Engineering an Ultrathin and Hydrophobic Composite Zinc Anode with 24 µm Thickness for High‐Performance Zn Batteries
The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 40 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
02.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles.
An ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. |
---|---|
AbstractList | The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles.
An ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C2F4)n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C2F4)n‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C2F4)n to Zn2+ makes the (C2F4)n‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H2O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C2F4)n‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm−2. Benchmarked against the commercial 20µm‐Zn foil, the (C2F4)n‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm−2), only 100 h for the 20µm‐Zn foil. When paired with V2O5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles. The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity and extremely low utilization. Here, an ultrathin Zn composite anode (24 µm) is developed with a protective hydrophobic layer (covalent (C 2 F 4 ) n chains and F‐doped carbonized ingredient) constructed on Cu foil (denoted as (C 2 F 4 ) n ‐C@Cu) as a host by one‐step pyrolytic evaporation deposition. The repulsion of (C 2 F 4 ) n to Zn 2+ makes the (C 2 F 4 ) n ‐C@Cu interface possess enhanced adsorption ability, driving more charge transfer under the layer. With its good hydrophobicity, this layer prevents H 2 O from damaging the plated Zn. Combined with the semi‐ionic‐state fluorine as zincophilic site, the host guides uniform and dense Zn deposition for making ultrathin Zn anode. As a result, the (C 2 F 4 ) n ‐C@Cu electrode exhibits high average CE of 99.6% over 3000 cycles at 2 mA cm −2 . Benchmarked against the commercial 20µm‐Zn foil, the (C 2 F 4 ) n ‐C@Cu@Zn anode achieves enhanced stability (1200 h at 1 mA cm −2 ), only 100 h for the 20µm‐Zn foil. When paired with V 2 O 5 cathode, the Zn composite anode makes the full cell deliver 88% retention for 2500 cycles. |
Author | Yu, Huaming Wei, Weifeng Zhou, Liangjun Huang, Shaozhen Ji, Xiaobo Zhao, Qiwen Fu, Meng Wang, Han Liu, Wen Chen, Yuejiao Chen, Libao Li, Quanyu |
Author_xml | – sequence: 1 givenname: Quanyu surname: Li fullname: Li, Quanyu organization: Central South University – sequence: 2 givenname: Han surname: Wang fullname: Wang, Han organization: Central South University – sequence: 3 givenname: Huaming orcidid: 0000-0002-8659-0253 surname: Yu fullname: Yu, Huaming organization: Central South University – sequence: 4 givenname: Meng surname: Fu fullname: Fu, Meng organization: Central South University – sequence: 5 givenname: Wen surname: Liu fullname: Liu, Wen organization: Central South University – sequence: 6 givenname: Qiwen surname: Zhao fullname: Zhao, Qiwen organization: Central South University – sequence: 7 givenname: Shaozhen surname: Huang fullname: Huang, Shaozhen organization: Central South University – sequence: 8 givenname: Liangjun orcidid: 0000-0003-1125-7664 surname: Zhou fullname: Zhou, Liangjun organization: Central South University – sequence: 9 givenname: Weifeng surname: Wei fullname: Wei, Weifeng organization: Central South University – sequence: 10 givenname: Xiaobo surname: Ji fullname: Ji, Xiaobo organization: Central South University – sequence: 11 givenname: Yuejiao surname: Chen fullname: Chen, Yuejiao email: lbchen@csu.edu.cn organization: Central South University – sequence: 12 givenname: Libao orcidid: 0000-0001-9554-8068 surname: Chen fullname: Chen, Libao email: cyj.strive@csu.edu.cn organization: Central South University |
BookMark | eNqFkE1KQzEUhYMoWKtTxwHHrfl5v8NafypUdGBBnDzSvJu-aF9Sk4h25hJcgptwAy7FlRipKAji6N4D57uHe7bQurEGENqlpE8JYfuiVm2fEcYJT7JsDXVoRrMeJ6xY_97p1Sba8v6GEJrnPOmgxyMz0wbAaTPDwuDJPDgRGm2iqPFoWTu7aOxUSzy07cJ6HQBfayPxwNga8IMODWbJ28vba4svGy1vDXiPlXV4pGfN-9PzBbioWmFkBA0-ECHEMPDbaEOJuYedr9lFk-Ojy-GoNz4_OR0Oxj3JOMt6RToleZYrQoQELgtSF5RTLnLJ46sK6FSVMilIKaic1pArpoqapQzKJFFlDryL9lZ3F87e3YMP1Y29dyZGVqzIaZqmhPPo6q9c0lnvHahq4XQr3LKipPpst_pst_puNwLJL0DqIIK2Jvan539j5Qp70HNY_hNSDQ6Pz37YD0CAlHI |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_032 crossref_primary_10_1039_D4EE04100C crossref_primary_10_1002_advs_202401575 crossref_primary_10_3389_fchem_2024_1358353 crossref_primary_10_1021_acs_jpclett_4c02538 crossref_primary_10_1016_j_est_2024_111629 crossref_primary_10_1007_s11837_024_06559_6 crossref_primary_10_1002_aenm_202302749 crossref_primary_10_1007_s10854_024_12359_0 crossref_primary_10_1016_j_apmate_2025_100276 crossref_primary_10_1016_j_diamond_2024_111033 crossref_primary_10_1016_j_molstruc_2024_138392 crossref_primary_10_1002_cmt2_25 crossref_primary_10_1016_j_jelechem_2024_118163 crossref_primary_10_1080_10408347_2024_2337876 crossref_primary_10_1002_adfm_202502344 crossref_primary_10_1002_jctb_7625 crossref_primary_10_1007_s10854_024_12362_5 crossref_primary_10_1007_s10854_024_12952_3 crossref_primary_10_1007_s10971_024_06328_6 crossref_primary_10_1016_j_mseb_2024_117937 crossref_primary_10_1039_D3SC06934F crossref_primary_10_1002_adfm_202311680 crossref_primary_10_1007_s12274_024_6555_z crossref_primary_10_1007_s10854_024_12385_y crossref_primary_10_1016_j_diamond_2024_111100 crossref_primary_10_1016_j_ensm_2024_103403 crossref_primary_10_1002_aenm_202303928 crossref_primary_10_1007_s12598_024_02927_y crossref_primary_10_1016_j_est_2024_110427 crossref_primary_10_1007_s11837_024_06563_w crossref_primary_10_1002_chem_202304149 crossref_primary_10_1016_j_mattod_2023_09_008 crossref_primary_10_1039_D3TA07462E crossref_primary_10_3390_batteries10060200 crossref_primary_10_1016_j_jallcom_2024_174049 crossref_primary_10_1016_j_jcis_2024_12_221 crossref_primary_10_1021_acs_jpcc_4c06348 crossref_primary_10_1002_adfm_202400839 crossref_primary_10_1039_D4DT00602J crossref_primary_10_1039_D4EE05066E crossref_primary_10_1016_j_matchar_2023_113407 crossref_primary_10_1002_ange_202418992 crossref_primary_10_1080_01932691_2024_2342428 crossref_primary_10_3390_coatings14101300 crossref_primary_10_1016_j_jece_2024_112550 crossref_primary_10_1039_D4TA05143B crossref_primary_10_1002_aenm_202405767 crossref_primary_10_1002_adma_202406093 crossref_primary_10_1016_j_pmatsci_2024_101286 crossref_primary_10_1002_smll_202405139 crossref_primary_10_1016_j_vacuum_2024_113365 crossref_primary_10_1002_smll_202408138 crossref_primary_10_1002_slct_202304582 crossref_primary_10_1039_D4TA09246E crossref_primary_10_1007_s00339_024_07659_5 crossref_primary_10_1002_adfm_202409400 crossref_primary_10_1016_j_cej_2024_152789 crossref_primary_10_1016_j_cej_2024_155813 crossref_primary_10_1039_D3NJ05510H crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1002_anie_202418992 crossref_primary_10_1016_j_jelechem_2024_118504 crossref_primary_10_1039_D3AY02038J crossref_primary_10_1002_smll_202308273 crossref_primary_10_1021_acsami_4c18774 crossref_primary_10_1007_s12598_024_02734_5 crossref_primary_10_1007_s11581_024_05440_5 crossref_primary_10_1002_adma_202314144 crossref_primary_10_1021_acsnano_3c12076 crossref_primary_10_1039_D3RA08965G crossref_primary_10_1016_j_mtener_2024_101496 crossref_primary_10_1002_adfm_202315539 crossref_primary_10_1002_smll_202306939 crossref_primary_10_1002_smll_202408848 crossref_primary_10_1007_s10854_025_14315_y crossref_primary_10_1039_D4EE05044D crossref_primary_10_1002_adfm_202312220 crossref_primary_10_1007_s11664_024_11034_8 crossref_primary_10_1007_s11694_024_02425_w crossref_primary_10_1093_nsr_nwaf029 crossref_primary_10_1002_adfm_202412715 |
Cites_doi | 10.1021/acsenergylett.2c00124 10.1021/acsenergylett.2c01152 10.1039/D0TA00748J 10.1002/aenm.202102707 10.1002/advs.202205874 10.1021/acs.nanolett.2c03433 10.1038/s41467-021-26947-9 10.1002/advs.202100309 10.1016/j.ensm.2022.06.052 10.1002/aenm.202003927 10.1039/D2EE02687B 10.1039/D1EE00030F 10.1039/D0EE02079F 10.1002/anie.202218386 10.1002/adfm.202107652 10.1039/C9EE00596J 10.1002/aenm.202103708 10.1002/adfm.201908528 10.1002/adma.202206963 10.1016/j.ensm.2022.07.046 10.1002/adfm.202203905 10.1038/s41467-020-17752-x 10.1039/D1EE03624F 10.1016/j.ensm.2021.12.007 10.1002/aenm.201801090 10.1039/D1EE01851E 10.1021/acsnano.2c01571 10.1002/adma.202109872 10.1016/j.jechem.2022.06.028 10.1016/j.nanoen.2018.04.040 10.1016/j.ensm.2021.11.010 10.1016/j.ensm.2021.09.021 10.1002/adma.202007416 10.1038/s41560-021-00833-6 10.1002/sstr.202200143 10.1126/sciadv.aba4098 10.1002/adfm.202206695 10.1021/acsami.8b18209 10.1021/jacs.0c07992 10.1002/adfm.202205600 10.1021/acsenergylett.1c01521 10.1021/acsnano.1c04354 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202303466 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202303466 ADFM202303466 |
Genre | article |
GrantInformation_xml | – fundername: Science Fund for Outstanding Young Scholars of Hunan Province funderid: 2023JJ20064 – fundername: National Natural Science Foundation of China funderid: U1904216; 51901249 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c2326-85b0767f00ace3c80d81313a7c3202fe1bf9c4809a1cbde7f2f8d252e944f97e3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:09:07 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Tue Jul 01 00:30:45 EDT 2025 Wed Aug 20 07:27:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2326-85b0767f00ace3c80d81313a7c3202fe1bf9c4809a1cbde7f2f8d252e944f97e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1125-7664 0000-0001-9554-8068 0000-0002-8659-0253 |
PQID | 2871555033 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2871555033 crossref_primary_10_1002_adfm_202303466 crossref_citationtrail_10_1002_adfm_202303466 wiley_primary_10_1002_adfm_202303466_ADFM202303466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2, 2023 |
PublicationDateYYYYMMDD | 2023-10-02 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2, 2023 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020; 8 2022 2022 2022 2022; 12 15 34 16 2021; 8 2021; 6 2018; 8 2022 2021 2022 2023; 12 11 73 62 2022 2021 2022 2022 2021; 52 33 32 10 6 2021; 12 2022 2020 2021; 15 142 14 2020; 30 2019; 12 2021 2022; 15 34 2021 2022 2022 2021; 14 3 7 43 2020; 13 2019 2018; 11 49 2020; 11 2022 2023 2022; 32 23 7 2020 2022; 6 51 2022 2022; 44 32 2022 2021; 45 31 e_1_2_7_3_4 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_3_3 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_19_3 e_1_2_7_4_4 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_18_1 e_1_2_7_15_3 e_1_2_7_16_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_8_4 e_1_2_7_20_1 |
References_xml | – volume: 12 11 73 62 start-page: 565 year: 2022 2021 2022 2023 publication-title: Adv. Energy Mater. Adv. Energy Mater. J. Energy Chem. Angew. Chem., Int. Ed. – volume: 45 31 start-page: 465 year: 2022 2021 publication-title: Energy Storage Mater. Adv. Funct. Mater. – volume: 11 start-page: 3961 year: 2020 publication-title: Nat. Commun. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 51 start-page: 683 year: 2020 2022 publication-title: Sci. Adv. Energy Storage Mater. – volume: 8 start-page: 7836 year: 2020 publication-title: J. Mater. Chem. A – volume: 12 start-page: 6606 year: 2021 publication-title: Nat. Commun. – volume: 32 23 7 start-page: 1135 1719 year: 2022 2023 2022 publication-title: Adv. Funct. Mater. Nano Lett. ACS Energy Lett. – volume: 15 34 year: 2021 2022 publication-title: ACS Nano Adv. Mater. – volume: 15 142 14 start-page: 1682 5947 year: 2022 2020 2021 publication-title: Energy Environ. Sci. J. Am. Chem. Soc. Energy Environ. Sci. – volume: 14 3 7 43 start-page: 3796 2515 375 year: 2021 2022 2022 2021 publication-title: Energy Environ. Sci. Small Struct. ACS Energy Lett. Energy Storage Mater. – volume: 6 start-page: 790 year: 2021 publication-title: Nat. Energy – volume: 52 33 32 10 6 start-page: 329 3078 year: 2022 2021 2022 2022 2021 publication-title: Energy Storage Mater. Adv. Mater. Adv. Funct. Mater. Adv. Sci. ACS Energy Lett. – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 11 49 start-page: 5517 179 year: 2019 2018 publication-title: ACS Appl. Mater. Interfaces Nano Energy – volume: 44 32 start-page: 452 year: 2022 2022 publication-title: Energy Storage Mater. Adv. Funct. Mater. – volume: 12 15 34 16 start-page: 4748 6755 year: 2022 2022 2022 2022 publication-title: Adv. Energy Mater. Energy Environ. Sci. Adv. Mater. ACS Nano – volume: 13 start-page: 3330 year: 2020 publication-title: Energy Environ. Sci. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_7_15_3 doi: 10.1021/acsenergylett.2c00124 – ident: e_1_2_7_3_3 doi: 10.1021/acsenergylett.2c01152 – ident: e_1_2_7_10_1 doi: 10.1039/D0TA00748J – ident: e_1_2_7_2_1 doi: 10.1002/aenm.202102707 – ident: e_1_2_7_4_4 doi: 10.1002/advs.202205874 – ident: e_1_2_7_15_2 doi: 10.1021/acs.nanolett.2c03433 – ident: e_1_2_7_20_1 doi: 10.1038/s41467-021-26947-9 – ident: e_1_2_7_14_1 doi: 10.1002/advs.202100309 – ident: e_1_2_7_1_2 doi: 10.1016/j.ensm.2022.06.052 – ident: e_1_2_7_8_2 doi: 10.1002/aenm.202003927 – ident: e_1_2_7_2_2 doi: 10.1039/D2EE02687B – ident: e_1_2_7_3_1 doi: 10.1039/D1EE00030F – ident: e_1_2_7_7_1 doi: 10.1039/D0EE02079F – ident: e_1_2_7_8_4 doi: 10.1002/anie.202218386 – ident: e_1_2_7_5_2 doi: 10.1002/adfm.202107652 – ident: e_1_2_7_13_1 doi: 10.1039/C9EE00596J – ident: e_1_2_7_8_1 doi: 10.1002/aenm.202103708 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.201908528 – ident: e_1_2_7_2_3 doi: 10.1002/adma.202206963 – ident: e_1_2_7_4_1 doi: 10.1016/j.ensm.2022.07.046 – ident: e_1_2_7_4_3 doi: 10.1002/adfm.202203905 – ident: e_1_2_7_11_1 doi: 10.1038/s41467-020-17752-x – ident: e_1_2_7_19_1 doi: 10.1039/D1EE03624F – ident: e_1_2_7_5_1 doi: 10.1016/j.ensm.2021.12.007 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.201801090 – ident: e_1_2_7_19_3 doi: 10.1039/D1EE01851E – ident: e_1_2_7_2_4 doi: 10.1021/acsnano.2c01571 – ident: e_1_2_7_16_2 doi: 10.1002/adma.202109872 – ident: e_1_2_7_8_3 doi: 10.1016/j.jechem.2022.06.028 – ident: e_1_2_7_18_2 doi: 10.1016/j.nanoen.2018.04.040 – ident: e_1_2_7_17_1 doi: 10.1016/j.ensm.2021.11.010 – ident: e_1_2_7_3_4 doi: 10.1016/j.ensm.2021.09.021 – ident: e_1_2_7_4_2 doi: 10.1002/adma.202007416 – ident: e_1_2_7_6_1 doi: 10.1038/s41560-021-00833-6 – ident: e_1_2_7_3_2 doi: 10.1002/sstr.202200143 – ident: e_1_2_7_1_1 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.202206695 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.8b18209 – ident: e_1_2_7_19_2 doi: 10.1021/jacs.0c07992 – ident: e_1_2_7_17_2 doi: 10.1002/adfm.202205600 – ident: e_1_2_7_4_5 doi: 10.1021/acsenergylett.1c01521 – ident: e_1_2_7_16_1 doi: 10.1021/acsnano.1c04354 |
SSID | ssj0017734 |
Score | 2.681703 |
Snippet | The Zn metal anode is subject to uncontrolled dendrites and parasitic reactions, which often require a big thickness of Zn foil, resulting in excess capacity... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | anti‐side reactions artificial interphase layers Charge transfer Copper Deposition Fluorine high utilization rate Hydrophobicity Materials science Metal foils Thickness ultrathin Zn composite anodes Zinc |
Title | Engineering an Ultrathin and Hydrophobic Composite Zinc Anode with 24 µm Thickness for High‐Performance Zn Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202303466 https://www.proquest.com/docview/2871555033 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dTtswFMctBDfbxQZjaB0f8sUkrgKO7cTJZQVU1bROCKhUcRPZx7ZaFVIERQKueAQegZfgBXgUnoScpE3LpAlpu4sVO0p8bOdv-5yfCfmRpACiuBl4xeMAaYSBdloEShoeaZ66UGDscOd33O7Kn72oNxfFX_Eh6gU37BnleI0dXJur3Rk0VFuPkeSFhBYyRuY2OmyhKjqq-VGhUtW2chyig1fYm1IbGd99W_ztX2kmNecFa_nHaX0mevqulaPJcOd6bHbg7g-M4_98zDL5NJGjtFm1nxWy4PIv5OMcpHCV3MylqM5p9wyBtv1BXiQsbd_ay9FFf2QGQHFsQR8wR08HOdBmPrKO4kIv5fL58fnpnJ70BzDEwZUWWpmij8nL_cPhLHaBnua0In4WE_ivpNs6ONlrB5PzGgIodFkcJJFhKlaeMQ1OQMJsEorC1grwkHbvQuNTkAlLdQjGOuW5TyyPuEul9KlyYo0s5qPcfSPUCis1E15ZBxKkSZg2CsC7hHnjjGqQYGqvDCYwczxT4yyrMMw8wxrN6hptkO06_0WF8fhrzo2p-bNJd77KcFoZRbjj2yC8tOM7T8ma-61Onfr-L4XWyQe8Lh0H-QZZHF9eu81CAI3NFllq7nd-HW-Vjf0Vg0cCdw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BOQAH_isWCviAxCmtYztxclxRVgt0K4R2paqXyB7b2lVLtipbqeXEI_AIvAQv0EfhScgkm-wWCSHB0YkdxR6P_Xk88w3AyyxHlNXLKGiRRsRGGBlvZKSVFYkRuY8lxQ6P9tPhRL07SFpvQoqFafghOoMbaUa9XpOCk0F6Z8UaalygUPIKQ0uVptfhBqX1Jvr83Y8dg1SsdXOxnMbk4hUftLyNXOxcbX91X1qBzXXIWu85g7tg279tXE2Ots8Wdhu__Ebk-F_duQd3loiU9ZspdB-u-fIB3F7jKXwI52slZko2OSZO2-msrAqODS_c6fxkOrczZLS8kBuYZ4ezElm_nDvPyNbLhLr8fvnjExtPZ3hE6yur4DIjN5OfX799WIUvsMOSNaSf1Rn-EUwGb8avh9EyZUOEFTRLoyyxXKc6cG7QS8y4y2JZiVsj5WkPPrYhR5Xx3MRonddBhMyJRPhcqZBrLzdho5yX_jEwJ50yXAbtPCpUNuPGasTgMx6st7oHUSuwApd85pRW47homJhFQSNadCPag1dd_ZOGyeOPNbda-RdLjf5c0MkySejStweiFuRfvlL0dwejrvTkXxq9gJvD8Wiv2Hu7__4p3KLntR-h2IKNxemZf1bhoYV9Xs_4X3t4BP8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BkRAcKH8VCwV8QOKU1rGdODmuuqyWn1YV6kqrXiJ7bGtXLdlV2UrAiUfgEXgJXqCP0idpJtnNbpEQEhyd2FHs8Yw_2zPfALzKckRZvYyCFmlEbISR8UZGWlmRGJH7WFLs8P5BOhiqd6NktBbF3_BDtAdupBm1vSYFn7mwuyINNS5QJHkFoaVK05twS6U8p-QNvY8tgVSsdXOvnMbk4RWPlrSNXOxeb399WVphzXXEWi85_U0wy59tPE1Ods7ndge__cbj-D-9uQ_3FniUdZsJ9ABu-PIh3F1jKXwEX9ZKzJRseEqMtuNJWRUcG3x1Z9PZeGonyMi4kBOYZ8eTElm3nDrP6KSXCXXx8-LXJ3Y0nuAJWVdWgWVGTiaX338croIX2HHJGsrPagf_GIb9N0d7g2iRsCHCCpilUZZYrlMdODfoJWbcZbGshK2RsrQHH9uQo8p4bmK0zusgQuZEInyuVMi1l1uwUU5L_wSYk04ZLoN2HhUqm3FjNWLwGQ_WW92BaCmvAhds5pRU47RoeJhFQSNatCPagddt_VnD4_HHmttL8RcLff5c0L4ySejKtwOiluNfvlJ0e_39tvT0Xxq9hNuHvX7x4e3B-2dwhx7XToRiGzbmZ-f-eQWG5vZFPd-vAG1lA64 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+an+Ultrathin+and+Hydrophobic+Composite+Zinc+Anode+with+24%C2%A0%C2%B5m+Thickness+for+High%E2%80%90Performance+Zn+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Quanyu&rft.au=Wang%2C+Han&rft.au=Yu%2C+Huaming&rft.au=Fu%2C+Meng&rft.date=2023-10-02&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202303466&rft.externalDBID=10.1002%252Fadfm.202303466&rft.externalDocID=ADFM202303466 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |