 22 16:32:50 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2328-480661e60cabfc8a3651861925cf32a738d82c47287a94206d3304d65cea6d413 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2926-7265 0000-0001-9929-9732 |
PQID | 2440446964 |
PQPubID | 866336 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2440446964 crossref_primary_10_1002_ange_202003808 crossref_citationtrail_10_1002_ange_202003808 wiley_primary_10_1002_ange_202003808_ANGE202003808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 7, 2020 |
PublicationDateYYYYMMDD | 2020-09-07 |
PublicationDate_xml | – month: 09 year: 2020 text: September 7, 2020 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 140 2015; 51 2019; 10 2011; 40 2017; 46 2019; 58 2020 2020; 59 132 2014; 26 2010 2010; 49 122 2005 2017; 29 2003 2013; 341 2017 2017; 56 129 2019; 141 2015; 7 2018; 20 2011; 111 2019 2019; 58 131 2014; 43 2018; 9 2016; 1 2012; 112 2006; 429 2015; 137 2005; 220 2015; 115 2018 2018; 57 130 2012 2012; 51 124 2013; 113 2011 2011; 50 123 2016; 138 2003; 423 2010; 2 2018; 10 2009; 38 e_1_2_6_51_1 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_1 e_1_2_6_13_2 e_1_2_6_59_2 e_1_2_6_11_1 e_1_2_6_32_3 e_1_2_6_34_1 e_1_2_6_59_3 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_1 e_1_2_6_36_3 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_36_2 e_1_2_6_62_1 e_1_2_6_64_2 e_1_2_6_41_3 e_1_2_6_20_1 e_1_2_6_41_2 e_1_2_6_60_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_22_3 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_43_3 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_45_3 e_1_2_6_47_1 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_58_3 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_12_1 e_1_2_6_31_3 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_56_3 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_63_3 e_1_2_6_40_3 e_1_2_6_40_2 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_29_1 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_44_3 e_1_2_6_46_1 e_1_2_6_25_2 |
References_xml | – start-page: 2781 year: 2003 end-page: 2804 publication-title: Dalton Trans. – volume: 56 129 start-page: 9463 9591 year: 2017 2017 end-page: 9467 9595 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 4185 year: 2019 end-page: 4191 publication-title: Chem. Sci. – volume: 51 124 start-page: 10319 10465 year: 2012 2012 end-page: 10323 10469 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 429 year: 2010 end-page: 430 publication-title: Nat. Chem. – volume: 112 start-page: 1196 year: 2012 end-page: 1231 publication-title: Chem. Rev. – volume: 141 start-page: 1027 year: 2019 end-page: 1034 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 1059 year: 2011 end-page: 1080 publication-title: Chem. Soc. Rev. – volume: 220 start-page: 50 year: 2005 end-page: 57 publication-title: Z. Kristallogr. – volume: 423 start-page: 705 year: 2003 end-page: 714 publication-title: Nature – volume: 138 start-page: 4852 year: 2016 end-page: 4859 publication-title: J. Am. Chem. Soc. – volume: 46 start-page: 3242 year: 2017 end-page: 3285 publication-title: Chem. Soc. Rev. – volume: 112 start-page: 869 year: 2012 end-page: 932 publication-title: Chem. Rev. – volume: 49 122 start-page: 6260 6400 year: 2010 2010 end-page: 6266 6406 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 10666 year: 2019 end-page: 10679 publication-title: Chem. Sci. – volume: 9 start-page: 3984 year: 2018 publication-title: Nat. Commun. – volume: 50 123 start-page: 581 605 year: 2011 2011 end-page: 582 606 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 59 132 start-page: 4340 4370 year: 2020 2020 end-page: 4343 4373 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 8523 year: 2018 end-page: 8532 publication-title: Phys. Chem. Chem. Phys. – volume: 1 start-page: 15018 year: 2016 publication-title: Nat. Rev. Mater. – volume: 2 start-page: 444 year: 2010 end-page: 449 publication-title: Nat. Chem. – volume: 7 start-page: 65 year: 2015 end-page: 72 publication-title: Nat. Chem. – volume: 59 132 start-page: 5557 5602 year: 2020 2020 end-page: 5561 5607 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 341 start-page: 974 year: 2013 publication-title: Science – start-page: 2439 year: 2005 end-page: 2441 publication-title: Chem. Commun. – volume: 58 131 start-page: 10345 10453 year: 2019 2019 end-page: 10352 10460 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 310 year: 2014 end-page: 322 publication-title: Chem. Mater. – volume: 140 start-page: 4208 year: 2018 end-page: 4212 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 65 year: 2018 end-page: 69 publication-title: Nat. Chem. – volume: 57 130 start-page: 8498 8634 year: 2018 2018 end-page: 8502 8638 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 8837 8974 year: 2018 2018 end-page: 8846 8984 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 113 start-page: 734 year: 2013 end-page: 777 publication-title: Chem. Rev. – volume: 113 start-page: 5322 year: 2013 end-page: 5363 publication-title: Chem. Rev. – volume: 58 131 start-page: 18003 18171 year: 2019 2019 end-page: 18010 18178 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 59 132 start-page: 7319 7387 year: 2020 2020 end-page: 7330 7398 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 6970 7090 year: 2014 2014 end-page: 6973 7093 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 141 start-page: 1045 year: 2019 end-page: 1053 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 12440 year: 2015 end-page: 12490 publication-title: Chem. Rev. – volume: 40 start-page: 291 year: 2011 end-page: 305 publication-title: Chem. Soc. Rev. – volume: 111 start-page: 4475 year: 2011 end-page: 4521 publication-title: Chem. Rev. – volume: 57 130 start-page: 17254 17501 year: 2018 2018 end-page: 17258 17505 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 14801 15017 year: 2018 2018 end-page: 14805 15021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 58 start-page: 6934 year: 2019 end-page: 6945 publication-title: Inorg. Chem. – volume: 57 130 start-page: 8448 8584 year: 2018 2018 end-page: 8452 8588 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 43 start-page: 5815 year: 2014 end-page: 5840 publication-title: Chem. Soc. Rev. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 publication-title: Chem. Soc. Rev. – volume: 137 start-page: 9912 year: 2015 end-page: 9921 publication-title: J. Am. Chem. Soc. – volume: 429 start-page: 474 year: 2006 end-page: 478 publication-title: Chem. Phys. Lett. – volume: 112 start-page: 1105 year: 2012 end-page: 1125 publication-title: Chem. Rev. – volume: 51 start-page: 8978 year: 2015 end-page: 8981 publication-title: Chem. Commun. – ident: e_1_2_6_62_1 – ident: e_1_2_6_23_1 – ident: e_1_2_6_36_2 doi: 10.1002/anie.201802785 – ident: e_1_2_6_40_3 doi: 10.1002/ange.201705325 – ident: e_1_2_6_41_3 doi: 10.1002/ange.201311014 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201204604 – ident: e_1_2_6_9_2 doi: 10.1126/science.1230444 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201006913 – ident: e_1_2_6_14_2 doi: 10.1039/b807080f – ident: e_1_2_6_53_2 doi: 10.1038/nchem.649 – ident: e_1_2_6_29_1 – ident: e_1_2_6_24_2 doi: 10.1039/C9SC04249K – ident: e_1_2_6_22_2 doi: 10.1002/anie.201000048 – ident: e_1_2_6_39_2 doi: 10.1021/jacs.7b13605 – ident: e_1_2_6_55_2 doi: 10.1021/acs.inorgchem.9b00452 – ident: e_1_2_6_59_2 doi: 10.1002/anie.201905075 – ident: e_1_2_6_3_2 doi: 10.1021/cr300503r – ident: e_1_2_6_47_1 doi: 10.1039/b500712g – ident: e_1_2_6_27_2 doi: 10.1038/natrevmats.2015.18 – ident: e_1_2_6_4_2 doi: 10.1021/cr3002824 – ident: e_1_2_6_33_2 doi: 10.1002/ange.201204604 – ident: e_1_2_6_44_3 doi: 10.1002/ange.201810514 – ident: e_1_2_6_61_2 doi: 10.1039/C7CP08609A – ident: e_1_2_6_40_2 doi: 10.1002/anie.201705325 – ident: e_1_2_6_11_2 doi: 10.1002/ange.201006913 – ident: e_1_2_6_32_2 doi: 10.1002/anie.201914798 – ident: e_1_2_6_6_2 doi: 10.1039/C0CS00042F – ident: e_1_2_6_56_3 doi: 10.1002/ange.201914931 – ident: e_1_2_6_60_2 doi: 10.1039/C8SC05563G – ident: e_1_2_6_18_2 doi: 10.1021/cr200324t – ident: e_1_2_6_46_1 doi: 10.1039/C5CC02646F – ident: e_1_2_6_58_3 doi: 10.1002/ange.201909048 – ident: e_1_2_6_15_1 – ident: e_1_2_6_19_1 doi: 10.1021/cr200190s – ident: e_1_2_6_45_2 doi: 10.1002/anie.201802020 – ident: e_1_2_6_17_2 doi: 10.1039/C4CS00010B – ident: e_1_2_6_12_1 – ident: e_1_2_6_20_1 – ident: e_1_2_6_1_1 – ident: e_1_2_6_44_2 doi: 10.1002/anie.201810514 – ident: e_1_2_6_13_2 doi: 10.1021/cr2003147 – ident: e_1_2_6_30_2 doi: 10.1038/nchem.2848 – ident: e_1_2_6_32_3 doi: 10.1002/ange.201914798 – ident: e_1_2_6_51_1 – ident: e_1_2_6_59_3 doi: 10.1002/ange.201905075 – ident: e_1_2_6_10_2 doi: 10.1002/anie.200300636 – ident: e_1_2_6_25_2 doi: 10.1021/jacs.8b11527 – ident: e_1_2_6_2_2 doi: 10.1021/cm402136z – ident: e_1_2_6_31_3 doi: 10.1002/ange.201808687 – ident: e_1_2_6_48_1 – ident: e_1_2_6_56_2 doi: 10.1002/anie.201914931 – ident: e_1_2_6_43_3 doi: 10.1002/ange.201914954 – ident: e_1_2_6_58_2 doi: 10.1002/anie.201909048 – ident: e_1_2_6_52_2 doi: 10.1021/jacs.6b00787 – ident: e_1_2_6_63_3 doi: 10.1002/ange.201800137 – ident: e_1_2_6_34_1 doi: 10.1038/nchem.2123 – ident: e_1_2_6_21_2 doi: 10.1002/adma.201606134 – ident: e_1_2_6_16_2 doi: 10.1039/C6CS00930A – ident: e_1_2_6_36_3 doi: 10.1002/ange.201802785 – ident: e_1_2_6_45_3 doi: 10.1002/ange.201802020 – ident: e_1_2_6_41_2 doi: 10.1002/anie.201311014 – ident: e_1_2_6_5_2 doi: 10.1021/cr1004293 – ident: e_1_2_6_31_2 doi: 10.1002/anie.201808687 – ident: e_1_2_6_54_2 doi: 10.1038/nchem.676 – ident: e_1_2_6_22_3 doi: 10.1002/ange.201000048 – ident: e_1_2_6_7_2 doi: 10.1039/b305705b – ident: e_1_2_6_64_2 doi: 10.1021/acs.chemrev.5b00398 – ident: e_1_2_6_8_1 – ident: e_1_2_6_42_2 doi: 10.1038/s41467-018-06431-7 – ident: e_1_2_6_63_2 doi: 10.1002/anie.201800137 – ident: e_1_2_6_43_2 doi: 10.1002/anie.201914954 – ident: e_1_2_6_38_1 – ident: e_1_2_6_50_2 doi: 10.1016/j.cplett.2006.08.092 – ident: e_1_2_6_26_2 doi: 10.1021/jacs.8b11357 – ident: e_1_2_6_35_1 – ident: e_1_2_6_37_2 doi: 10.1021/jacs.5b05324 – ident: e_1_2_6_57_1 – ident: e_1_2_6_49_2 doi: 10.1524/zkri.220.1.50.58886 – ident: e_1_2_6_28_2 doi: 10.1039/c0cs00163e |
SSID | ssj0006279 |
Score | 2.1188362 |
Snippet | Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16195 |
SubjectTerms | Chemistry Coordination polymers Crystal structure Crystals elastic flexing mechanical responsiveness Metals metal–organic materials Molecular chains molecular springs Organic crystals Organic materials Polymers thermosalient effect |
Title | Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202003808 https://www.proquest.com/docview/2440446964 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FuuLPQieYpPtZpMepb4QKuIDegv7KpSGVtpUrCd_gAfBf-gvcSabtCqIoLcEZkOyO5P5Zpj5hpB9Axg8CqXxuGDS4yryPWVD3-MNA-DegFNR2JzcuhTnd_yiHbY_dfE7fohpwg0tI_9fo4FLNarNSEOx9h7iOyyuivNuXyzYQlR0PeOPEsyR7fmcezEEGiVro89qX5d_9UozqPkZsOYe53SJyPJdXaFJ73CcqUP99I3G8T8fs0wWCzhKj5z-rJA5218l881yCtwaeWmV83OpywG-P7-m3Z6lt0NM0cMdOK7uI20OIIrtutQivRqkE8yHUzmix2OZgtRN3pNCZd9Q0EzwBmk6oddFge6Dpc3hBHAqEoRb2rIZrnlzfaKatmTm7GSd3J2e3DbPvWKCg6cBqWGmEhBNYIWvperoWMIJBTGGbKHu1JmM6rGJmeYRhG2ywZkvDKZXjAi1lcKAf90glf6gbzcJtSLmiikOMBskgigG7GfrncDADuqg3qkSrzzBRBf05jhlI00cMTNLcI-T6R5XycFU_t4Re_wouVMqRFIY-ChhyKvIRUPwKmH5yf7ylOTo8uxkerf1l0XbZAGv8wq3aIdUsuHY7gIkytRervYfDkkHUg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF2Ce0gvTZuk1G3a7qHQkxJ5tVrJR2MndRLLhMSB3sR-GUyEXBw51DnlB_RQyD_ML-mMVpKbQCm0R4ldIe3uaN48Zt4Q8skABo9CaTwumPS4inxP2dD3eNcAuDfgVBQWJydjMbzkJ1_DOpsQa2GcPkRDuKFllP9rNHAkpA_WqqGYfA8BHmZXxVju-wzbeqN8_uB8rSAlmJPb8zn3Ygg1at1Gnx08nv_YL63B5u-QtfQ5R1tE1W_rUk2u9peF2te3T4Qc_-tzXpIXFSKlPXeEXpENm2-TzX7dCG6H_EjqFrrU0YAPdz-z2ZWlkwWy9HAFvmv2nfbnEMjOHLtIz-bZCilxKq_pYCkzGHVRlqVQmRsKhxMcQpat6HmVo3tjaX-xAqiKGuGWJrbAOfeuVFTTRBbOVHbJ5dHhpD_0qiYOngawhmQlgJqOFb6WaqpjGcAmxRi1hXoaMBkFsYmZ5hFEbrLLmS8MMixGhNpKYcDFviatfJ7bN4RaEXPFFAekDSM6UQzwzwbTjoEV1J1g2iZevYWprhTOsdFGljptZpbiGqfNGrfJ52b8N6ft8ceRe_WJSCsbv04ZSity0RW8TVi5tX95Stobfzlsrt7-y6SPZHM4SUbp6Hh8-o48x_tlwlu0R1rFYmnfA0Iq1IfSBn4BdhwLbg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBelg3YvW9u1NFu66WHQJze2LMvOY8ifdd0SSv9A3owsyRBikpA4Y9nTPsAeCv2G-yS7s-ykLYzC9ihzErak8_3uuPsdIR81YPAwkNrhgkmHJ6HrJCZwHd7UAO41GJUEi5P7A3F-yy-GwfBBFb_lh1gH3FAziv81KvhMp40NaSjm3oN_h8lVEVb7vuDCbWLzhs7VhkBKMMu253LuROBpVLSNLms8nv_YLG2w5kPEWpic3msiq5e1mSbjs2WenKkfT3gc_-dr9sirEo_Slr1A-2TLTA7IbrtqA_eG_OpXDXSpDQL-_nmXjcaG3swxRg8jsFyj77Q9BTd2ZGOL9HKarTAgTuWCdpYyA6nroiiFyommcDXBHGTZil6VGbrfDG3PVwBUkSHc0L7Jcc69LRRVtC9zqyiH5LbXvWmfO2ULB0cBVMNQJUAazwhXySRVkfRF4EXoswUq9ZkM_UhHTPEQ_DbZ5MwVGuMrWgTKSKHBwB6R7cl0Yo4JNSLiCUs44GyQ8MIIwJ_xU0_DDirPT2vEqU4wViW_ObbZyGLLzMxi3ON4vcc1crqWn1lmj79K1qsLEZcavogZEity0RS8Rlhxss-sErcGn7rr0dt_mfSB7Fx2evHXz4Mv78hLfFxku4V1sp3Pl-YE4FGevC804A9RLwod |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Spring%E2%80%90like+Triple%E2%80%90Helix+Coordination+Polymers+as+Dual%E2%80%90Stress+and+Thermally+Responsive+Crystalline+Metal%E2%80%93Organic+Materials&rft.jtitle=Angewandte+Chemie&rft.au=Lei+Mei&rft.au=Shu%E2%80%90wen+An&rft.au=Kong%E2%80%90qiu+Hu&rft.au=Wang%2C+Lin&rft.date=2020-09-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=37&rft.spage=16195&rft.epage=16202&rft_id=info:doi/10.1002%2Fange.202003808&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |