Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials

Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking i...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 132; no. 37; pp. 16195 - 16202
Main Authors Mei, Lei, An, Shu‐wen, Hu, Kong‐qiu, Wang, Lin, Yu, Ji‐pan, Huang, Zhi‐wei, Kong, Xiang‐he, Xia, Chuan‐qin, Chai, Zhi‐fang, Shi, Wei‐qun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 07.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping. Dual‐stress and thermally responsive crystalline metal–organic materials (MOMs) based on molecular spring‐like triple‐helix coordination polymers are presented. As the first example of thermosalient effect in elastic MOMs, these compounds undergo elastic flexure upon external stress as well as cracking and jumping after thermal treatment.
AbstractList Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping. Dual‐stress and thermally responsive crystalline metal–organic materials (MOMs) based on molecular spring‐like triple‐helix coordination polymers are presented. As the first example of thermosalient effect in elastic MOMs, these compounds undergo elastic flexure upon external stress as well as cracking and jumping after thermal treatment.
Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination polymers are presented. The strong metal‐coordination linkage and the flexibility of organic linkers in these MOMs, rather than the 4 Å stacking interactions observed in organic crystals, causes the helical chain to act like a molecular spring and thus accounts for their macroscopic elasticity. The thermosalient effect of elastic MOMs is reported for the first time. Crystal structure analyses at different temperatures reveal that this thermoresponsiveness is achieved by adaptive regulation of the triple‐helix chains by fine‐tuning the opening angle of flexible V‐shaped organic linkers and rotation of its lateral conjugated groups to resist possible expansion, thus demonstrating the vital role of adaptive reorganization of triple‐helix metal–organic chains as a molecular spring‐like motif in crystal jumping.
Author Shi, Wei‐qun
Hu, Kong‐qiu
Yu, Ji‐pan
Mei, Lei
Xia, Chuan‐qin
An, Shu‐wen
Huang, Zhi‐wei
Kong, Xiang‐he
Wang, Lin
Chai, Zhi‐fang
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-2926-7265
  surname: Mei
  fullname: Mei, Lei
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Shu‐wen
  surname: An
  fullname: An, Shu‐wen
  organization: Sichuan University
– sequence: 3
  givenname: Kong‐qiu
  surname: Hu
  fullname: Hu, Kong‐qiu
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ji‐pan
  surname: Yu
  fullname: Yu, Ji‐pan
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Zhi‐wei
  surname: Huang
  fullname: Huang, Zhi‐wei
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Xiang‐he
  surname: Kong
  fullname: Kong, Xiang‐he
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Chuan‐qin
  surname: Xia
  fullname: Xia, Chuan‐qin
  organization: Sichuan University
– sequence: 9
  givenname: Zhi‐fang
  surname: Chai
  fullname: Chai, Zhi‐fang
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Wei‐qun
  orcidid: 0000-0001-9929-9732
  surname: Shi
  fullname: Shi, Wei‐qun
  email: shiwq@ihep.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkE1vEzEQhi1UJNKWK2dLnDcdf6zXe6xCaZEaWtFwXhnvJLg4drA3LXvrD-gBiX_IL8EhCCQkxGk0r95nRnoOyUGIAQl5wWDKAPiJCSuccuAAQoN-Qias5qwSTd0ckAmAlJXmsn1GDnO-BQDFm3ZCHufRo916k-jNJrmw-v7w1btPSBfJbTyW7QK9-0JnMabeBTO4GOh19OMaU6Ym01db40vrZkiYSxB6uviIaW28H-k7zJsYsrtDOktjHkroAtI5Djvm21VameAsnZsBkzM-H5OnyzLw-a95RN6_PlvMLqrLq_M3s9PLynLBdSU1KMVQgTUfllYboWqmFWt5bZeCm0boXnMrG64b00oOqhcCZK9qi0b1kokj8nJ_d5Pi5y3mobuN2xTKy45LWUypVsnSmu5bNsWcEy67Imht0tgx6HbGu53x7rfxAsi_AOuGn8aGZJz_N9busXvncfzPk-707fnZH_YHksudoQ
CitedBy_id crossref_primary_10_1002_anie_202115359
crossref_primary_10_1021_acsami_1c07812
crossref_primary_10_1002_ange_202115359
crossref_primary_10_1039_D4DT01050G
Cites_doi 10.1002/anie.201802785
10.1002/ange.201705325
10.1002/ange.201311014
10.1002/anie.201204604
10.1126/science.1230444
10.1002/anie.201006913
10.1039/b807080f
10.1038/nchem.649
10.1039/C9SC04249K
10.1002/anie.201000048
10.1021/jacs.7b13605
10.1021/acs.inorgchem.9b00452
10.1002/anie.201905075
10.1021/cr300503r
10.1039/b500712g
10.1038/natrevmats.2015.18
10.1021/cr3002824
10.1002/ange.201204604
10.1002/ange.201810514
10.1039/C7CP08609A
10.1002/anie.201705325
10.1002/ange.201006913
10.1002/anie.201914798
10.1039/C0CS00042F
10.1002/ange.201914931
10.1039/C8SC05563G
10.1021/cr200324t
10.1039/C5CC02646F
10.1002/ange.201909048
10.1021/cr200190s
10.1002/anie.201802020
10.1039/C4CS00010B
10.1002/anie.201810514
10.1021/cr2003147
10.1038/nchem.2848
10.1002/ange.201914798
10.1002/ange.201905075
10.1002/anie.200300636
10.1021/jacs.8b11527
10.1021/cm402136z
10.1002/ange.201808687
10.1002/anie.201914931
10.1002/ange.201914954
10.1002/anie.201909048
10.1021/jacs.6b00787
10.1002/ange.201800137
10.1038/nchem.2123
10.1002/adma.201606134
10.1039/C6CS00930A
10.1002/ange.201802785
10.1002/ange.201802020
10.1002/anie.201311014
10.1021/cr1004293
10.1002/anie.201808687
10.1038/nchem.676
10.1002/ange.201000048
10.1039/b305705b
10.1021/acs.chemrev.5b00398
10.1038/s41467-018-06431-7
10.1002/anie.201800137
10.1002/anie.201914954
10.1016/j.cplett.2006.08.092
10.1021/jacs.8b11357
10.1021/jacs.5b05324
10.1524/zkri.220.1.50.58886
10.1039/c0cs00163e
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202003808
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 16202
ExternalDocumentID 10_1002_ange_202003808
ANGE202003808
Genre article
GrantInformation_xml – fundername: National Science Fund for Distinguished Young Scholars
  funderid: 21925603
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2020014
– fundername: National Natural Science Foundation of China
  funderid: 11875057, 21671191, 21701178
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c2328-480661e60cabfc8a3651861925cf32a738d82c47287a94206d3304d65cea6d413
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 10:29:21 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Tue Jul 01 01:48:37 EDT 2025
Wed Jan 22 16:32:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2328-480661e60cabfc8a3651861925cf32a738d82c47287a94206d3304d65cea6d413
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2926-7265
0000-0001-9929-9732
PQID 2440446964
PQPubID 866336
PageCount 8
ParticipantIDs proquest_journals_2440446964
crossref_primary_10_1002_ange_202003808
crossref_citationtrail_10_1002_ange_202003808
wiley_primary_10_1002_ange_202003808_ANGE202003808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 7, 2020
PublicationDateYYYYMMDD 2020-09-07
PublicationDate_xml – month: 09
  year: 2020
  text: September 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 140
2015; 51
2019; 10
2011; 40
2017; 46
2019; 58
2020 2020; 59 132
2014; 26
2010 2010; 49 122
2005
2017; 29
2003
2013; 341
2017 2017; 56 129
2019; 141
2015; 7
2018; 20
2011; 111
2019 2019; 58 131
2014; 43
2018; 9
2016; 1
2012; 112
2006; 429
2015; 137
2005; 220
2015; 115
2018 2018; 57 130
2012 2012; 51 124
2013; 113
2011 2011; 50 123
2016; 138
2003; 423
2010; 2
2018; 10
2009; 38
e_1_2_6_51_1
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_1
e_1_2_6_13_2
e_1_2_6_59_2
e_1_2_6_11_1
e_1_2_6_32_3
e_1_2_6_34_1
e_1_2_6_59_3
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_1
e_1_2_6_36_3
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_36_2
e_1_2_6_62_1
e_1_2_6_64_2
e_1_2_6_41_3
e_1_2_6_20_1
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_22_3
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_43_3
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_45_3
e_1_2_6_47_1
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_58_2
e_1_2_6_35_1
e_1_2_6_58_3
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_12_1
e_1_2_6_31_3
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_56_3
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_63_3
e_1_2_6_40_3
e_1_2_6_40_2
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_44_3
e_1_2_6_46_1
e_1_2_6_25_2
References_xml – start-page: 2781
  year: 2003
  end-page: 2804
  publication-title: Dalton Trans.
– volume: 56 129
  start-page: 9463 9591
  year: 2017 2017
  end-page: 9467 9595
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 4185
  year: 2019
  end-page: 4191
  publication-title: Chem. Sci.
– volume: 51 124
  start-page: 10319 10465
  year: 2012 2012
  end-page: 10323 10469
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 429
  year: 2010
  end-page: 430
  publication-title: Nat. Chem.
– volume: 112
  start-page: 1196
  year: 2012
  end-page: 1231
  publication-title: Chem. Rev.
– volume: 141
  start-page: 1027
  year: 2019
  end-page: 1034
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 1059
  year: 2011
  end-page: 1080
  publication-title: Chem. Soc. Rev.
– volume: 220
  start-page: 50
  year: 2005
  end-page: 57
  publication-title: Z. Kristallogr.
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  publication-title: Nature
– volume: 138
  start-page: 4852
  year: 2016
  end-page: 4859
  publication-title: J. Am. Chem. Soc.
– volume: 46
  start-page: 3242
  year: 2017
  end-page: 3285
  publication-title: Chem. Soc. Rev.
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  publication-title: Chem. Rev.
– volume: 49 122
  start-page: 6260 6400
  year: 2010 2010
  end-page: 6266 6406
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 10666
  year: 2019
  end-page: 10679
  publication-title: Chem. Sci.
– volume: 9
  start-page: 3984
  year: 2018
  publication-title: Nat. Commun.
– volume: 50 123
  start-page: 581 605
  year: 2011 2011
  end-page: 582 606
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 59 132
  start-page: 4340 4370
  year: 2020 2020
  end-page: 4343 4373
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 8523
  year: 2018
  end-page: 8532
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1
  start-page: 15018
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 2
  start-page: 444
  year: 2010
  end-page: 449
  publication-title: Nat. Chem.
– volume: 7
  start-page: 65
  year: 2015
  end-page: 72
  publication-title: Nat. Chem.
– volume: 59 132
  start-page: 5557 5602
  year: 2020 2020
  end-page: 5561 5607
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 341
  start-page: 974
  year: 2013
  publication-title: Science
– start-page: 2439
  year: 2005
  end-page: 2441
  publication-title: Chem. Commun.
– volume: 58 131
  start-page: 10345 10453
  year: 2019 2019
  end-page: 10352 10460
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 310
  year: 2014
  end-page: 322
  publication-title: Chem. Mater.
– volume: 140
  start-page: 4208
  year: 2018
  end-page: 4212
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 65
  year: 2018
  end-page: 69
  publication-title: Nat. Chem.
– volume: 57 130
  start-page: 8498 8634
  year: 2018 2018
  end-page: 8502 8638
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 8837 8974
  year: 2018 2018
  end-page: 8846 8984
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 113
  start-page: 734
  year: 2013
  end-page: 777
  publication-title: Chem. Rev.
– volume: 113
  start-page: 5322
  year: 2013
  end-page: 5363
  publication-title: Chem. Rev.
– volume: 58 131
  start-page: 18003 18171
  year: 2019 2019
  end-page: 18010 18178
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 7319 7387
  year: 2020 2020
  end-page: 7330 7398
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 6970 7090
  year: 2014 2014
  end-page: 6973 7093
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 141
  start-page: 1045
  year: 2019
  end-page: 1053
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 12440
  year: 2015
  end-page: 12490
  publication-title: Chem. Rev.
– volume: 40
  start-page: 291
  year: 2011
  end-page: 305
  publication-title: Chem. Soc. Rev.
– volume: 111
  start-page: 4475
  year: 2011
  end-page: 4521
  publication-title: Chem. Rev.
– volume: 57 130
  start-page: 17254 17501
  year: 2018 2018
  end-page: 17258 17505
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 14801 15017
  year: 2018 2018
  end-page: 14805 15021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58
  start-page: 6934
  year: 2019
  end-page: 6945
  publication-title: Inorg. Chem.
– volume: 57 130
  start-page: 8448 8584
  year: 2018 2018
  end-page: 8452 8588
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 43
  start-page: 5815
  year: 2014
  end-page: 5840
  publication-title: Chem. Soc. Rev.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  publication-title: Chem. Soc. Rev.
– volume: 137
  start-page: 9912
  year: 2015
  end-page: 9921
  publication-title: J. Am. Chem. Soc.
– volume: 429
  start-page: 474
  year: 2006
  end-page: 478
  publication-title: Chem. Phys. Lett.
– volume: 112
  start-page: 1105
  year: 2012
  end-page: 1125
  publication-title: Chem. Rev.
– volume: 51
  start-page: 8978
  year: 2015
  end-page: 8981
  publication-title: Chem. Commun.
– ident: e_1_2_6_62_1
– ident: e_1_2_6_23_1
– ident: e_1_2_6_36_2
  doi: 10.1002/anie.201802785
– ident: e_1_2_6_40_3
  doi: 10.1002/ange.201705325
– ident: e_1_2_6_41_3
  doi: 10.1002/ange.201311014
– ident: e_1_2_6_33_1
  doi: 10.1002/anie.201204604
– ident: e_1_2_6_9_2
  doi: 10.1126/science.1230444
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201006913
– ident: e_1_2_6_14_2
  doi: 10.1039/b807080f
– ident: e_1_2_6_53_2
  doi: 10.1038/nchem.649
– ident: e_1_2_6_29_1
– ident: e_1_2_6_24_2
  doi: 10.1039/C9SC04249K
– ident: e_1_2_6_22_2
  doi: 10.1002/anie.201000048
– ident: e_1_2_6_39_2
  doi: 10.1021/jacs.7b13605
– ident: e_1_2_6_55_2
  doi: 10.1021/acs.inorgchem.9b00452
– ident: e_1_2_6_59_2
  doi: 10.1002/anie.201905075
– ident: e_1_2_6_3_2
  doi: 10.1021/cr300503r
– ident: e_1_2_6_47_1
  doi: 10.1039/b500712g
– ident: e_1_2_6_27_2
  doi: 10.1038/natrevmats.2015.18
– ident: e_1_2_6_4_2
  doi: 10.1021/cr3002824
– ident: e_1_2_6_33_2
  doi: 10.1002/ange.201204604
– ident: e_1_2_6_44_3
  doi: 10.1002/ange.201810514
– ident: e_1_2_6_61_2
  doi: 10.1039/C7CP08609A
– ident: e_1_2_6_40_2
  doi: 10.1002/anie.201705325
– ident: e_1_2_6_11_2
  doi: 10.1002/ange.201006913
– ident: e_1_2_6_32_2
  doi: 10.1002/anie.201914798
– ident: e_1_2_6_6_2
  doi: 10.1039/C0CS00042F
– ident: e_1_2_6_56_3
  doi: 10.1002/ange.201914931
– ident: e_1_2_6_60_2
  doi: 10.1039/C8SC05563G
– ident: e_1_2_6_18_2
  doi: 10.1021/cr200324t
– ident: e_1_2_6_46_1
  doi: 10.1039/C5CC02646F
– ident: e_1_2_6_58_3
  doi: 10.1002/ange.201909048
– ident: e_1_2_6_15_1
– ident: e_1_2_6_19_1
  doi: 10.1021/cr200190s
– ident: e_1_2_6_45_2
  doi: 10.1002/anie.201802020
– ident: e_1_2_6_17_2
  doi: 10.1039/C4CS00010B
– ident: e_1_2_6_12_1
– ident: e_1_2_6_20_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_44_2
  doi: 10.1002/anie.201810514
– ident: e_1_2_6_13_2
  doi: 10.1021/cr2003147
– ident: e_1_2_6_30_2
  doi: 10.1038/nchem.2848
– ident: e_1_2_6_32_3
  doi: 10.1002/ange.201914798
– ident: e_1_2_6_51_1
– ident: e_1_2_6_59_3
  doi: 10.1002/ange.201905075
– ident: e_1_2_6_10_2
  doi: 10.1002/anie.200300636
– ident: e_1_2_6_25_2
  doi: 10.1021/jacs.8b11527
– ident: e_1_2_6_2_2
  doi: 10.1021/cm402136z
– ident: e_1_2_6_31_3
  doi: 10.1002/ange.201808687
– ident: e_1_2_6_48_1
– ident: e_1_2_6_56_2
  doi: 10.1002/anie.201914931
– ident: e_1_2_6_43_3
  doi: 10.1002/ange.201914954
– ident: e_1_2_6_58_2
  doi: 10.1002/anie.201909048
– ident: e_1_2_6_52_2
  doi: 10.1021/jacs.6b00787
– ident: e_1_2_6_63_3
  doi: 10.1002/ange.201800137
– ident: e_1_2_6_34_1
  doi: 10.1038/nchem.2123
– ident: e_1_2_6_21_2
  doi: 10.1002/adma.201606134
– ident: e_1_2_6_16_2
  doi: 10.1039/C6CS00930A
– ident: e_1_2_6_36_3
  doi: 10.1002/ange.201802785
– ident: e_1_2_6_45_3
  doi: 10.1002/ange.201802020
– ident: e_1_2_6_41_2
  doi: 10.1002/anie.201311014
– ident: e_1_2_6_5_2
  doi: 10.1021/cr1004293
– ident: e_1_2_6_31_2
  doi: 10.1002/anie.201808687
– ident: e_1_2_6_54_2
  doi: 10.1038/nchem.676
– ident: e_1_2_6_22_3
  doi: 10.1002/ange.201000048
– ident: e_1_2_6_7_2
  doi: 10.1039/b305705b
– ident: e_1_2_6_64_2
  doi: 10.1021/acs.chemrev.5b00398
– ident: e_1_2_6_8_1
– ident: e_1_2_6_42_2
  doi: 10.1038/s41467-018-06431-7
– ident: e_1_2_6_63_2
  doi: 10.1002/anie.201800137
– ident: e_1_2_6_43_2
  doi: 10.1002/anie.201914954
– ident: e_1_2_6_38_1
– ident: e_1_2_6_50_2
  doi: 10.1016/j.cplett.2006.08.092
– ident: e_1_2_6_26_2
  doi: 10.1021/jacs.8b11357
– ident: e_1_2_6_35_1
– ident: e_1_2_6_37_2
  doi: 10.1021/jacs.5b05324
– ident: e_1_2_6_57_1
– ident: e_1_2_6_49_2
  doi: 10.1524/zkri.220.1.50.58886
– ident: e_1_2_6_28_2
  doi: 10.1039/c0cs00163e
SSID ssj0006279
Score 2.1188362
Snippet Elastic metal–organic materials (MOMs) capable of multiple stimuli‐responsiveness based on dual‐stress and thermally responsive triple‐helix coordination...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16195
SubjectTerms Chemistry
Coordination polymers
Crystal structure
Crystals
elastic flexing
mechanical responsiveness
Metals
metal–organic materials
Molecular chains
molecular springs
Organic crystals
Organic materials
Polymers
thermosalient effect
Title Molecular Spring‐like Triple‐Helix Coordination Polymers as Dual‐Stress and Thermally Responsive Crystalline Metal–Organic Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202003808
https://www.proquest.com/docview/2440446964
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FuuLPQieYpPtZpMepb4QKuIDegv7KpSGVtpUrCd_gAfBf-gvcSabtCqIoLcEZkOyO5P5Zpj5hpB9Axg8CqXxuGDS4yryPWVD3-MNA-DegFNR2JzcuhTnd_yiHbY_dfE7fohpwg0tI_9fo4FLNarNSEOx9h7iOyyuivNuXyzYQlR0PeOPEsyR7fmcezEEGiVro89qX5d_9UozqPkZsOYe53SJyPJdXaFJ73CcqUP99I3G8T8fs0wWCzhKj5z-rJA5218l881yCtwaeWmV83OpywG-P7-m3Z6lt0NM0cMdOK7uI20OIIrtutQivRqkE8yHUzmix2OZgtRN3pNCZd9Q0EzwBmk6oddFge6Dpc3hBHAqEoRb2rIZrnlzfaKatmTm7GSd3J2e3DbPvWKCg6cBqWGmEhBNYIWvperoWMIJBTGGbKHu1JmM6rGJmeYRhG2ywZkvDKZXjAi1lcKAf90glf6gbzcJtSLmiikOMBskgigG7GfrncDADuqg3qkSrzzBRBf05jhlI00cMTNLcI-T6R5XycFU_t4Re_wouVMqRFIY-ChhyKvIRUPwKmH5yf7ylOTo8uxkerf1l0XbZAGv8wq3aIdUsuHY7gIkytRervYfDkkHUg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9tAEF2Ce0gvTZuk1G3a7qHQkxJ5tVrJR2MndRLLhMSB3sR-GUyEXBw51DnlB_RQyD_ML-mMVpKbQCm0R4ldIe3uaN48Zt4Q8skABo9CaTwumPS4inxP2dD3eNcAuDfgVBQWJydjMbzkJ1_DOpsQa2GcPkRDuKFllP9rNHAkpA_WqqGYfA8BHmZXxVju-wzbeqN8_uB8rSAlmJPb8zn3Ygg1at1Gnx08nv_YL63B5u-QtfQ5R1tE1W_rUk2u9peF2te3T4Qc_-tzXpIXFSKlPXeEXpENm2-TzX7dCG6H_EjqFrrU0YAPdz-z2ZWlkwWy9HAFvmv2nfbnEMjOHLtIz-bZCilxKq_pYCkzGHVRlqVQmRsKhxMcQpat6HmVo3tjaX-xAqiKGuGWJrbAOfeuVFTTRBbOVHbJ5dHhpD_0qiYOngawhmQlgJqOFb6WaqpjGcAmxRi1hXoaMBkFsYmZ5hFEbrLLmS8MMixGhNpKYcDFviatfJ7bN4RaEXPFFAekDSM6UQzwzwbTjoEV1J1g2iZevYWprhTOsdFGljptZpbiGqfNGrfJ52b8N6ft8ceRe_WJSCsbv04ZSity0RW8TVi5tX95Stobfzlsrt7-y6SPZHM4SUbp6Hh8-o48x_tlwlu0R1rFYmnfA0Iq1IfSBn4BdhwLbg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBelg3YvW9u1NFu66WHQJze2LMvOY8ifdd0SSv9A3owsyRBikpA4Y9nTPsAeCv2G-yS7s-ykLYzC9ihzErak8_3uuPsdIR81YPAwkNrhgkmHJ6HrJCZwHd7UAO41GJUEi5P7A3F-yy-GwfBBFb_lh1gH3FAziv81KvhMp40NaSjm3oN_h8lVEVb7vuDCbWLzhs7VhkBKMMu253LuROBpVLSNLms8nv_YLG2w5kPEWpic3msiq5e1mSbjs2WenKkfT3gc_-dr9sirEo_Slr1A-2TLTA7IbrtqA_eG_OpXDXSpDQL-_nmXjcaG3swxRg8jsFyj77Q9BTd2ZGOL9HKarTAgTuWCdpYyA6nroiiFyommcDXBHGTZil6VGbrfDG3PVwBUkSHc0L7Jcc69LRRVtC9zqyiH5LbXvWmfO2ULB0cBVMNQJUAazwhXySRVkfRF4EXoswUq9ZkM_UhHTPEQ_DbZ5MwVGuMrWgTKSKHBwB6R7cl0Yo4JNSLiCUs44GyQ8MIIwJ_xU0_DDirPT2vEqU4wViW_ObbZyGLLzMxi3ON4vcc1crqWn1lmj79K1qsLEZcavogZEity0RS8Rlhxss-sErcGn7rr0dt_mfSB7Fx2evHXz4Mv78hLfFxku4V1sp3Pl-YE4FGevC804A9RLwod
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Spring%E2%80%90like+Triple%E2%80%90Helix+Coordination+Polymers+as+Dual%E2%80%90Stress+and+Thermally+Responsive+Crystalline+Metal%E2%80%93Organic+Materials&rft.jtitle=Angewandte+Chemie&rft.au=Lei+Mei&rft.au=Shu%E2%80%90wen+An&rft.au=Kong%E2%80%90qiu+Hu&rft.au=Wang%2C+Lin&rft.date=2020-09-07&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=37&rft.spage=16195&rft.epage=16202&rft_id=info:doi/10.1002%2Fange.202003808&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon