A Comparative Study of Various Human Activity Recognition Approaches
Human Activity Recognition (HAR) is a vast and exciting topic for researchers and students. HAR aims to recognize activities by observing the actions of subjects and surrounding conditions. This topic also has many significant and futuristic applications and a basis of many automated tasks like 24*7...
Saved in:
Published in | IOP conference series. Materials Science and Engineering Vol. 1131; no. 1; p. 12004 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human Activity Recognition (HAR) is a vast and exciting topic for researchers and students. HAR aims to recognize activities by observing the actions of subjects and surrounding conditions. This topic also has many significant and futuristic applications and a basis of many automated tasks like 24*7 security surveillance, healthcare, laws regulations, automatic vehicle controls, game controls by human motion detection, basically human-computer interaction. This survey paper focuses on reviewing other research papers on sensing technologies used in HAR. This paper has covered distinct research in which researchers collect data from smartphones; some use a surveillance camera system to get video clips. Most of the researchers used videos to train their systems to recognize human activities collected from YouTubes and other video sources. Several sensor-based approaches have also covered in this survey paper to study and predict human activities, such as accelerometer, gyroscope, and many more. Some of the papers also used technologies like a Convolutional neural network (CNN) with spatiotemporal three-dimensional (3D) kernels for model development and then using to integrate it with OpenCV. There are also work done for Alzheimer’s patient in the Healthcare sector, used for their better performance in day-to-day tasks. We will analyze the research using both classic and less commonly known classifiers on distinct datasets available on the UCI Machine Learning Repository. We describe each researcher’s approaches, compare the technologies used, and conclude the adequate technology for Human Activity Recognition. Every research will be discussed in detail in this survey paper to get a brief knowledge of activity recognition. |
---|---|
AbstractList | Human Activity Recognition (HAR) is a vast and exciting topic for researchers and students. HAR aims to recognize activities by observing the actions of subjects and surrounding conditions. This topic also has many significant and futuristic applications and a basis of many automated tasks like 24*7 security surveillance, healthcare, laws regulations, automatic vehicle controls, game controls by human motion detection, basically human-computer interaction. This survey paper focuses on reviewing other research papers on sensing technologies used in HAR. This paper has covered distinct research in which researchers collect data from smartphones; some use a surveillance camera system to get video clips. Most of the researchers used videos to train their systems to recognize human activities collected from YouTubes and other video sources. Several sensor-based approaches have also covered in this survey paper to study and predict human activities, such as accelerometer, gyroscope, and many more. Some of the papers also used technologies like a Convolutional neural network (CNN) with spatiotemporal three-dimensional (3D) kernels for model development and then using to integrate it with OpenCV. There are also work done for Alzheimer’s patient in the Healthcare sector, used for their better performance in day-to-day tasks. We will analyze the research using both classic and less commonly known classifiers on distinct datasets available on the UCI Machine Learning Repository. We describe each researcher’s approaches, compare the technologies used, and conclude the adequate technology for Human Activity Recognition. Every research will be discussed in detail in this survey paper to get a brief knowledge of activity recognition. |
Author | Goel, Dhruv Pradhan, Rahul |
Author_xml | – sequence: 1 givenname: Dhruv surname: Goel fullname: Goel, Dhruv – sequence: 2 givenname: Rahul surname: Pradhan fullname: Pradhan, Rahul |
BookMark | eNqFkE1LAzEQhoNUsK3-Bhc8r5vJfiQ5eCjVWqEg-IW3kOZDU9rNmuwK_ffuUunBi6cZ5n3fmeGZoFHta4PQJeBrwIxlQEuaMs7fM4AcMsgwEIyLEzQ-KqNjz-AMTWLcYFzRosBjdDtL5n7XyCBb922S57bT-8Tb5E0G57uYLLudrJOZ6lXX7pMno_xH7Vrn-2HTBC_Vp4nn6NTKbTQXv3WKXhd3L_Nlunq8f5jPVqkiOSlSQ3UJjBlWrg0zUmmqMcMa07XFvOKac8sKWxKaG02sym0pjZamIgqbCgjkU3R12Nsf_upMbMXGd6HuTwpSQgkV54B7183BpYKPMRgrlGvl8HIbpNsKwGIAJwYkYsAjBnACxAFcn6d_8k1wOxn2_yZ_AE6adBk |
CitedBy_id | crossref_primary_10_2478_jee_2023_0020 |
Cites_doi | 10.1109/34.910878 10.1007/s11263-011-0493-4 10.1145/2398356.2398381 10.1109/TPAMI.2012.24 10.1145/1922649.1922653 10.1007/s11263-012-0594-8 10.1159/000475801 10.1007/s00138-013-0521-1 10.1145/2523819 10.1006/cviu.1998.0744 10.1016/j.patrec.2013.02.006 10.1016/j.imavis.2012.07.003 10.1016/j.cviu.2006.08.002 10.1109/TIFS.2011.2175921 10.1109/TAFFC.2014.2352268 10.1016/j.patcog.2014.04.018 10.1109/TCSVT.2008.2005594 10.1016/j.cviu.2013.01.013 10.1016/j.patrec.2014.04.011 10.1016/j.patcog.2013.10.019 10.1007/s00530-010-0182-0 10.1006/cviu.1998.0716 10.1016/j.patcog.2010.03.016 10.1109/TPAMI.2008.52 10.1109/TMM.2007.906583 10.1109/34.598236 10.1016/j.imavis.2009.11.014 10.1109/TSMCA.2012.2226575 10.1109/JPROC.2010.2057231 10.1109/JPROC.2002.801448 10.1109/TMI.2016.2528162 10.1016/S0031-3203(02)00100-0 10.1109/TPAMI.2014.2303090 10.1109/34.868684 10.1109/TMM.2013.2293060 10.1016/j.cviu.2006.10.019 10.1109/TITS.2009.2030963 10.1155/S111086570321101X 10.1016/j.patcog.2011.12.028 |
ContentType | Journal Article |
Copyright | 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1088/1757-899X/1131/1/012004 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1757-899X |
ExternalDocumentID | 10_1088_1757_899X_1131_1_012004 |
Genre | Conference Proceeding |
GroupedDBID | 1JI 5B3 5PX 5VS AAJIO AAJKP AAYXX ABHWH ABJCF ACAFW ACGFO ACHIP ACIPV AEFHF AEJGL AFKRA AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BENPR BGLVJ CCPQU CEBXE CITATION CJUJL CRLBU EBS EDWGO EQZZN GX1 HCIFZ HH5 IJHAN IOP IZVLO KB. KQ8 M7S N5L O3W OK1 P2P PDBOC PHGZM PHGZT PIMPY PJBAE PTHSS RIN RNS SY9 T37 TR2 W28 8FE 8FG ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2324-e7d5188e85be8eacd7d080d07bf0969d99f84f5273ed2fc3f5aedae62c0e61213 |
IEDL.DBID | BENPR |
ISSN | 1757-8981 |
IngestDate | Fri Jul 25 11:43:01 EDT 2025 Tue Jul 01 01:01:16 EDT 2025 Thu Apr 24 22:49:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2324-e7d5188e85be8eacd7d080d07bf0969d99f84f5273ed2fc3f5aedae62c0e61213 |
Notes | ObjectType-Conference Proceeding-1 SourceType-Scholarly Journals-1 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2515169910?pq-origsite=%requestingapplication% |
PQID | 2515169910 |
PQPubID | 4998670 |
ParticipantIDs | proquest_journals_2515169910 crossref_citationtrail_10_1088_1757_899X_1131_1_012004 crossref_primary_10_1088_1757_899X_1131_1_012004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210401 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 20210401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | IOP conference series. Materials Science and Engineering |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Mahrishi (MSE_1131_1_012004bib98) 2020; 1154 Elgammal (MSE_1131_1_012004bib25) 2002; 90 Iosifidis (MSE_1131_1_012004bib42) 2012; 7 Vrigkas (MSE_1131_1_012004bib51) 2014; 8445 Heldman (MSE_1131_1_012004bib99) 2017; 1 Simonyan (MSE_1131_1_012004bib77) 2014 Shivappa (MSE_1131_1_012004bib73) 2010; 98 Oreifej (MSE_1131_1_012004bib34) 2013 Kong (MSE_1131_1_012004bib54) 2014; 36 Liu (MSE_1131_1_012004bib27) 2010 Oliver (MSE_1131_1_012004bib66) 2000; 22 Sigal (MSE_1131_1_012004bib45) 2012; 98 Chen (MSE_1131_1_012004bib44) 2012 Pirsiavash (MSE_1131_1_012004bib30) 2012 Wang (MSE_1131_1_012004bib28) 2013; 103 Karpathy (MSE_1131_1_012004bib74) 2014 Yan (MSE_1131_1_012004bib29) 2014; 47 Gan (MSE_1131_1_012004bib31) 2015 Atrey (MSE_1131_1_012004bib72) 2010; 16 Li (MSE_1131_1_012004bib38) 2012 Ng (MSE_1131_1_012004bib90) 2015 Liu (MSE_1131_1_012004bib48) 2011; 6974 Lan (MSE_1131_1_012004bib41) 2011 Darrell (MSE_1131_1_012004bib67) 1993 Jaimes (MSE_1131_1_012004bib19) 2007; 108 Rodríguez (MSE_1131_1_012004bib24) 2014; 46 Xie (MSE_1131_1_012004bib89) 2018 Pantic (MSE_1131_1_012004bib20) 2003; 91 Marín-Jiménez (MSE_1131_1_012004bib53) 2014; 25 Li (MSE_1131_1_012004bib58) 2016 Natarajan (MSE_1131_1_012004bib64) 2008 Wang (MSE_1131_1_012004bib10) 2003; 36 Tran (MSE_1131_1_012004bib46) 2012; 45 Feichtenhofer (MSE_1131_1_012004bib102) Matikainen (MSE_1131_1_012004bib56) 2009 Suk (MSE_1131_1_012004bib62) 2010; 43 Wren (MSE_1131_1_012004bib33) 1997; 19 Wang (MSE_1131_1_012004bib88) 2017; 10 Morcos (MSE_1131_1_012004bib100) 2018 Bobick (MSE_1131_1_012004bib69) 2001; 23 Bousmalis (MSE_1131_1_012004bib23) 2013; 31 Gavrila (MSE_1131_1_012004bib8) 1999; 73 Shabani (MSE_1131_1_012004bib37) 2011 Mahrishi (MSE_1131_1_012004bib78) 2020 Wang (MSE_1131_1_012004bib87) 2016 Li (MSE_1131_1_012004bib36) 2010 Gan (MSE_1131_1_012004bib81) 2016 Jiang (MSE_1131_1_012004bib76) 2014 Shotton (MSE_1131_1_012004bib35) 2013; 56 Bobick (MSE_1131_1_012004bib68) 1996 Devlin (MSE_1131_1_012004bib101) 2018; 10 Wu (MSE_1131_1_012004bib47) 2013; 43 Efros (MSE_1131_1_012004bib79) 2003 Rabiner (MSE_1131_1_012004bib5) 1993 Zach (MSE_1131_1_012004bib91) 2007 Gupta (MSE_1131_1_012004bib1) 2007 Mumtaz (MSE_1131_1_012004bib26) 2014 Zhou (MSE_1131_1_012004bib92) 2017 Patron-Perez (MSE_1131_1_012004bib52) 2012; 34 Westerveld (MSE_1131_1_012004bib75) 2003 Candamo (MSE_1131_1_012004bib71) 2010; 11 Aggarwal (MSE_1131_1_012004bib17) 2014; 48 Raptis (MSE_1131_1_012004bib57) 2012 Moeslund (MSE_1131_1_012004bib11) 2006; 104 Aggarwal (MSE_1131_1_012004bib14) 2011; 43 Jainy (MSE_1131_1_012004bib32) 2015 Vail (MSE_1131_1_012004bib59) 2007 Pantic (MSE_1131_1_012004bib21) 2006 Ye (MSE_1131_1_012004bib16) 2013; 8200 Tran (MSE_1131_1_012004bib86) 2015 Zolfaghari (MSE_1131_1_012004bib93) 2018 Feichtenhofer (MSE_1131_1_012004bib80) 2016 Li (MSE_1131_1_012004bib39) 2012 Wang (MSE_1131_1_012004bib55) 2014; 16 Poppe (MSE_1131_1_012004bib13) 2010; 28 Aggarwal (MSE_1131_1_012004bib9) 1999; 73 Zeng (MSE_1131_1_012004bib22) 2009; 31 Vrigkas (MSE_1131_1_012004bib40) 2013 Salem (MSE_1131_1_012004bib97) 2018 Blank (MSE_1131_1_012004bib3) 2005; 1 Turaga (MSE_1131_1_012004bib12) 2008; 18 Guo (MSE_1131_1_012004bib18) 2014; 47 Gan (MSE_1131_1_012004bib82) 2016 Feng (MSE_1131_1_012004bib94) 2019 Salem (MSE_1131_1_012004bib96) 2018 Chen (MSE_1131_1_012004bib15) 2013; 34 Sargin (MSE_1131_1_012004bib70) 2007; 9 Shin (MSE_1131_1_012004bib95) 2016; 35 Rabiner (MSE_1131_1_012004bib6) 1986; 3 Srivastava (MSE_1131_1_012004bib85) 2015 Krizhevsky (MSE_1131_1_012004bib7) 2012 Schüldt (MSE_1131_1_012004bib61) 2004 Karpathy (MSE_1131_1_012004bib84) 2014 Morariu (MSE_1131_1_012004bib43) 2011 Yamato (MSE_1131_1_012004bib63) 1992 Chaquet (MSE_1131_1_012004bib2) 2013; 117 Martinez (MSE_1131_1_012004bib49) 2014; 5 Girdhar (MSE_1131_1_012004bib83) 2017; 2 Vapnik (MSE_1131_1_012004bib60) 1996; 9 Song (MSE_1131_1_012004bib50) 2012 Hongeng (MSE_1131_1_012004bib65) 2003 Laptev (MSE_1131_1_012004bib4) 2003; 1 |
References_xml | – volume: 23 start-page: 257 year: 2001 ident: MSE_1131_1_012004bib69 article-title: The recognition of humanmovement using temporal templates publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.910878 – start-page: 6201 ident: MSE_1131_1_012004bib102 – start-page: 1 year: 2008 ident: MSE_1131_1_012004bib64 – volume: 98 start-page: 15 year: 2012 ident: MSE_1131_1_012004bib45 article-title: Loose-limbed people: estimating 3D human pose and motion using non-parametric belief propagation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-011-0493-4 – start-page: 307 year: 1996 ident: MSE_1131_1_012004bib68 – volume: 56 start-page: 116 year: 2013 ident: MSE_1131_1_012004bib35 article-title: Real-time human pose recognition in parts from single depth images publication-title: Communications of the ACM doi: 10.1145/2398356.2398381 – start-page: 112 year: 2013 ident: MSE_1131_1_012004bib40 – year: 2018 ident: MSE_1131_1_012004bib93 – year: 2020 ident: MSE_1131_1_012004bib78 – year: 2017 ident: MSE_1131_1_012004bib92 – volume: 3 start-page: 4 year: 1986 ident: MSE_1131_1_012004bib6 – volume: 34 start-page: 2441 year: 2012 ident: MSE_1131_1_012004bib52 article-title: Structured learning of human interactions in TV shows publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.24 – volume: 8200 start-page: 149 year: 2013 ident: MSE_1131_1_012004bib16 – volume: 43 start-page: 1 year: 2011 ident: MSE_1131_1_012004bib14 article-title: Human activity analysis: a review publication-title: ACM Comput. Surv. doi: 10.1145/1922649.1922653 – start-page: 1 year: 2007 ident: MSE_1131_1_012004bib1 – volume: 103 start-page: 60 year: 2013 ident: MSE_1131_1_012004bib28 article-title: Dense trajectories and motion boundary descriptors for action recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0594-8 – volume: 1 start-page: 43 year: 2017 ident: MSE_1131_1_012004bib99 article-title: Telehealth Management of Parkinson’s Disease Using Wearable Sensors: an Exploratory Study publication-title: Digital biomarkers doi: 10.1159/000475801 – start-page: 1725 year: 2014 ident: MSE_1131_1_012004bib84 – volume: 25 start-page: 71 year: 2014 ident: MSE_1131_1_012004bib53 article-title: Human interaction categorization by using audio-visual cues publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-013-0521-1 – start-page: 923 year: 2016 ident: MSE_1131_1_012004bib82 – start-page: 1 year: 2018 ident: MSE_1131_1_012004bib97 – start-page: 335 year: 1993 ident: MSE_1131_1_012004bib67 – start-page: 4489 year: 2015 ident: MSE_1131_1_012004bib86 – start-page: 5732 year: 2018 ident: MSE_1131_1_012004bib100 – volume: 46 start-page: 1 year: 2014 ident: MSE_1131_1_012004bib24 article-title: A survey on ontologies for human behaviour recognition publication-title: ACM Comput. Surv. doi: 10.1145/2523819 – year: 2003 ident: MSE_1131_1_012004bib79 – start-page: 239 year: 2006 ident: MSE_1131_1_012004bib21 – start-page: 2847 year: 2012 ident: MSE_1131_1_012004bib30 – start-page: 1455 year: 2003 ident: MSE_1131_1_012004bib65 – volume: 73 start-page: 428 year: 1999 ident: MSE_1131_1_012004bib9 publication-title: Human motion analysis: a review. Comput. Vis. Image Understand doi: 10.1006/cviu.1998.0744 – volume: 6974 start-page: 195 year: 2011 ident: MSE_1131_1_012004bib48 – volume: 34 start-page: 1995 year: 2013 ident: MSE_1131_1_012004bib15 article-title: A survey of human motion analysis using depth imagery publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2013.02.006 – volume: 31 start-page: 203 year: 2013 ident: MSE_1131_1_012004bib23 article-title: Towards the automatic detection of spontaneous agreement and disagreement based on nonverbal behaviour: a survey of related cues, databases, and tools publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2012.07.003 – volume: 104 start-page: 90 year: 2006 ident: MSE_1131_1_012004bib11 article-title: A survey of advances in visionbased human motion capture and analysis publication-title: Comput. Vis. Image Understand doi: 10.1016/j.cviu.2006.08.002 – volume: 10 year: 2017 ident: MSE_1131_1_012004bib88 publication-title: Non-local neural networks – volume: 7 start-page: 530 year: 2012 ident: MSE_1131_1_012004bib42 article-title: Activity-based person identification using fuzzy representation and discriminant learning publication-title: IEEE Trans. Inform. Forensics Secur. doi: 10.1109/TIFS.2011.2175921 – start-page: 1776 year: 2014 ident: MSE_1131_1_012004bib76 – start-page: 2855 year: 2012 ident: MSE_1131_1_012004bib38 – start-page: 1 year: 2018 ident: MSE_1131_1_012004bib96 – start-page: 1242 year: 2012 ident: MSE_1131_1_012004bib57 – start-page: 235 year: 2007 ident: MSE_1131_1_012004bib59 – volume: 5 start-page: 314 year: 2014 ident: MSE_1131_1_012004bib49 article-title: Don’t classify ratings of affect; rank them! publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2014.2352268 – volume: 1154 year: 2020 ident: MSE_1131_1_012004bib98 – start-page: 1362 year: 2012 ident: MSE_1131_1_012004bib39 – volume: 47 start-page: 3343 year: 2014 ident: MSE_1131_1_012004bib18 article-title: A survey on still image based human action recognition publication-title: Pattern Recognit doi: 10.1016/j.patcog.2014.04.018 – start-page: 1951 year: 2016 ident: MSE_1131_1_012004bib58 – start-page: 46 year: 2015 ident: MSE_1131_1_012004bib32 – volume: 18 start-page: 1473 year: 2008 ident: MSE_1131_1_012004bib12 article-title: Machine recognition of human activities: a survey publication-title: Proc. IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2008.2005594 – start-page: 1274 year: 2012 ident: MSE_1131_1_012004bib44 – volume: 117 start-page: 633 year: 2013 ident: MSE_1131_1_012004bib2 article-title: A survey of video datasets for human action and activity recognition publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2013.01.013 – start-page: 112 year: 2011 ident: MSE_1131_1_012004bib37 – volume: 10 year: 2018 ident: MSE_1131_1_012004bib101 publication-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding – volume: 48 start-page: 70 year: 2014 ident: MSE_1131_1_012004bib17 article-title: Human activity recognition from 3D data: a review publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.04.011 – start-page: 27 year: 2012 ident: MSE_1131_1_012004bib50 – start-page: 9 year: 2010 ident: MSE_1131_1_012004bib36 – start-page: 4694 year: 2015 ident: MSE_1131_1_012004bib90 – volume: 47 start-page: 1626 year: 2014 ident: MSE_1131_1_012004bib29 article-title: Modeling local behaviour for predicting social interactions towards human tracking publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.10.019 – volume: 16 start-page: 345 year: 2010 ident: MSE_1131_1_012004bib72 article-title: Multimodal fusion for multimedia analysis: a survey publication-title: Multimed. Syst. doi: 10.1007/s00530-010-0182-0 – start-page: 1725 year: 2014 ident: MSE_1131_1_012004bib74 – volume: 73 start-page: 82 year: 1999 ident: MSE_1131_1_012004bib8 publication-title: The visual analysis of human movement: a survey. Comput. Vis. Image Understand doi: 10.1006/cviu.1998.0716 – volume: 43 start-page: 3059 year: 2010 ident: MSE_1131_1_012004bib62 article-title: Hand gesture recognition based on dynamic Bayesian network framework publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.03.016 – volume: 2 start-page: 3 year: 2017 ident: MSE_1131_1_012004bib83 article-title: Actionvlad: Learning spatio-temporal aggregation for action classification publication-title: CVPR – volume: 31 start-page: 39 year: 2009 ident: MSE_1131_1_012004bib22 article-title: A survey of affect recognition methods: audio, visual, and spontaneous expressions publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.52 – start-page: 1933 year: 2016 ident: MSE_1131_1_012004bib80 – start-page: 368 year: 2014 ident: MSE_1131_1_012004bib26 – volume: 9 start-page: 1396 year: 2007 ident: MSE_1131_1_012004bib70 article-title: Audiovisual synchronization and fusion using canonical correlation analysis publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2007.906583 – volume: 19 start-page: 780 year: 1997 ident: MSE_1131_1_012004bib33 article-title: Pfinder: real-time tracking of the human body publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.598236 – volume: 28 start-page: 976 year: 2010 ident: MSE_1131_1_012004bib13 article-title: A survey on vision-based human action recognition publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2009.11.014 – volume: 43 start-page: 875 year: 2013 ident: MSE_1131_1_012004bib47 article-title: Realistic human action recognition with multimodal feature selection and fusion publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMCA.2012.2226575 – volume: 98 start-page: 1692 year: 2010 ident: MSE_1131_1_012004bib73 article-title: Audiovisual information fusion in human-computer interfaces and intelligent environments: a survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2057231 – start-page: 305 year: 2018 ident: MSE_1131_1_012004bib89 – start-page: 20 year: 2016 ident: MSE_1131_1_012004bib87 – volume: 1 start-page: 432 year: 2003 ident: MSE_1131_1_012004bib4 – start-page: 514 year: 2009 ident: MSE_1131_1_012004bib56 – volume: 90 start-page: 1151 year: 2002 ident: MSE_1131_1_012004bib25 article-title: Background and foreground modeling using nonparametric kernel density for visual surveillance publication-title: Proc. IEEE doi: 10.1109/JPROC.2002.801448 – start-page: 849 year: 2016 ident: MSE_1131_1_012004bib81 – volume: 35 start-page: 1285 year: 2016 ident: MSE_1131_1_012004bib95 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2016.2528162 – start-page: 1398 year: 2010 ident: MSE_1131_1_012004bib27 – volume: 9 start-page: 841 year: 1996 ident: MSE_1131_1_012004bib60 – volume: 36 start-page: 585 year: 2003 ident: MSE_1131_1_012004bib10 article-title: Recent developments in human motion analysis publication-title: Pattern Recognit doi: 10.1016/S0031-3203(02)00100-0 – volume: 91 start-page: 1370 year: 2003 ident: MSE_1131_1_012004bib20 – start-page: 568 year: 2014 ident: MSE_1131_1_012004bib77 – volume: 36 start-page: 1775 year: 2014 ident: MSE_1131_1_012004bib54 article-title: Interactive phrases: semantic descriptions for human interaction recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2303090 – start-page: 214 year: 2007 ident: MSE_1131_1_012004bib91 – start-page: 379 year: 1992 ident: MSE_1131_1_012004bib63 – year: 1993 ident: MSE_1131_1_012004bib5 – start-page: 716 year: 2013 ident: MSE_1131_1_012004bib34 – volume: 22 start-page: 831 year: 2000 ident: MSE_1131_1_012004bib66 article-title: A Bayesian computer vision system for modeling human interactions publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.868684 – year: 2019 ident: MSE_1131_1_012004bib94 – start-page: 3289 year: 2011 ident: MSE_1131_1_012004bib43 – start-page: 843 year: 2015 ident: MSE_1131_1_012004bib85 – volume: 16 start-page: 289 year: 2014 ident: MSE_1131_1_012004bib55 article-title: Semisupervised multiple feature analysis for action recognition publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2013.2293060 – start-page: 32 year: 2004 ident: MSE_1131_1_012004bib61 – volume: 108 start-page: 116 year: 2007 ident: MSE_1131_1_012004bib19 article-title: Multimodal human-computer interaction: a survey publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2006.10.019 – volume: 11 start-page: 206 year: 2010 ident: MSE_1131_1_012004bib71 article-title: Understanding transit scenes: a survey on human behaviour-recognition algorithms publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2009.2030963 – start-page: 2568 year: 2015 ident: MSE_1131_1_012004bib31 – start-page: 186 year: 2003 ident: MSE_1131_1_012004bib75 article-title: A probabilistic multimedia retrieval model and its evaluation doi: 10.1155/S111086570321101X – volume: 1 start-page: 1395 year: 2005 ident: MSE_1131_1_012004bib3 – start-page: 2003 year: 2011 ident: MSE_1131_1_012004bib41 – start-page: 1097 year: 2012 ident: MSE_1131_1_012004bib7 – volume: 8445 start-page: 95 year: 2014 ident: MSE_1131_1_012004bib51 – volume: 45 start-page: 2562 year: 2012 ident: MSE_1131_1_012004bib46 article-title: Part-based motion descriptor image for human action recognition publication-title: Pattern Recognit doi: 10.1016/j.patcog.2011.12.028 |
SSID | ssj0067440 |
Score | 2.1728868 |
Snippet | Human Activity Recognition (HAR) is a vast and exciting topic for researchers and students. HAR aims to recognize activities by observing the actions of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 12004 |
SubjectTerms | Accelerometers Artificial neural networks Automatic control Comparative studies Data collection Health care Human activity recognition Human motion Machine learning Motion perception Moving object recognition Scientific papers Surveillance Three dimensional models |
Title | A Comparative Study of Various Human Activity Recognition Approaches |
URI | https://www.proquest.com/docview/2515169910 |
Volume | 1131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV09T8MwELVou8CA-BSFUnlgjRKncWpPqJSWgkSpKoq6WXVsT6gptAz8e-4Sh8ICYxw5w9l5d-c7v0fIleU2XQihA5noOEhszLFI6II0NsxGlsdJoVryOE5Hs-Rhzuf-wG3t2yorTCyA2uQZnpGH4IexpAPe7Xr1FqBqFFZXvYRGjTQAggUkX42bwXgyrbA4Rfq74kokByyWglUdXpD2-TE5DxnrsJCFeI3U67V9-6ff8Fz4nOEB2ffBIu2Vq3tIduzyiOz9oBA8Jrc92t8SeFNsC_ykuaMvkANDUk-LQ3ray0qRCDqt-oVyGPR04nZ9QmbDwXN_FHhlhCDDCCiwXYNEalZwbQVAp-kaiPxM1NUOUhJppHQiccitZk3sso7jC2sWNo2zyCJlWOeU1Jf50p4RyqXgQkLUAJ9MtBNYlsucNmKhExlr1iRpZQ-VedpwVK94VUX5WgiFhlRoSIWGVEyVhmyS6HviqmTO-H9KqzK48r_SWm0X_vzv1xdkN8aGk6KtpkXqm_cPewkRw0a3SU0M79p-c8DT_dPkC7oxvHo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMgAD4ineeIAxauPEqT0gVFFKS4EBAepm6vg8oQYoCPVP8Rvx5cFjgYnVlj18Od-dc-fvAzhAgclIShOo2PAgRi6oSOiChNsQmyh4nKuWXF4lvdv4fCiGNXiv3sJQW2XlE3NHbbOU_pE3fBymko6PbsePTwGpRlF1tZLQKMxigNM3f2WbHPU7_vsect49vTnpBaWqQJBS9hBgyxIJGUphUHq3Y1vWZ0222TLOp_PKKuVk7IiXDC13aeTECO0IE542kei2Ir_vDMzGUaToRMnuWeX5EyLbyx9gCu_5lQyrfjJ_ySzH1LARhlHYCBv0aLVUh_uMhj-DQR7hukuwWKamrF3Y0jLUcLwCC98IC1eh02YnX3ThjJoQpyxz7M7fuLPXCctLAqydFpIU7LrqTsr8YElejpM1uP0XxNahPs7GuAFMKCmk8jmK3zI2TlIRMHXGypGJFTfhJiQVHjotScpJK-NB58VyKTUBqQlITUDqUBdAbkLzc-FjwdPx95KdCnBdHtyJ_jKzrd-n92Gud3N5oS_6V4NtmOfU6pI39OxA_eX5FXd9rvJi9nIDYXD_3xb5AbdI9vc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Various+Human+Activity+Recognition+Approaches&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Goel%2C+Dhruv&rft.au=Pradhan%2C+Rahul&rft.date=2021-04-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=1131&rft.issue=1&rft.spage=12004&rft_id=info:doi/10.1088%2F1757-899X%2F1131%2F1%2F012004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_1131_1_012004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon |