Borane‐Catalyzed Chemoselective and Enantioselective Reduction of 2‐Vinyl‐Substituted Pyridines
Herein, we report that highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been achieved for the first time. The reaction, which uses chiral spiro‐bicyclic bisboranes as catalysts and HBpin and an acidic amide as reducing reagents, proceeds through a cascade pro...
Saved in:
Published in | Angewandte Chemie Vol. 132; no. 42; pp. 18610 - 18614 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
12.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-8249 1521-3757 |
DOI | 10.1002/ange.202007352 |
Cover
Loading…
Abstract | Herein, we report that highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been achieved for the first time. The reaction, which uses chiral spiro‐bicyclic bisboranes as catalysts and HBpin and an acidic amide as reducing reagents, proceeds through a cascade process involving 1,4‐hydroboration followed by transfer hydrogenation of a dihydropyridine intermediate. The retained double bond in the reduction products permits their conversion to natural products and other useful heterocyclic compounds by simple transformations.
A protocol for Lewis acid‐catalyzed highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been developed. The reactions were catalyzed by chiral spiro‐bicyclic bisboranes and occurred under mild reaction conditions with high turnover numbers. |
---|---|
AbstractList | Herein, we report that highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been achieved for the first time. The reaction, which uses chiral spiro‐bicyclic bisboranes as catalysts and HBpin and an acidic amide as reducing reagents, proceeds through a cascade process involving 1,4‐hydroboration followed by transfer hydrogenation of a dihydropyridine intermediate. The retained double bond in the reduction products permits their conversion to natural products and other useful heterocyclic compounds by simple transformations. Herein, we report that highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been achieved for the first time. The reaction, which uses chiral spiro‐bicyclic bisboranes as catalysts and HBpin and an acidic amide as reducing reagents, proceeds through a cascade process involving 1,4‐hydroboration followed by transfer hydrogenation of a dihydropyridine intermediate. The retained double bond in the reduction products permits their conversion to natural products and other useful heterocyclic compounds by simple transformations. A protocol for Lewis acid‐catalyzed highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been developed. The reactions were catalyzed by chiral spiro‐bicyclic bisboranes and occurred under mild reaction conditions with high turnover numbers. |
Author | Liu, Ning Tian, Jun‐Jie Hu, Chen‐Yu Yang, Zhao‐Ying Tu, Xian‐Shuang Liang, Xin‐Shen Li, Xiang Wang, Xiao‐Chen |
Author_xml | – sequence: 1 givenname: Jun‐Jie surname: Tian fullname: Tian, Jun‐Jie organization: Nankai University – sequence: 2 givenname: Zhao‐Ying surname: Yang fullname: Yang, Zhao‐Ying organization: Nankai University – sequence: 3 givenname: Xin‐Shen surname: Liang fullname: Liang, Xin‐Shen organization: Nankai University – sequence: 4 givenname: Ning surname: Liu fullname: Liu, Ning organization: Nankai University – sequence: 5 givenname: Chen‐Yu surname: Hu fullname: Hu, Chen‐Yu organization: Nankai University – sequence: 6 givenname: Xian‐Shuang surname: Tu fullname: Tu, Xian‐Shuang organization: Nankai University – sequence: 7 givenname: Xiang surname: Li fullname: Li, Xiang organization: Nankai University – sequence: 8 givenname: Xiao‐Chen orcidid: 0000-0001-5863-0804 surname: Wang fullname: Wang, Xiao‐Chen email: xcwang@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkF9LwzAUxYMouE1ffS743Jncpk3zOMucwlDx32tJ21QzunQmqVKf_Ah-Rj-JGRMVQXy6h8v5ncs9Q7StWy0ROiB4TDCGI6Hv5RgwYMyiGLbQgMRAwojFbBsNMKY0TIHyXTS0doExToDxAZLHrRFavr--ZcKJpn-RVZA9yGVrZSNLp55kIHQVTLXQTv1YXsmq86rVQVsH4PE7pfvGz-uusE65zvmgy96oSmlp99BOLRor9z_nCN2eTG-y03B-MTvLJvOwhAggpCzlRcR4QQtR8ySpofSS0YrGIChhXKaijCqWYEEpSWsq4rooWUUxSQAIj0bocJO7Mu1jJ63LF21ntD-ZA6UpxJxg8C66cZWmtdbIOi-VE-tnnBGqyQnO14Xm60Lzr0I9Nv6FrYxaCtP_DfAN8Kwa2f_jzifns-k3-wESX463 |
CitedBy_id | crossref_primary_10_1002_ange_202106168 crossref_primary_10_1002_chem_202101414 crossref_primary_10_1002_ange_202216894 crossref_primary_10_1002_anie_202106168 crossref_primary_10_1002_anie_202216894 crossref_primary_10_1002_ange_202213281 crossref_primary_10_1002_anie_202213281 crossref_primary_10_3390_catal12010005 |
Cites_doi | 10.1021/acscatal.5b02625 10.1002/anie.201702304 10.1021/jo0108865 10.1002/anie.201505974 10.1021/ja0525298 10.1002/ange.201900907 10.1021/acscatal.5b00428 10.1039/C4CS00451E 10.1021/ja512658m 10.1038/nchem.2063 10.1021/ja409344w 10.1002/ange.200701158 10.1002/ange.200800935 10.1021/jacs.5b03147 10.1002/anie.201806877 10.1002/ange.201904833 10.1002/anie.201004525 10.1002/adsc.201100206 10.1002/anie.201406762 10.1002/ange.201409800 10.1021/cr200328h 10.1039/b801806e 10.1021/acs.orglett.5b01240 10.1039/c002668a 10.1016/S0040-4039(98)02273-4 10.1002/ange.201814471 10.1039/C5QO00069F 10.1002/anie.200701158 10.1021/ja4025808 10.1021/acs.orglett.5b03307 10.1246/cl.130943 10.1126/science.aaf7229 10.1002/ange.201205187 10.1002/anie.201904833 10.1002/anie.201808289 10.1002/anie.201409800 10.1021/jm501100b 10.1039/C5SC03540F 10.1002/anie.201814471 10.1021/ja961536g 10.1021/acs.accounts.7b00530 10.1016/j.tetlet.2008.05.138 10.1002/ange.200801675 10.1002/ange.201505974 10.1007/128_2013_480 10.1016/j.tetlet.2010.09.079 10.1002/ange.201406762 10.1021/ic901726b 10.1021/jo991828a 10.1021/acs.organomet.8b00028 10.1002/ange.201702304 10.1021/jacs.8b12689 10.1002/anie.201205187 10.1021/acs.orglett.7b02502 10.1021/ja105772z 10.1002/ange.201808289 10.1021/ja809125r 10.1021/jacs.7b09754 10.1002/anie.201900907 10.1021/ja036266y 10.1002/anie.200801675 10.1002/anie.200800935 10.1021/ol047351t 10.1021/jacs.6b07245 10.1021/jacs.8b05176 10.1002/ange.201806877 10.1002/ange.201004525 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/ange.202007352 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3757 |
EndPage | 18614 |
ExternalDocumentID | 10_1002_ange_202007352 ANGE202007352 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21871147, 91956106, 21602114 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCUC ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D Q.N Q11 QB0 QRW R.K RGC ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 UPT V2E W8V W99 WBFHL WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c2322-4789b379b4baf966f2cb4b74d452a4179e8ac3d760a4418f4a5fbc7d401622193 |
IEDL.DBID | DR2 |
ISSN | 0044-8249 |
IngestDate | Fri Jul 25 10:35:22 EDT 2025 Tue Jul 01 01:48:40 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Wed Jan 22 16:33:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2322-4789b379b4baf966f2cb4b74d452a4179e8ac3d760a4418f4a5fbc7d401622193 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5863-0804 |
PQID | 2448259102 |
PQPubID | 866336 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2448259102 crossref_citationtrail_10_1002_ange_202007352 crossref_primary_10_1002_ange_202007352 wiley_primary_10_1002_ange_202007352_ANGE202007352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 12, 2020 |
PublicationDateYYYYMMDD | 2020-10-12 |
PublicationDate_xml | – month: 10 year: 2020 text: October 12, 2020 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2015; 2 2015; 17 2015; 5 2018; 140 2000; 65 2013; 343 2008 2010 2010; 49 122 1999; 40 2017 2017; 56 129 2008 2008; 47 120 2009; 131 2001; 66 2019; 141 2019 2019; 58 131 2011; 353 2009; 48 2014; 43 2016; 6 2016; 7 2012; 112 2015; 137 2012 2012; 51 124 2018 2018; 57 130 2005; 127 2008; 49 2015; 44 2007 2007; 46 119 2010; 132 2016; 354 2015 2015; 54 127 2005; 7 2014; 57 2013; 135 2017; 19 2016; 138 2018; 51 2003; 125 2014; 6 1996; 118 2010; 51 2018; 37 2010; 8 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_6_1 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_20_3 e_1_2_2_49_3 e_1_2_2_20_2 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_64_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_66_2 e_1_2_2_45_2 e_1_2_2_8_3 e_1_2_2_26_1 e_1_2_2_45_3 e_1_2_2_47_1 e_1_2_2_60_1 e_1_2_2_13_2 e_1_2_2_59_2 e_1_2_2_38_2 e_1_2_2_11_1 e_1_2_2_38_3 e_1_2_2_51_2 e_1_2_2_30_2 e_1_2_2_19_1 e_1_2_2_53_1 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_55_1 e_1_2_2_34_2 e_1_2_2_57_2 e_1_2_2_15_1 e_1_2_2_34_3 e_1_2_2_36_1 e_1_2_2_3_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_23_1 e_1_2_2_5_3 e_1_2_2_7_1 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_40_1 e_1_2_2_42_2 e_1_2_2_63_2 e_1_2_2_29_1 e_1_2_2_67_1 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_65_2 e_1_2_2_9_3 e_1_2_2_25_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_61_1 e_1_2_2_58_3 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_58_2 e_1_2_2_37_3 e_1_2_2_39_1 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_3 e_1_2_2_52_1 e_1_2_2_50_2 e_1_2_2_54_1 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_18_1 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 e_1_2_2_56_2 |
References_xml | – volume: 57 130 start-page: 12111 12287 year: 2018 2018 end-page: 12115 12291 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1514 year: 2016 end-page: 1520 publication-title: Chem. Sci. – volume: 127 start-page: 8966 year: 2005 end-page: 8967 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 284 year: 2014 end-page: 286 publication-title: Chem. Lett. – volume: 49 start-page: 4922 year: 2008 end-page: 4924 publication-title: Tetrahedron Lett. – volume: 112 start-page: 2557 year: 2012 end-page: 2590 publication-title: Chem. Rev. – volume: 56 129 start-page: 5817 5911 year: 2017 2017 end-page: 5820 5914 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 66 start-page: 9056 year: 2001 end-page: 9062 publication-title: J. Org. Chem. – volume: 51 start-page: 6262 year: 2010 end-page: 6264 publication-title: Tetrahedron Lett. – volume: 57 130 start-page: 15096 15316 year: 2018 2018 end-page: 15100 15320 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 125 start-page: 15878 year: 2003 end-page: 15892 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 652 year: 2018 end-page: 656 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 4988 year: 2017 end-page: 4991 publication-title: Org. Lett. – volume: 17 start-page: 2816 year: 2015 end-page: 2819 publication-title: Org. Lett. – volume: 58 131 start-page: 4664 4712 year: 2019 2019 end-page: 4668 4716 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 12761 12975 year: 2014 2014 end-page: 12764 12978 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 6400 6498 year: 2015 2015 end-page: 6441 6541 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 132 start-page: 12216 year: 2010 end-page: 12217 publication-title: J. Am. Chem. Soc. – volume: 343 start-page: 145 year: 2013 end-page: 190 publication-title: Top. Curr. Chem. – start-page: 2130 year: 2008 end-page: 2131 publication-title: Chem. Commun. – volume: 58 131 start-page: 10460 10570 year: 2019 2019 end-page: 10476 10586 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1239 year: 2005 end-page: 1242 publication-title: Org. Lett. – volume: 354 year: 2016 publication-title: Science – volume: 118 start-page: 9440 year: 1996 end-page: 9441 publication-title: J. Am. Chem. Soc. – volume: 51 124 start-page: 10181 10328 year: 2012 2012 end-page: 10184 10331 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 3464 year: 2010 end-page: 3471 publication-title: Org. Biomol. Chem. – volume: 58 131 start-page: 9994 10099 year: 2019 2019 end-page: 9997 10102 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 4916 year: 2015 end-page: 4919 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 12956 year: 2016 end-page: 12962 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 2029 year: 2009 end-page: 2036 publication-title: J. Am. Chem. Soc. – volume: 40 start-page: 217 year: 1999 end-page: 218 publication-title: Tetrahedron Lett. – volume: 49 122 start-page: 9475 9665 year: 2010 2010 end-page: 9478 9668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 6266 year: 2015 end-page: 6269 publication-title: Org. Lett. – volume: 47 120 start-page: 6001 6090 year: 2008 2008 end-page: 6003 6092 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 3238 year: 2015 end-page: 3259 publication-title: ACS Catal. – volume: 2 start-page: 586 year: 2015 end-page: 589 publication-title: Org. Chem. Front. – volume: 137 start-page: 4038 year: 2015 end-page: 4041 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 10466 year: 2009 end-page: 10474 publication-title: Inorg. Chem. – volume: 135 start-page: 17537 year: 2013 end-page: 17546 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 11666 11832 year: 2015 2015 end-page: 11671 11837 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 8119 year: 2018 end-page: 8123 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 2368 year: 2016 end-page: 2371 publication-title: ACS Catal. – volume: 141 start-page: 3356 year: 2019 end-page: 3360 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 6810 year: 2013 end-page: 6813 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 983 year: 2014 end-page: 988 publication-title: Nat. Chem. – volume: 51 start-page: 191 year: 2018 end-page: 201 publication-title: Acc. Chem. Res. – volume: 37 start-page: 841 year: 2018 end-page: 844 publication-title: Organometallics – volume: 44 start-page: 2202 year: 2015 end-page: 2220 publication-title: Chem. Soc. Rev. – volume: 65 start-page: 3090 year: 2000 end-page: 3098 publication-title: J. Org. Chem. – volume: 57 start-page: 10257 year: 2014 end-page: 10274 publication-title: J. Med. Chem. – volume: 353 start-page: 2093 year: 2011 end-page: 2110 publication-title: Adv. Synth. Catal. – volume: 46 119 start-page: 4562 4646 year: 2007 2007 end-page: 4565 4649 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 47 120 start-page: 5997 6086 year: 2008 2008 end-page: 6000 6089 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – ident: e_1_2_2_10_2 doi: 10.1021/acscatal.5b02625 – ident: e_1_2_2_39_1 doi: 10.1002/anie.201702304 – ident: e_1_2_2_60_1 doi: 10.1021/jo0108865 – ident: e_1_2_2_50_2 doi: 10.1002/anie.201505974 – ident: e_1_2_2_6_1 doi: 10.1021/ja0525298 – ident: e_1_2_2_38_3 doi: 10.1002/ange.201900907 – ident: e_1_2_2_64_2 doi: 10.1021/acscatal.5b00428 – ident: e_1_2_2_21_2 doi: 10.1039/C4CS00451E – ident: e_1_2_2_28_2 doi: 10.1021/ja512658m – ident: e_1_2_2_44_2 doi: 10.1038/nchem.2063 – ident: e_1_2_2_62_1 – ident: e_1_2_2_23_1 – ident: e_1_2_2_46_2 doi: 10.1021/ja409344w – ident: e_1_2_2_18_2 doi: 10.1002/ange.200701158 – ident: e_1_2_2_49_3 doi: 10.1002/ange.200800935 – ident: e_1_2_2_63_2 doi: 10.1021/jacs.5b03147 – ident: e_1_2_2_15_1 – ident: e_1_2_2_29_1 – ident: e_1_2_2_34_2 doi: 10.1002/anie.201806877 – ident: e_1_2_2_58_3 doi: 10.1002/ange.201904833 – ident: e_1_2_2_25_2 doi: 10.1002/anie.201004525 – ident: e_1_2_2_11_1 – ident: e_1_2_2_27_2 doi: 10.1002/adsc.201100206 – ident: e_1_2_2_9_2 doi: 10.1002/anie.201406762 – ident: e_1_2_2_20_3 doi: 10.1002/ange.201409800 – ident: e_1_2_2_3_2 doi: 10.1021/cr200328h – ident: e_1_2_2_36_1 – ident: e_1_2_2_24_2 doi: 10.1039/b801806e – ident: e_1_2_2_31_2 doi: 10.1021/acs.orglett.5b01240 – ident: e_1_2_2_17_2 doi: 10.1039/c002668a – ident: e_1_2_2_53_1 doi: 10.1016/S0040-4039(98)02273-4 – ident: e_1_2_2_5_3 doi: 10.1002/ange.201814471 – ident: e_1_2_2_13_2 doi: 10.1039/C5QO00069F – ident: e_1_2_2_55_1 – ident: e_1_2_2_41_1 – ident: e_1_2_2_18_1 doi: 10.1002/anie.200701158 – ident: e_1_2_2_30_2 doi: 10.1021/ja4025808 – ident: e_1_2_2_32_2 doi: 10.1021/acs.orglett.5b03307 – ident: e_1_2_2_12_2 doi: 10.1246/cl.130943 – ident: e_1_2_2_47_1 – ident: e_1_2_2_22_2 doi: 10.1126/science.aaf7229 – ident: e_1_2_2_8_3 doi: 10.1002/ange.201205187 – ident: e_1_2_2_7_1 – ident: e_1_2_2_58_2 doi: 10.1002/anie.201904833 – ident: e_1_2_2_37_2 doi: 10.1002/anie.201808289 – ident: e_1_2_2_20_2 doi: 10.1002/anie.201409800 – ident: e_1_2_2_1_1 doi: 10.1021/jm501100b – ident: e_1_2_2_54_1 doi: 10.1039/C5SC03540F – ident: e_1_2_2_5_2 doi: 10.1002/anie.201814471 – ident: e_1_2_2_42_2 doi: 10.1021/ja961536g – ident: e_1_2_2_35_2 doi: 10.1021/acs.accounts.7b00530 – ident: e_1_2_2_16_2 doi: 10.1016/j.tetlet.2008.05.138 – ident: e_1_2_2_45_3 doi: 10.1002/ange.200801675 – ident: e_1_2_2_50_3 doi: 10.1002/ange.201505974 – ident: e_1_2_2_4_2 doi: 10.1007/128_2013_480 – ident: e_1_2_2_52_1 doi: 10.1016/j.tetlet.2010.09.079 – ident: e_1_2_2_9_3 doi: 10.1002/ange.201406762 – ident: e_1_2_2_40_1 doi: 10.1021/ic901726b – ident: e_1_2_2_26_1 – ident: e_1_2_2_43_2 doi: 10.1021/jo991828a – ident: e_1_2_2_66_2 doi: 10.1021/acs.organomet.8b00028 – ident: e_1_2_2_39_2 doi: 10.1002/ange.201702304 – ident: e_1_2_2_59_2 doi: 10.1021/jacs.8b12689 – ident: e_1_2_2_8_2 doi: 10.1002/anie.201205187 – ident: e_1_2_2_14_2 doi: 10.1021/acs.orglett.7b02502 – ident: e_1_2_2_61_1 doi: 10.1021/ja105772z – ident: e_1_2_2_37_3 doi: 10.1002/ange.201808289 – ident: e_1_2_2_48_2 doi: 10.1021/ja809125r – ident: e_1_2_2_65_2 doi: 10.1021/jacs.7b09754 – ident: e_1_2_2_38_2 doi: 10.1002/anie.201900907 – ident: e_1_2_2_67_1 – ident: e_1_2_2_19_1 – ident: e_1_2_2_56_2 doi: 10.1021/ja036266y – ident: e_1_2_2_2_1 – ident: e_1_2_2_45_2 doi: 10.1002/anie.200801675 – ident: e_1_2_2_49_2 doi: 10.1002/anie.200800935 – ident: e_1_2_2_57_2 doi: 10.1021/ol047351t – ident: e_1_2_2_33_2 doi: 10.1021/jacs.6b07245 – ident: e_1_2_2_51_2 doi: 10.1021/jacs.8b05176 – ident: e_1_2_2_34_3 doi: 10.1002/ange.201806877 – ident: e_1_2_2_25_3 doi: 10.1002/ange.201004525 |
SSID | ssj0006279 |
Score | 2.1225157 |
Snippet | Herein, we report that highly chemoselective and enantioselective reduction of 2‐vinyl‐substituted pyridines has been achieved for the first time. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 18610 |
SubjectTerms | asymmetric catalysis boron Catalysts Chemical reduction Chemistry Dihydropyridine Enantiomers heterocycles Heterocyclic compounds Hydroboration Natural products pyridine Pyridines Reagents reduction Substitutes |
Title | Borane‐Catalyzed Chemoselective and Enantioselective Reduction of 2‐Vinyl‐Substituted Pyridines |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202007352 https://www.proquest.com/docview/2448259102 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA-yi178FqdTchA8devStOmOc2wOwSHDyW4lSVMYjk72cdhO_gn-jf4lvtevbYIIemraNCXNe3n5vfDye4TcAAJWIjSOxVylLc40Bzto-5aWQtclVLhJ_pTHntcd8IehO9w4xZ_yQxQbbjgzEnuNE1yqWW1NGoqx9-Df4V4bgAgwwhiwhaiov-aP8lhKtmdz6AI4Gjlro81q2823V6U11NwErMmK0zkgMu9rGmjyWl3MVVWvvtE4_udnDsl-BkdpM9WfI7Jj4mOy28qzwJ0Qcwc6EpvP948WbvQsVyakWD2ZJQl0wFZSGYe0jfE0o42HfaSERaHTSUQZNH8ZxcsxXNFSpeEJIX1aTkchxt2fkkGn_dzqWllqBkszdF-58BvKEQ3FlYzAY4qYhqLgIXeZxKRmxpfaCYVnS8BbfsSlGyktQvDmPAZG0jkjpXgSm3NCQYkUHs-VxlW8AWtnXTLpK99WmkUi8srEykUT6Iy3HNNnjIOUcZkFOHhBMXhlclu8_5Yydvz4ZiWXdJDN3FkAcAecZgBRUM0Skf3ylaDZu28Xdxd_aXRJ9rBsJYEyFVKaTxfmCrDOXF0n-vwF8if5PQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UD3jxbURR92DiaWHtdh8ckYCoQAwB423TdrsJkSyGxwFO_gR_o7_EmX0BJsZET7vbbjfdTjv9ZjL9hpArQMDC8ZWpU0tInVHJQA8ari65I284VFhR_pR2x2722cOLlUYT4lmYmB8ic7jhyoj0NS5wdEiXl6yhGHwPBh462wBFbJItTOsdWVXdJYOUTWO6PYNBJ8DUSHkbDVpeb7--Ly3B5ipkjfacxi4RaW_jUJPX0mwqSnLxjcjxX7-zR3YSRKpV4ym0TzZUeEDytTQR3CFRtzBNQvX5_lFDX898oXwNq0eTKIcOqEuNh75Wx5CawUphF1lhUe7aKNAoNH8ehPMhXFFZxREKvvY0Hw98DL0_Iv1GvVdr6kl2Bl1StGCZ41aE6VQEEzwAoymgEm4d5jOLcsxrplwuTd-xDQ6Qyw0YtwIhHR8MOpuCnjSPSS4cheqEaDCPBJ7Q5coSrALb5w2n3BWuISQNnMAuED2VjScT6nLMoDH0YtJl6uHgedngFch19v5bTNrx45vFVNResngnHiAesJsBR0E1jWT2y1e8aueunj2d_qXRJck3e-2W17rvPJ6RbSzXo7iZIslNxzN1DtBnKi6iyf0FgR39WA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSMCFHVEokAMSp5TUdZYeSxfKVlUVRb1F3iJVVGnV5dCe-AS-kS9hJmm6ICEkOCWx48jxjMdvrPEbQq4AAQtX6bxJbSFNRiUDO2h5puSuzHGosKP8Kc91p9ZiD227vXSKP-aHmG-44cyI7DVO8L4KbhakoRh7D_4d7rUBiFgnG8yxPNTrcnNBIOXQmG3PYtAH8DQS2kaL3qy2X12WFlhzGbFGS051l_Cks3GkyVt2PBJZOf3G4_ifv9kjOzM8ahRjBdonazo8IFulJA3cIdG3oCSh_nz_KOFOz2SqlYHVvWGUQQeMpcFDZVQwoKazVNhETliUutELDArNXzvhpAtXNFVxfIIyGpNBR2Hg_RFpVSsvpZo5y81gSor-K3O9gsi7BcEED8BlCqiEW5cpZlOOWc20x2VeuY7FAXB5AeN2IKSrwJ1zKFjJ_DFJhb1QnxADtEjg-VyubcEKsHjmOOWe8CwhaeAGTpqYiWh8OSMux_wZXT-mXKY-Dp4_H7w0uZ6_348pO358M5NI2p9N3aEPeAe8ZkBRUE0jkf3yFb9Yv6vMn07_0uiSbDbKVf_pvv54Rrax2IyCZjIkNRqM9TngnpG4iFT7C6ky_BA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Borane%E2%80%90Catalyzed+Chemoselective+and+Enantioselective+Reduction+of+2%E2%80%90Vinyl%E2%80%90Substituted+Pyridines&rft.jtitle=Angewandte+Chemie&rft.au=Jun%E2%80%90Jie+Tian&rft.au=Zhao%E2%80%90Ying+Yang&rft.au=Xin%E2%80%90Shen+Liang&rft.au=Liu%2C+Ning&rft.date=2020-10-12&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=132&rft.issue=42&rft.spage=18610&rft.epage=18614&rft_id=info:doi/10.1002%2Fange.202007352&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon |