Engineering an Ultrathin and Hydrophobic Composite Zinc Anode with 24 µm Thickness for High‐Performance Zn Batteries

The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 40
Main Authors Li, Quanyu, Wang, Han, Yu, Huaming, Fu, Meng, Liu, Wen, Zhao, Qiwen, Huang, Shaozhen, Zhou, Liangjun, Wei, Weifeng, Ji, Xiaobo, Chen, Yuejiao, Chen, Libao
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 02.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles. An ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer.
AbstractList The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles. An ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer.
The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles.
The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C 2 F 4 ) n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C 2 F 4 ) n ‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C 2 F 4 ) n to Zn 2+ makes the (C 2 F 4 ) n ‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H 2 O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C 2 F 4 ) n ‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm −2 . Benchmarked against the commercial 20µm‐Zn foil, the (C 2 F 4 ) n ‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm −2 ), only 100 h for the 20µm‐Zn foil. When paired with V 2 O 5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles.
Author Yu, Huaming
Wei, Weifeng
Zhou, Liangjun
Huang, Shaozhen
Ji, Xiaobo
Zhao, Qiwen
Fu, Meng
Wang, Han
Liu, Wen
Chen, Yuejiao
Chen, Libao
Li, Quanyu
Author_xml – sequence: 1
  givenname: Quanyu
  surname: Li
  fullname: Li, Quanyu
  organization: Central South University
– sequence: 2
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: Central South University
– sequence: 3
  givenname: Huaming
  orcidid: 0000-0002-8659-0253
  surname: Yu
  fullname: Yu, Huaming
  organization: Central South University
– sequence: 4
  givenname: Meng
  surname: Fu
  fullname: Fu, Meng
  organization: Central South University
– sequence: 5
  givenname: Wen
  surname: Liu
  fullname: Liu, Wen
  organization: Central South University
– sequence: 6
  givenname: Qiwen
  surname: Zhao
  fullname: Zhao, Qiwen
  organization: Central South University
– sequence: 7
  givenname: Shaozhen
  surname: Huang
  fullname: Huang, Shaozhen
  organization: Central South University
– sequence: 8
  givenname: Liangjun
  orcidid: 0000-0003-1125-7664
  surname: Zhou
  fullname: Zhou, Liangjun
  organization: Central South University
– sequence: 9
  givenname: Weifeng
  surname: Wei
  fullname: Wei, Weifeng
  organization: Central South University
– sequence: 10
  givenname: Xiaobo
  surname: Ji
  fullname: Ji, Xiaobo
  organization: Central South University
– sequence: 11
  givenname: Yuejiao
  surname: Chen
  fullname: Chen, Yuejiao
  email: lbchen@csu.edu.cn
  organization: Central South University
– sequence: 12
  givenname: Libao
  orcidid: 0000-0001-9554-8068
  surname: Chen
  fullname: Chen, Libao
  email: cyj.strive@csu.edu.cn
  organization: Central South University
BookMark eNqFkE1KQzEUhYMoWKtTxwHHrfl5v8NafypUdGBBnDzSvJu-aF9Sk4h25hJcgptwAy7FlRipKAji6N4D57uHe7bQurEGENqlpE8JYfuiVm2fEcYJT7JsDXVoRrMeJ6xY_97p1Sba8v6GEJrnPOmgxyMz0wbAaTPDwuDJPDgRGm2iqPFoWTu7aOxUSzy07cJ6HQBfayPxwNga8IMODWbJ28vba4svGy1vDXiPlXV4pGfN-9PzBbioWmFkBA0-ECHEMPDbaEOJuYedr9lFk-Ojy-GoNz4_OR0Oxj3JOMt6RToleZYrQoQELgtSF5RTLnLJ46sK6FSVMilIKaic1pArpoqapQzKJFFlDryL9lZ3F87e3YMP1Y29dyZGVqzIaZqmhPPo6q9c0lnvHahq4XQr3LKipPpst_pst_puNwLJL0DqIIK2Jvan539j5Qp70HNY_hNSDQ6Pz37YD0CAlHI
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_032
crossref_primary_10_1039_D4EE04100C
crossref_primary_10_1002_advs_202401575
crossref_primary_10_3389_fchem_2024_1358353
crossref_primary_10_1021_acs_jpclett_4c02538
crossref_primary_10_1016_j_est_2024_111629
crossref_primary_10_1007_s11837_024_06559_6
crossref_primary_10_1002_aenm_202302749
crossref_primary_10_1007_s10854_024_12359_0
crossref_primary_10_1016_j_apmate_2025_100276
crossref_primary_10_1016_j_diamond_2024_111033
crossref_primary_10_1016_j_molstruc_2024_138392
crossref_primary_10_1002_cmt2_25
crossref_primary_10_1016_j_jelechem_2024_118163
crossref_primary_10_1080_10408347_2024_2337876
crossref_primary_10_1002_adfm_202502344
crossref_primary_10_1002_jctb_7625
crossref_primary_10_1007_s10854_024_12362_5
crossref_primary_10_1007_s10854_024_12952_3
crossref_primary_10_1007_s10971_024_06328_6
crossref_primary_10_1016_j_mseb_2024_117937
crossref_primary_10_1039_D3SC06934F
crossref_primary_10_1002_adfm_202311680
crossref_primary_10_1007_s12274_024_6555_z
crossref_primary_10_1007_s10854_024_12385_y
crossref_primary_10_1016_j_diamond_2024_111100
crossref_primary_10_1016_j_ensm_2024_103403
crossref_primary_10_1002_aenm_202303928
crossref_primary_10_1007_s12598_024_02927_y
crossref_primary_10_1016_j_est_2024_110427
crossref_primary_10_1007_s11837_024_06563_w
crossref_primary_10_1002_chem_202304149
crossref_primary_10_1016_j_mattod_2023_09_008
crossref_primary_10_1039_D3TA07462E
crossref_primary_10_3390_batteries10060200
crossref_primary_10_1016_j_jallcom_2024_174049
crossref_primary_10_1016_j_jcis_2024_12_221
crossref_primary_10_1021_acs_jpcc_4c06348
crossref_primary_10_1002_adfm_202400839
crossref_primary_10_1039_D4DT00602J
crossref_primary_10_1039_D4EE05066E
crossref_primary_10_1016_j_matchar_2023_113407
crossref_primary_10_1002_ange_202418992
crossref_primary_10_1080_01932691_2024_2342428
crossref_primary_10_3390_coatings14101300
crossref_primary_10_1016_j_jece_2024_112550
crossref_primary_10_1039_D4TA05143B
crossref_primary_10_1002_aenm_202405767
crossref_primary_10_1002_adma_202406093
crossref_primary_10_1016_j_pmatsci_2024_101286
crossref_primary_10_1002_smll_202405139
crossref_primary_10_1016_j_vacuum_2024_113365
crossref_primary_10_1002_smll_202408138
crossref_primary_10_1002_slct_202304582
crossref_primary_10_1039_D4TA09246E
crossref_primary_10_1007_s00339_024_07659_5
crossref_primary_10_1002_adfm_202409400
crossref_primary_10_1016_j_cej_2024_152789
crossref_primary_10_1016_j_cej_2024_155813
crossref_primary_10_1039_D3NJ05510H
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1002_anie_202418992
crossref_primary_10_1016_j_jelechem_2024_118504
crossref_primary_10_1039_D3AY02038J
crossref_primary_10_1002_smll_202308273
crossref_primary_10_1021_acsami_4c18774
crossref_primary_10_1007_s12598_024_02734_5
crossref_primary_10_1007_s11581_024_05440_5
crossref_primary_10_1002_adma_202314144
crossref_primary_10_1021_acsnano_3c12076
crossref_primary_10_1039_D3RA08965G
crossref_primary_10_1016_j_mtener_2024_101496
crossref_primary_10_1002_adfm_202315539
crossref_primary_10_1002_smll_202306939
crossref_primary_10_1002_smll_202408848
crossref_primary_10_1007_s10854_025_14315_y
crossref_primary_10_1039_D4EE05044D
crossref_primary_10_1002_adfm_202312220
crossref_primary_10_1007_s11664_024_11034_8
crossref_primary_10_1007_s11694_024_02425_w
crossref_primary_10_1093_nsr_nwaf029
crossref_primary_10_1002_adfm_202412715
Cites_doi 10.1021/acsenergylett.2c00124
10.1021/acsenergylett.2c01152
10.1039/D0TA00748J
10.1002/aenm.202102707
10.1002/advs.202205874
10.1021/acs.nanolett.2c03433
10.1038/s41467-021-26947-9
10.1002/advs.202100309
10.1016/j.ensm.2022.06.052
10.1002/aenm.202003927
10.1039/D2EE02687B
10.1039/D1EE00030F
10.1039/D0EE02079F
10.1002/anie.202218386
10.1002/adfm.202107652
10.1039/C9EE00596J
10.1002/aenm.202103708
10.1002/adfm.201908528
10.1002/adma.202206963
10.1016/j.ensm.2022.07.046
10.1002/adfm.202203905
10.1038/s41467-020-17752-x
10.1039/D1EE03624F
10.1016/j.ensm.2021.12.007
10.1002/aenm.201801090
10.1039/D1EE01851E
10.1021/acsnano.2c01571
10.1002/adma.202109872
10.1016/j.jechem.2022.06.028
10.1016/j.nanoen.2018.04.040
10.1016/j.ensm.2021.11.010
10.1016/j.ensm.2021.09.021
10.1002/adma.202007416
10.1038/s41560-021-00833-6
10.1002/sstr.202200143
10.1126/sciadv.aba4098
10.1002/adfm.202206695
10.1021/acsami.8b18209
10.1021/jacs.0c07992
10.1002/adfm.202205600
10.1021/acsenergylett.1c01521
10.1021/acsnano.1c04354
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202303466
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202303466
ADFM202303466
Genre article
GrantInformation_xml – fundername: Science Fund for Outstanding Young Scholars of Hunan Province
  funderid: 2023JJ20064
– fundername: National Natural Science Foundation of China
  funderid: U1904216; 51901249
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c2326-85b0767f00ace3c80d81313a7c3202fe1bf9c4809a1cbde7f2f8d252e944f97e3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:09:07 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Tue Jul 01 00:30:45 EDT 2025
Wed Aug 20 07:27:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2326-85b0767f00ace3c80d81313a7c3202fe1bf9c4809a1cbde7f2f8d252e944f97e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1125-7664
0000-0001-9554-8068
0000-0002-8659-0253
PQID 2871555033
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2871555033
crossref_primary_10_1002_adfm_202303466
crossref_citationtrail_10_1002_adfm_202303466
wiley_primary_10_1002_adfm_202303466_ADFM202303466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2, 2023
PublicationDateYYYYMMDD 2023-10-02
PublicationDate_xml – month: 10
  year: 2023
  text: October 2, 2023
  day: 02
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020; 8
2022 2022 2022 2022; 12 15 34 16
2021; 8
2021; 6
2018; 8
2022 2021 2022 2023; 12 11 73 62
2022 2021 2022 2022 2021; 52 33 32 10 6
2021; 12
2022 2020 2021; 15 142 14
2020; 30
2019; 12
2021 2022; 15 34
2021 2022 2022 2021; 14 3 7 43
2020; 13
2019 2018; 11 49
2020; 11
2022 2023 2022; 32 23 7
2020 2022; 6 51
2022 2022; 44 32
2022 2021; 45 31
e_1_2_7_3_4
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_3_3
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_19_3
e_1_2_7_4_4
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_18_1
e_1_2_7_15_3
e_1_2_7_16_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_8_4
e_1_2_7_20_1
References_xml – volume: 12 11 73 62
  start-page: 565
  year: 2022 2021 2022 2023
  publication-title: Adv. Energy Mater. Adv. Energy Mater. J. Energy Chem. Angew. Chem., Int. Ed.
– volume: 45 31
  start-page: 465
  year: 2022 2021
  publication-title: Energy Storage Mater. Adv. Funct. Mater.
– volume: 11
  start-page: 3961
  year: 2020
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6 51
  start-page: 683
  year: 2020 2022
  publication-title: Sci. Adv. Energy Storage Mater.
– volume: 8
  start-page: 7836
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 6606
  year: 2021
  publication-title: Nat. Commun.
– volume: 32 23 7
  start-page: 1135 1719
  year: 2022 2023 2022
  publication-title: Adv. Funct. Mater. Nano Lett. ACS Energy Lett.
– volume: 15 34
  year: 2021 2022
  publication-title: ACS Nano Adv. Mater.
– volume: 15 142 14
  start-page: 1682 5947
  year: 2022 2020 2021
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc. Energy Environ. Sci.
– volume: 14 3 7 43
  start-page: 3796 2515 375
  year: 2021 2022 2022 2021
  publication-title: Energy Environ. Sci. Small Struct. ACS Energy Lett. Energy Storage Mater.
– volume: 6
  start-page: 790
  year: 2021
  publication-title: Nat. Energy
– volume: 52 33 32 10 6
  start-page: 329 3078
  year: 2022 2021 2022 2022 2021
  publication-title: Energy Storage Mater. Adv. Mater. Adv. Funct. Mater. Adv. Sci. ACS Energy Lett.
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 11 49
  start-page: 5517 179
  year: 2019 2018
  publication-title: ACS Appl. Mater. Interfaces Nano Energy
– volume: 44 32
  start-page: 452
  year: 2022 2022
  publication-title: Energy Storage Mater. Adv. Funct. Mater.
– volume: 12 15 34 16
  start-page: 4748 6755
  year: 2022 2022 2022 2022
  publication-title: Adv. Energy Mater. Energy Environ. Sci. Adv. Mater. ACS Nano
– volume: 13
  start-page: 3330
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_7_15_3
  doi: 10.1021/acsenergylett.2c00124
– ident: e_1_2_7_3_3
  doi: 10.1021/acsenergylett.2c01152
– ident: e_1_2_7_10_1
  doi: 10.1039/D0TA00748J
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.202102707
– ident: e_1_2_7_4_4
  doi: 10.1002/advs.202205874
– ident: e_1_2_7_15_2
  doi: 10.1021/acs.nanolett.2c03433
– ident: e_1_2_7_20_1
  doi: 10.1038/s41467-021-26947-9
– ident: e_1_2_7_14_1
  doi: 10.1002/advs.202100309
– ident: e_1_2_7_1_2
  doi: 10.1016/j.ensm.2022.06.052
– ident: e_1_2_7_8_2
  doi: 10.1002/aenm.202003927
– ident: e_1_2_7_2_2
  doi: 10.1039/D2EE02687B
– ident: e_1_2_7_3_1
  doi: 10.1039/D1EE00030F
– ident: e_1_2_7_7_1
  doi: 10.1039/D0EE02079F
– ident: e_1_2_7_8_4
  doi: 10.1002/anie.202218386
– ident: e_1_2_7_5_2
  doi: 10.1002/adfm.202107652
– ident: e_1_2_7_13_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_7_8_1
  doi: 10.1002/aenm.202103708
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.201908528
– ident: e_1_2_7_2_3
  doi: 10.1002/adma.202206963
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ensm.2022.07.046
– ident: e_1_2_7_4_3
  doi: 10.1002/adfm.202203905
– ident: e_1_2_7_11_1
  doi: 10.1038/s41467-020-17752-x
– ident: e_1_2_7_19_1
  doi: 10.1039/D1EE03624F
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ensm.2021.12.007
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.201801090
– ident: e_1_2_7_19_3
  doi: 10.1039/D1EE01851E
– ident: e_1_2_7_2_4
  doi: 10.1021/acsnano.2c01571
– ident: e_1_2_7_16_2
  doi: 10.1002/adma.202109872
– ident: e_1_2_7_8_3
  doi: 10.1016/j.jechem.2022.06.028
– ident: e_1_2_7_18_2
  doi: 10.1016/j.nanoen.2018.04.040
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ensm.2021.11.010
– ident: e_1_2_7_3_4
  doi: 10.1016/j.ensm.2021.09.021
– ident: e_1_2_7_4_2
  doi: 10.1002/adma.202007416
– ident: e_1_2_7_6_1
  doi: 10.1038/s41560-021-00833-6
– ident: e_1_2_7_3_2
  doi: 10.1002/sstr.202200143
– ident: e_1_2_7_1_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.202206695
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.8b18209
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.0c07992
– ident: e_1_2_7_17_2
  doi: 10.1002/adfm.202205600
– ident: e_1_2_7_4_5
  doi: 10.1021/acsenergylett.1c01521
– ident: e_1_2_7_16_1
  doi: 10.1021/acsnano.1c04354
SSID ssj0017734
Score 2.681703
Snippet The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms anti‐side reactions
artificial interphase layers
Charge transfer
Copper
Deposition
Fluorine
high utilization rate
Hydrophobicity
Materials science
Metal foils
Thickness
ultrathin Zn composite anodes
Zinc
Title Engineering an Ultrathin and Hydrophobic Composite Zinc Anode with 24 µm Thickness for High‐Performance Zn Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202303466
https://www.proquest.com/docview/2871555033
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dTtswFMctBDfbxQZjaB0f8sUkrgKO7cTJZQVU1bROCKhUcRPZx7ZaFVIERQKueAQegZfgBXgUnoScpE3LpAlpu4sVO0p8bOdv-5yfCfmRpACiuBl4xeMAaYSBdloEShoeaZ66UGDscOd33O7Kn72oNxfFX_Eh6gU37BnleI0dXJur3Rk0VFuPkeSFhBYyRuY2OmyhKjqq-VGhUtW2chyig1fYm1IbGd99W_ztX2kmNecFa_nHaX0mevqulaPJcOd6bHbg7g-M4_98zDL5NJGjtFm1nxWy4PIv5OMcpHCV3MylqM5p9wyBtv1BXiQsbd_ay9FFf2QGQHFsQR8wR08HOdBmPrKO4kIv5fL58fnpnJ70BzDEwZUWWpmij8nL_cPhLHaBnua0In4WE_ivpNs6ONlrB5PzGgIodFkcJJFhKlaeMQ1OQMJsEorC1grwkHbvQuNTkAlLdQjGOuW5TyyPuEul9KlyYo0s5qPcfSPUCis1E15ZBxKkSZg2CsC7hHnjjGqQYGqvDCYwczxT4yyrMMw8wxrN6hptkO06_0WF8fhrzo2p-bNJd77KcFoZRbjj2yC8tOM7T8ma-61Onfr-L4XWyQe8Lh0H-QZZHF9eu81CAI3NFllq7nd-HW-Vjf0Vg0cCdw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_isWCviAxCmtYztxclxRVgt0K4R2paqXyB7b2lVLtipbqeXEI_AIvAQv0EfhScgkm-wWCSHB0YkdxR6P_Xk88w3AyyxHlNXLKGiRRsRGGBlvZKSVFYkRuY8lxQ6P9tPhRL07SFpvQoqFafghOoMbaUa9XpOCk0F6Z8UaalygUPIKQ0uVptfhBqX1Jvr83Y8dg1SsdXOxnMbk4hUftLyNXOxcbX91X1qBzXXIWu85g7tg279tXE2Ots8Wdhu__Ebk-F_duQd3loiU9ZspdB-u-fIB3F7jKXwI52slZko2OSZO2-msrAqODS_c6fxkOrczZLS8kBuYZ4ezElm_nDvPyNbLhLr8fvnjExtPZ3hE6yur4DIjN5OfX799WIUvsMOSNaSf1Rn-EUwGb8avh9EyZUOEFTRLoyyxXKc6cG7QS8y4y2JZiVsj5WkPPrYhR5Xx3MRonddBhMyJRPhcqZBrLzdho5yX_jEwJ50yXAbtPCpUNuPGasTgMx6st7oHUSuwApd85pRW47homJhFQSNadCPag1dd_ZOGyeOPNbda-RdLjf5c0MkySejStweiFuRfvlL0dwejrvTkXxq9gJvD8Wiv2Hu7__4p3KLntR-h2IKNxemZf1bhoYV9Xs_4X3t4BP8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcKH8VCwV8QOKU1rGdODmuuqyWn1YV6kqrXiJ7bGtXLdlV2UrAiUfgEXgJXqCP0idpJtnNbpEQEhyd2FHs8Yw_2zPfALzKckRZvYyCFmlEbISR8UZGWlmRGJH7WFLs8P5BOhiqd6NktBbF3_BDtAdupBm1vSYFn7mwuyINNS5QJHkFoaVK05twS6U8p-QNvY8tgVSsdXOvnMbk4RWPlrSNXOxeb399WVphzXXEWi85_U0wy59tPE1Ods7ndge__cbj-D-9uQ_3FniUdZsJ9ABu-PIh3F1jKXwEX9ZKzJRseEqMtuNJWRUcG3x1Z9PZeGonyMi4kBOYZ8eTElm3nDrP6KSXCXXx8-LXJ3Y0nuAJWVdWgWVGTiaX338croIX2HHJGsrPagf_GIb9N0d7g2iRsCHCCpilUZZYrlMdODfoJWbcZbGshK2RsrQHH9uQo8p4bmK0zusgQuZEInyuVMi1l1uwUU5L_wSYk04ZLoN2HhUqm3FjNWLwGQ_WW92BaCmvAhds5pRU47RoeJhFQSNatCPagddt_VnD4_HHmttL8RcLff5c0L4ySejKtwOiluNfvlJ0e_39tvT0Xxq9hNuHvX7x4e3B-2dwhx7XToRiGzbmZ-f-eQWG5vZFPd-vAG1lA64
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+an+Ultrathin+and+Hydrophobic+Composite+Zinc+Anode+with+24%C2%A0%C2%B5m+Thickness+for+High%E2%80%90Performance+Zn+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Quanyu&rft.au=Wang%2C+Han&rft.au=Yu%2C+Huaming&rft.au=Fu%2C+Meng&rft.date=2023-10-02&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202303466&rft.externalDBID=10.1002%252Fadfm.202303466&rft.externalDocID=ADFM202303466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon